
”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��
2010. ’. 41. ‚›�. 7

THEORY OF HIGH-TEMPERATURE
SUPERCONDUCTIVITY IN CUPRATES

N. M. Plakida

Joint Institute for Nuclear Research, Dubna

A microscopic theory of electronic spectrum and superconducting pairing in the high-temperature
cuprate superconductors is presented. The theory is based on consideration of strong electron cor-
relations within the Bogoliubov polar model. The Dyson equation is derived by using the equation
of motion method for the thermodynamic Green functions in terms of the Hubbard operators. The
self-energy is evaluated in the noncrossing approximation for electron scattering on spin and charge
�uctuations induced by kinematic interaction. The theory demonstrates that a strong Coulomb re-
pulsion results in the anomalous electronic spectrum and unconventional (d-wave) superconducting
pairing with high Tc mediated by the antiferromagnetic exchange and spin �uctuations.

PACS: 74.20.-z

INTRODUCTION

Despite intensive studies of high-temperature superconductivity (HTSC) in
the cuprates for more than twenty years after its discovery by Bednorz and
Méuller [1], a commonly accepted mechanism of HTSC is still lacking. One of
the promising mechanisms of HTSC is based on a model of strongly correlated
electrons originally proposed by Anderson [2]. In the model, interaction of charge
carriers with antiferromagnetic (AF) spin �uctuations induced by strong correla-
tions is believed to be responsible for the anomalous normal state properties of the
cuprates and can be the origin of the superconducting pairing. Another approach
is based on consideration of spin-�uctuation pairing within phenomenological
spin-fermion models (for a review see [3]).

In the present paper, a consistent microscopic theory for the electronic spec-
trum and superconductivity for the Bogoliubov polar model [4] is formulated.
A preliminary version of the theory was proposed by Bogoliubov et al. [5] at
the early times of HTSC studies. The theory is based on the solution of the
Dyson equation derived for the thermodynamic Green functions (GFs) in terms
of the Hubbard operators (HOs) with a self-energy evaluated in the noncrossing
approximation (NCA). Below we outline the main equations of the theory. The
results of numerical studies presented at the Bogoliubov Conference can be found
in [6,7].
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1. MODEL AND DYSON EQUATION

We consider a simpliˇed version of the Bogoliubov polar model [4] where
only the largest term in the Coulomb interaction on one lattice site is taken
into account. This model is known as the Hubbard model [8]. By considering
superconductivity in cuprates only one CuO2 plane can be taken into account
which is described by an effective Hubbard model on a square lattice

H = ε1

∑
i,σ

Xσσ
i + ε2

∑
i

X22
i +

∑
i�=j,σ

{
t11ij Xσ0

i X0σ
j +

+ t22ij X2σ
i Xσ2

j + σt12ij (X2σ̄
i X0σ

j + h.c.)
}
, (1)

where Xnm
i = |in〉〈im| are the HOs for the four states for holes n, m = |0〉, |σ〉,

|2〉 = | ↑↓〉, σ = ±1 ≡ (↑, ↓), σ̄ = −σ. Here ε1 = εd − μ is the energy of the
d-type one-hole state in the lower Hubbard band (LHB) and ε2 = 2ε1 + Ueff is
the energy of the two-hole p-d singlet state in the upper Hubbard band (UHB)
for holes. The effective Coulomb energy in Eq. (1) is the charge-transfer energy
Ueff = Δpd = εp − εd. The parameters tαβ

ij are the hopping integrals where the
superscripts 2 and 1 refer to the UHB and the LHB, respectively. The chemical
potential μ depends on the average hole occupation number

n = 〈Ni〉, Ni =
∑

σ

Xσσ
i + 2X22

i . (2)

We emphasize here that the Hubbard model (1) does not involve a dynamical
coupling of electrons (holes) with �uctuations of spins or charges. This occurs due
to the kinematic interaction caused by the unconventional commutation relations
for the HOs: [Xαβ

i , Xγδ
j ]± = δij(δβγXαδ

i ± δδαXγβ
i ). For example, the equation
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Here Bαβ
iσσ′ are Bose-like operators related to the particle number operator Ni

in (2) and spin operators Sα
i = Xσσ̄

i , Sz
i = (1/2)

∑
σ

σXσσ
i .
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To consider the superconducting pairing in the model (1), we deˇne the
thermodynamic anticommutator GF [9] as the 4 × 4 matrix

Gijσ(ω) = 〈〈X̂iσ | X̂†
jσ〉〉ω =

(
Ĝijσ(ω) F̂ijσ(ω)

F̂ †
ijσ(ω) − Ĝjiσ̄(−ω)

)
, (5)

in terms of the four-component Nambu operator X̂iσ and its conjugate operator
X̂†

iσ = (X2σ
i X σ̄0

i X σ̄2
i X0σ

i ). Here the normal Ĝijσ and anomalous F̂ijσ com-
ponents of the GF (5) are 2 × 2 matrices which are coupled by the symmetry
relations for the anticommutator retarded GFs [9].

By applying the equation of motion method for the GF (5), we can derive
the Dyson equation which in the (q, ω) representation reads [6, 10]:

Gσ(q, ω) = (ωτ̃0 − Eσ(q) − Σσ(q, ω))−1 Q, (6)

where τ̃0 is the unity matrix and Q = 〈{X̂iσ, X̂†
iσ}〉 = 〈X̂iσX̂†

iσ + X̂†
iσX̂iσ〉.

The energy Eσ(q) determines the zero-order GF G0
σ(q, ω) and is found from the

orthogonality condition: 〈{[X̂iσ, H ]−
∑
l

EilσX̂lσ, X̂†
jσ}〉 = 0. This results in the

equation for the frequency matrix

Eijσ = 〈{[X̂iσ, H ], X̂†
jσ}〉Q−1 =

(
ε̂ijσ Δ̂ijσ

Δ̂∗
jiσ − ε̂jiσ̄

)
. (7)

The self-energy operator Σσ(q, ω) in (6) is deˇned by the proper part of the
scattering matrix T = Σ + Σ G0 T and is given by the equation [6,10]

Σσ(q, ω) = 〈〈Ẑ(ir)
qσ | Ẑ(ir)†

qσ 〉〉(prop)
ω Q−1, (8)

where the irreducible Ẑ-operator is given by the equation: Ẑ
(ir)
iσ = [X̂iσ, H ] −∑

l

EilσX̂lσ . Dyson equations (6)Ä(8) give an exact representation for the GF (6).

To obtain a closed system of equations, the multiparticle GF in self-energy oper-
ator (8) should be calculated. This GF describes processes of inelastic scattering
of electrons (holes) on charge and spin �uctuations due to kinematic interaction
as demonstrated by Eq. (3).

2. SYSTEM OF SELF-CONSISTENT EQUATIONS

Using the commutation relations for the HOs, we evaluate the frequency
matrix (7). For the normal component ε̂ijσ in the k space we obtain [7]

ε1,2(k) =
1
2
[ω2(k) + ω1(k)] ∓ 1

2
Λ(k),

Λ(k) = {[ω2(k) − ω1(k)]2 + 4W (k)2}1/2,
(9)
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where ω1(k) = 4tα1γ(k) + 4t′β1γ
′(k) − μ, ω2(k) = 4tα2γ(k) + 4t′β2γ

′(k) +
Ueff − μ, and W (k) = 4tα12γ(k) + 4t′β12γ

′(k). Here t and t′ are the hopping
parameters for the nearest neighbors (n.n.) and the next n.n. (n.n.n), respectively,
with γ(k) = (1/2)(cos kx + cos ky), γ′(k) = cos kx cos ky. Because of the
kinematic interaction, the spectrum is renormalized: α1(2) = Q1(2)[1+C1/Q2

1(2)],
β1(2) = Q1(2)[1 + C2/Q2

1(2)], α12 =
√

Q1Q2[1 − C1/Q1Q2], β12 =
√

Q1Q2[1 −
C2/Q1Q2]. Here, beyond the Hubbard-I approximation given by the factors
Q1 = (1 − n/2) and Q2 = n/2, the renormalization caused by spin correlation
functions for the n.n. C1 = 〈SiSi±ax/ay

〉 and the n.n.n. C2 = 〈SiSi±ax±ay〉,
respectively, are taken into account. They considerably suppress the hopping
parameters for the n.n.: α1(2) 	 1 since due to the AF correlations C1 < 0 with
|C1| = 0.1 − 0.2.

The superconducting pairing in the Hubbard model occurs already in the
mean-ˇeld approximation (MFA) which is given by the anomalous component
Δ̂ijσ of the matrix (7). For the diagonal components we have [6]

Δ22
ijσ = −

σt12ij 〈X02
i Nj〉

Q2
, Δ11

ijσ =
σt12ij 〈NjX

02
i 〉

Q1
. (10)

We see that the pairing occurs at a single site (X02
i = X0↓

i X↓2
i = ai↓ ai↑) but in

different Hubbard subbands. The anomalous averages 〈X02
i Nj〉 can be calculated

directly by using the equation for the pair commutator GF Lij(t−t′) = 〈〈X02
i (t) |

Nj(t′)〉〉 without any decoupling approximations [6]. Below we consider the hole-
doped case, n = 1 + δ > 1 with the Fermi level in the UHB. In this case we
obtain in the two-site approximation

〈X02
i Nj〉 = −σ

(
4t12ij

Ueff

)
〈Xσ2

i X σ̄2
j 〉, Δ22

ijσ =
Jij〈Xσ2

i X σ̄2
j 〉

Q2
, (11)

where the exchange interaction Jij = 4(t12ij )2/Ueff . This equation is equivalent to
the gap equation in the t-J model where the pairing is mediated by the exchange
interaction (see, e.g., [11] and references therein).

The self-energy (8) is calculated in the NCA which assumes an indepen-
dent propagation of the Fermi-like excitations Xj = X0σ

j (X σ̄2
j ) and Bose-like

excitations Bi (4) in the many-particle correlation functions that gives

〈Bi(t)Xj(t)Bl(t′)Xm(t′)〉 
 〈Xj(t)Xm(t′)〉〈Bi(t)Bl(t′)〉|(i�=j, l �=m). (12)

Using the spectral representation for these correlation functions, a self-consistent
system of equations for the normal component of the GF can be derived [7]

G22
N (k, ω) = [1 − b(k)]G2(k, ω) + b(k)G1(k, ω),

G1(2)(k, ω) = [ω − ε1(2)(k) − Σ(k, ω)]−1,
(13)
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where the hybridization parameter b(k) = [ε2(k) − ω2(k)]/[ε2(k) − ε1(k)]. The
self-energy for the GF (13) can be approximated by the equation

Σ(k, ω) =
∑
q

+∞∫
−∞

dz K(+)(ω, z|q,k − q)
(
− 1

π
Im [G1(q, z)+G2(q, z)]

)
. (14)

The gap equation for the UHB can be written as

ϕ2,σ(k, ω) =
∑
q

+∞∫
−∞

dz

[
Jk−q

2
tanh

z

2T
+ K(−)(ω, z|q,k− q)

]
Φ22

σ (q, z), (15)

where Jk = 4Jγ(k) and Φ22
σ (k, ω) = (−1/π) ImF 22

σ (k, ω) is the spectral density
of the anomalous GF. In the linear approximation in respect to the gap function it
reads: F 22

σ (k, ω) = −G22
N (k,−ω)ϕ2,σ(k, ω)G22

N (k, ω). The kernel of the integral
equations (14), (15) is given by the expression

K(±)(ω, z|q,k − q) = |t(q)|2
+∞∫

−∞

dΩ
tanh

z

2T
+ coth

Ω
2T

2(ω − z − Ω)
χ′′(±)

sc (k − q, Ω), (16)

where the interaction is determined by t(q) = 4tγ(q) + 4t′γ′(q) and the dy-

namic spin and charge susceptibility χ
′′(±)
sc (q, ω) = (−1/π) Im [〈〈Sq|S−q〉〉ω ±

(1/4)〈〈Nq|N−q〉〉ω ] in terms of the GFs for spin Sq and number Nq operators.

3. DISCUSSION

To elucidate the mechanism of HTSC in the present theory, we consider a
weak-coupling approximation for the gap function (15):

ϕ2,σ(k) =
∑
q

[Jk−q − λ(q,k − q)]
ϕ2,σ(q)
2E2(q)

tanh
E2(q)

2T
, (17)

where λ(q,k − q) = |t(q)|2χs(k − q, 0) and E2(q) = [ε2(q)2 + |ϕ2,σ(q)|2]1/2.
We emphasize that there are essentially two channels of superconducting pairing.
The ˇrst one is mediated by the AF exchange interaction J which lowers the
electronic kinetic energy due to intersubband hopping in a lattice with short-range
AF order. The retardation effects in this pairing are negligible which results in
the coupling of all the charge carriers in the conduction subband W and in a
Tc determined by the Fermi energy μ: T ex

c 

√

μ(W − μ) exp (−1/Vex), where
Vex 
 JNd(μ) and Nd(μ) is the density of electronic states for the d-wave
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pairing. This pairing mechanism has been originally proposed by Anderson [2]
in his resonant-valence-bond (RVB) theory and is absent in conventional metals.
The second channel is the spin-�uctuation pairing due to hopping in one Hubbard
subband which is usually considered in spin-fermion models. By taking into
account both channels, we obtain for Tc the estimation: Tc = ωs exp (−1/Ṽsf),
Ṽsf = Vsf + Vex/[1 − Vex ln (μ/ωs)], where Vsf 
 λsN(μ), λs ∼ t2/ωs is the
coupling constant, and ωs ∼ J is the characteristic energy for spin-�uctuations.
Even for a weak coupling, Vex 
 Vsf 
 0.2 a high Tc = 100−200 K follows
from this estimation due to the enhancement of the coupling constant Ṽsf for
(μ/ωs) � 1. It should be stressed that in our microscopic theory the coupling
function in the gap equation (15) (or (17)) is given by the same parameters
(t, t′, J) of the Hubbard model (1) contrary to spin-fermion models where this
interaction is a ˇtting parameter.
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