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We show that the quantum statistical mechanics (QSM) describing quantum and thermal prop-
erties of objects has only the sense of a particular semiclassical approximation. We propose a more
general (than QSM) microdescription of objects in a heat bath taking into account a vacuum as an
object environment; we call it (�, k)-dynamics (�kD). We construct a new model of thermostat,
namely, a quantum heat bath, and study its properties including the cases of ®cold¯ and ®thermal¯
vacua. We introduce a new generative operator, Schroedingerian, or stochastic action operator, and
show its fundamental role in the determination of such macroquantities as internal energy, effective
temperature, and effective entropy. We establish that in �kD the ratio of effective action to ef-
fective entropy at zero temperature equals the universal constant �/2k. This result corresponds to
experimental data taken recently under studying of a new matter state Å nearly perfect �uid.

PACS: 05.30.-d

1. THE LIMITATIONS OF EQUILIBRIUM
QUANTUM STATISTICAL MECHANICS

The conviction that equilibrium quantum statistical mechanics (QSM) is not
only an adequate description of microobjects in a heat bath but also forms a
basis for the corresponding macrodescription has predominated for a fairly long
time. At the same time, it is well known that there exist such macroparameters,
temperature, for example, whose analogies have not yet been studied on the
microlevel.

QSM is based on the notion of the density matrix (operator), which in the
energy representation has the form of the GibbsÄvon Neumann quantum canonical
distribution,

wn = exp
F − εn

Θ
, (1)

where εn is the spectrum of the object energy; F is the free energy determined
by the normalization condition, and Θ is the modulus of the distribution.
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The QSM limitations are manifested in three ways.
First, distribution (1) is insensitive to including the contribution of the zero

oscillation energy ε0 = �ω/2 to the object energy because such an inclusion is
automatically compensated by a change in the expression for the free energy F
in view of the normalization condition:

εn ⇒ ε′n = εn + ε0

Fn ⇒ F ′
n = Fn + ε0

}
F ′ − ε′n = F − εn.

Moreover, as can be seen in the ground state of the quantum oscillator with

Δp2
0 =

�mω

2
, Δq2

0 =
�

2mω
,

we have

Δp0Δq0 =
�

2
=

ε0

ω
, (2)

which conˇrms the direct relation between the quantities ε0 and �/2. (It is
principal in quantum physics!)

Second, it is assumed in QSM that

the Zero Law has the form T = T0,

where T0 is a temperature of heat bath. So, the object temperature does not
�uctuate (ΔT = 0). However, we know that the temperature �uctuations in low-
temperature experiments are sufˇciently noticeable for small objects, including
nanoparticles.

Third, according to QSM,

the Third Law has the form Smin = 0,

but the assertion that the minimum entropy equals zero (automatically following
from distribution (1)) is currently very doubtful.

Fourth, we also note another inconsistency inherent in QSM. As is known,
the modulus Θ of distribution (1) has the form

Θcl = kBT = Ecl. (3)

This corresponds to choosing the classical model of the heat bath as a set of
inˇnity number of weakly coupled classical oscillators with average energy Ecl.
However, distribution (1) is used in QSM for any objects at any temperatures.
But a microobject with quantized energy can be placed in such a heat bath even
under the conditions kBT < (εn − εn−1).

In other words, equilibrium QSM based on distribution (1) is not a consis-
tent theory for either quantum or thermal phenomena. Therefore, it can now
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be considered only a particular semiclassical approximation with respect to their
quantum and thermal characteristics deˇned by the respective Planck and Boltz-
mann constants � and kB .

So, on the base of QSM it is not possible to construct thermodynamics,
suitable for describing of low-temperature area and small objects.

2. STATISTICAL THERMODYNAMICS BY EINSTEIN
AS THE FIRST THEORY WITH THERMAL FLUCTUATIONS

Wishing go out of the frame of QSM, we proceed from the fact that no objects
are isolated in nature. In other words, we follow the Feynman model, according
to which any system can be represented as a set of the object under study and
its environment (the ®rest of the Universe¯ as a system of inˇnity number of
freedom degrees). The environment can exert both regular and stochastic actions
on the object. Here, we study only the stochastic action. Two types of action,
namely, quantum and thermal actions characterized by the respective Planck and
Boltzmann constants, can be assigned to it.

It is important to note that every object responds to the stochastic action in
the form of �uctuations of its characteristics. The ˇrst theory that took into ac-
count thermal �uctuations was created by Einstein. It was nonquantum Statistical
Thermodynamics. Correspondingly, in it Boltzmann's constant is only used.

We recall that among the important statements of this theory there are the
next:

1) the model of environment is not change Å it is a classical heat bath with
energy

Ecl ≡ kBT ;

2) the Zero Law takes another form than in QSM and classical Thermody-
namics

T = (T0) ± ΔT,

where

(ΔT )2 =
kB

CV
T 2

0

is a dispersion of object temperature; T0 ≡ 〈T 〉 is an average object temperature,
and CV is a heat capacity at constant volume;

3) Gibbs' distribution, in contrast to QSM, is written in the space of macropa-
rameters and takes the form

ρ(E) = exp
F − E(T, V )

Θcl
.
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To obtain a consistent quantum-thermal description of natural objects, in our
opinion, it is possible to use other approaches that are different from QSM and
nonquantum Statistical Thermodynamics. They are based on one general idea,
namely, replacing the classical model of the environment (the heat bath) with
an adequate quantum model or a quantum heat bath (QHB). In this model, the
thermal equilibrium between the object and its environment is characterized by
the effective temperature Teff with a nonzero constraint from below. This quantity
takes the environment stochastic action of quantum and thermal types into account
simultaneously.

We suppose that it is possible to do it using two different approaches: both
macro- and microdescriptions.

3. THE FIRST APPROACH Å PHENOMENOLOGICAL MACROTHEORY
(QUANTUM STATISTICAL THERMODYNAMICS)

In the ˇrst of our approaches, we can modify the macrodescription of objects
in the heat bath by taking quantum effects into account in the framework of
Einstein statistical thermodynamics with an inclusion of temperature �uctuations
but without using the operator formalism. In this case, based on intuitive consi-
derations and physical analogies, we obtain quantum statistical thermodynamics
as a phenomenological theory for the macrodescription of natural objects under
the conditions of equilibrium with the environment (including the case T = 0).

As a result, we obtain a quantum version of statistical thermodynamics. It is
based on the quantum model of environment, named quantum heat bath (QHB),
as a set of inˇnity number of weakly coupled quantum oscillators with average
energy

EPl =
�ω

2
coth

�ω

2kBT
,

following from experiment.
According to this expression we can introduce a principally new characteris-

tic Å the effective temperature

T → Teff ≡ E
kB

=
�ω

2kB
coth

�ω

2kBT
.

It is important that

T min
eff =

�ω

2kB
�= 0.

Quantum thermodynamics as a phenomenological macrotheory is character-
ized by the next positions:
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1. The generalized Zero Law:

Teff = (T0)eff ± ΔTeff ,

where Teff is the temperature of QHB.
2. The generalized canonical distribution:

ρ(E) = exp
Feff − E(T, V )

Θqu
,

where, in the distinction from formula (1), the modulus of distribution Θcl ≡ kBT
is changed to Θqu ≡ kBTeff .

3. In this case, we can generalize the notion of entropy and introduce the
effective entropy in the form

Seff = kB

{
1 + ln coth

�ω

2kBT

}
.

So, the third law corresponds to the Nernst theorem

Smin
eff = kB �= 0.

4. FUNDAMENTAL MICROTHEORY: (�, k)-DYNAMICS

But we note that the second approach, in which we can modify the fundamen-
tal microdescription of the same objects under thermal equilibrium conditions, can
also be assumed. For these purposes, we propose formulating a quantum-thermal
dynamics or, brie�y, (�, k)-dynamics (�kD), as a modiˇcation of standard quan-
tum mechanics taking thermal effects into account. The principal distinction of
such a theory from QSM is that in it the state of a microobject under the condi-
tions of contact with the QHB is generally described not by the density matrix
but by a temperature-dependent complex wave function.

We note that this is not a ®technical sleight-of-hand¯. Using the wave func-
tion, we thereby suppose we should consider pure and mixt states simultaneously
in the frame of Gibbs' ensemble. It is in principle differs from Boltzmann's
assembly used in QSM.

A general idea of our investigation: to construct a theory it is necessary
1) to change ρ̂(T ) ⇒ ΨT (q);
2) to introduce (except of Hamiltonian) a new operator Å the stochastic

action operator ĵ;
3) to use an idea of heat bath at T = 0 (®cold¯ heat bath) also;
4) to use an idea of vacuum at T > 0 (®thermal¯ vacuum) also.
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This theory is based on a new microparameter, namely, the stochastic action
operator. In this case, we demonstrate that averaging the corresponding micropa-
rameters over the temperature-dependent wave function, we can ˇnd the most
important effective macroparameters, including internal energy, temperature, and
entropy. They have the physical meaning of the standard thermodynamic quanti-
ties using in the phenomenological macrodescription.

4.1. The Model of the QHB: A Case of the ®Cold¯ Vacuum. To describe
the environment with the holistic stochastic action that was previously called
the thermal ˇeld vacuum by Umezawa, we introduce a concrete model, the QHB.
According to this, the QHB is a set of weakly coupled quantum oscillators with all
possible frequencies. The equilibrium thermal radiation can serve as a preimage
of such a model in nature.

The speciˇc feature of our understanding of this model is that we assume that
we must apply it to both the ®thermal¯ (T �= 0) and the ®cold¯ (T = 0) vacua.
Thus, in the sense of Einstein, we proceed from a more general understanding
of the thermal equilibrium, which can, in principle, be established for any type
of environmental stochastic action (purely quantum, quantum-thermal, and purely
thermal).

We begin our presentation by studying the ®cold¯ vacuum and discussing the
description of a single quantum oscillator from the number of oscillators forming
the QHB model for T = 0 from a new standpoint.

But we recall that the lowest state in the energetic (Ψn(q)) and coherent
states (CS) is the same. In the occupation number representation, the ®cold¯
vacuum in which the number of particles is n = 0 corresponds to this state. In
the q representation, the same ground state of the quantum oscillator is in turn
described by the real wave function

Ψ0(q) = [2π(Δq0)2]−1/4 exp
{
− q2

4(Δq0)2

}
. (4)

As is well known, CS are the eigenstates of the non-Hermitian particle annihilation
operator â with complex eigenvalues. But they include one isolated state |0a〉 =
|Ψ0(q)〉 of the particle vacuum in which eigenvalue of â is zero

â|0a〉 = 0|0a〉, â|Ψ0(q)〉 = 0|Ψ0(q)〉. (5)

4.2. Some Features of the ®Cold¯ Vacuum. In what follows, it is convenient
to describe the QHB in the q representation. Therefore, we express the annihi-
lation operator â and the creation operator â† in terms of the operators p̂ and q̂
using the traditional method. We have

â =
1
2

(
p̂√
Δp2

0

− i
q̂√
Δq2

0

)
, â† =

1
2

(
p̂√
Δp2

0

+ i
q̂√
Δq2

0

)
. (6)
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The particle number operator then becomes

N̂a = â†â =
(

p̂2

Δp2
0

− 1
2
Î +

q̂2

Δq2
0

)
=

1
�ω

(
p̂2

2m
− �ω

2
Î +

mω2q̂2

2

)
. (7)

The sum of the ˇrst and third terms in the parentheses forms the Hamiltonian
H of the quantum oscillator, and after multiplying relation (7) by �ω on the left
and on the right, we obtain the standard interrelation between the expressions for
the Hamiltonian in the q and n representations:

Ĥ =
p̂ 2

2m
+

mω2q̂2

2
= �ω

(
N̂a +

1
2
Î

)
, (8)

where Î is the unit operator.
From the thermodynamics standpoint, we are concerned with the internal

energy of the quantum oscillator in equilibrium with the ®cold¯ QHB. Its value
is equal to the mean of the Hamiltonian calculated over the state |0a〉 ≡ |Ψ0(q)〉:

U0 = 〈Ψ0(q)|Ĥ|Ψ0(q)〉 = �ω〈Ψ0(q)|N̂a|Ψ0(q)〉 +
�ω

2
=

�ω

2
= ε0. (9)

It follows from formula (9) that in the given case, the state without particles
coincides with the state of the Hamiltonian with the minimum energy ε0. The
quantity ε0, traditionally treated as the energy of zero oscillations, takes the phy-
sical meaning of the internal energy U0 of the quantum oscillator in equilibrium
with the ®cold¯ vacuum.

4.3. Passage to the ®Thermal¯ Vacuum. We can pass from the ®cold¯ to
the ®thermal¯ vacuum in the spirit of Umezawa using the Bogoliubov (u, v)-
transformation with the temperature-dependent coefˇcients

u =
(

1
2

coth
�ω

2kBT
+

1
2

)1/2

ei(π/4),

v =
(

1
2

coth
�ω

2kBT
− 1

2

)1/2

e−i(π/4).

(10)

In the given case, this transformation is canonical but leads to a unitarily
nonequivalent representation because the QHB at any temperature is a system
with an inˇnite number of freedom degrees.

In the end, such a transformation reduces to passing from the set of quan-
tum oscillator CS to a more general set of states called the thermal corre-
lated coherent states (TCCS). They are selected because they ensure that the
Schroedinger coordinate-momentum uncertainties relation is saturated at any tem-
perature. From the second-quantization apparatus standpoint, the Bogoliubov
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(u, v)-transformation ensures the passage from the original system of particles
with the ®cold¯ vacuum |0a〉 to the system of quasiparticles described by the an-
nihilation operator b̂ and the creation operator b̂† with the ®thermal¯ vacuum |0b〉.

To obtain from ®cold¯ vacuum ®thermal¯ one using the Bogoliubov (u, v)-
transformations it is necessary to pass:

1) from CS to TCCS:

Ψ0(q) ⇒ ΨT (q), |0a〉 ⇒ ||0b〉;

2) from particles to quasiparticles:

â ⇒ b̂ = b̂(T ).

In this case, the choice of transformation coefˇcients (10) is ˇxed by the
requirement that for any method of description, the expression for the mean
energy of the quantum oscillator in thermal equilibrium be deˇned by the Planck
formula, which can be obtained from experiments:

EPl = �ω

(
exp

(
�ω

kBT

)
− 1

)−1

+
�ω

2
=

�ω

2
coth

�ω

2kBT
. (11)

Earlier was shown by us, the state of the ®thermal¯ vacuum |0b〉 ≡ |ΨT (q)〉
in the q representation corresponds to the complex wave function

ΨT (q) = [2π(Δq)2]−1/4 exp
{
− q2

4(Δq)2
(1 − iα)

}
, (12)

where

(Δq)2 =
�

2mω
coth

�ω

2kBT
, α =

[
sinh

�ω

2kBT

]−1

. (13)

For its Fourier transform ΨT (p) a similar expression with the same coefˇ-
cient α and

(Δp)2 =
�mω

2
coth

�ω

2kBT
(14)

holds.
We note that the expressions for the probability densities ρT (q) and ρT (p)

have already been obtained by Bloch, but the expressions for the phase that
depend on the parameter α play a very signiˇcant role and were not previously
known. It is also easy to see that as T → 0, the parameter α → 0 and the function
ΨT (q) from the set of TCCS passes to the function Ψ0(q) from the set of CS.
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4.4. Some Features of the ®Thermal¯ Vacuum. Of course, the states from
the set of TCCS are the eigenstates of the non-Hermitian quasiparticle annihilation
operator b̂ with complex eigenvalues. They also include one isolated state of the
quasiparticle vacuum in which eigenvalue of b̂ is zero,

b̂|0b〉 = 0|0b〉, b̂|ΨT (q)〉 = 0|ΨT (q)〉. (15)

Using condition (15) and expression (12) for the wave function of the ®ther-
mal¯ vacuum, we obtain the expression for the operator b̂ in the q representation:

b̂ =
1
2

√
coth

�ω

2kBT

[
p̂√
Δp2

0

− i
q̂√
Δq2

0

(
coth

�ω

2kBT

)−1

(1 − iα)

]
. (16)

The corresponding quasiparticle creation operator has the form

b̂† =
1
2

√
coth

�ω

2kBT

[
p̂√
Δp2

0

+ i
q̂√
Δq2

0

(
coth

�ω

2kBT

)−1

(1 + iα)

]
. (17)

We can verify that as T → 0, the operators b̂† and b̂ for quasiparticles pass
to the operators a† and â for particles and

|0b〉 ⇒ |0a〉, ΨT (q) ⇒ Ψ0(q).

Acting just as above, we obtain the expression for the quasiparticle number
operator in the q representation

N̂b = b̂†b̂ =

=
1
4

coth
�ω

2kBT

[
p̂2

Δp2
0

− 2
(

coth
�ω

2kBT

)−1 (
Î +

α

�
{p̂, q̂}

)
+

q̂2

Δq2
0

]
, (18)

where we take 1 + α2 = coth2
�ω/2kBT into account when calculating the last

term.
4.5. Hamiltonian in TCCS. Passing from the quasiparticle number operator

to the original Hamiltonian and multiplying by �ω, we obtain

Ĥ = �ω

(
coth

�ω

2kBT

)−1 [
N̂b +

1
2

(
Î +

α

�
{p̂, q̂}

)]
. (19)

We stress that the operator {p̂, q̂} in formula (19) can also be expressed in
terms of bilinear combinations of the operators b̂† and b̂, but they differ from the
quasiparticle number operator Nb. This means that the operators Ĥ and N̂b do
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not commute and that the wave function of form (12) characterizing the state of
the ®thermal¯ vacuum is therefore not the eigenfunction of the Hamiltonian.

As before, we are interested in the thermodynamic quantity, namely, the
internal energy U of the quantum oscillator now in thermal equilibrium with the
®thermal¯ QHB. Calculating it just as earlier, we obtain

U = �ω

(
coth

�ω

2kBT

)−1

×

×
[
〈ΨT (q)|N̂b|ΨT (q)〉 +

1
2

+
α

2�
〈ΨT (q)|{p̂, q̂}|ΨT (q)〉

]
(20)

in the q representation. Because we average over the quasiparticle vacuum in
formula (20), the ˇrst term in it vanishes. At the same time, it was shown earlier
by us that

〈ΨT (q)|{p̂, q̂}|ΨT (q)〉 = �α. (21)

As a result, we obtain the expression for the internal energy of the quantum
oscillator in the ®thermal¯ QHB in the �kD:

U =
�ω

2(coth �ω/2kBT )
(1 + α2) =

�ω

2
coth

�ω

2kBT
= EPl, (22)

where EPl is deˇned by Planck formula (11). This means that the average energy
of the quantum oscillator at T �= 0 has the thermodynamic meaning of its internal
energy in the case of equilibrium with the ®thermal¯ QHB. As T → 0, it passes
to a similar quantity corresponding to equilibrium with the ®cold¯ QHB.

5. NEW FUNDAMENTAL OPERATOR Å SCHROEDINGERIAN

5.1. Schroedinger Uncertainties Relation. Because the original statement of
the �kD is the idea of the holistic stochastic action of the QHB on the object, we
introduce a new operator in the Hilbert space of microstates to implement it.

We recall the general expression of Schwartz inequality

|A|2 · |B|2 � |A · B|2.

Schroedinger uncertainties relations (SUR) coordinate-momentum following
from it are:

1) Unsaturated SUR

(Δp)2(Δq)2 > |R̃qp|2 ≡ σ2 +
�

2

4
;
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2) Saturated SUR
(Δp)2(Δq)2 = |R̃qp|2. (23)

For real states σ = 0.
In the absence of stochastic action R̃qp ≡ 0. As leading consideration, here-

inafter we use an analysis of the right-hand side of the saturated SUR coordinate-
momentum.

5.2. The Stochastic Action Operator (Schroedingerian). For not only a
quantum oscillator in a QHB but also any object, the complex quantity in the
right-hand side of (23)

R̃pq = 〈Δp|Δq〉 or R̃pq = 〈 |Δp̂Δq̂ | 〉 (24)

has a double meaning. On the one hand, it is the amplitude of the transition
from the state |Δq〉 to the state |Δp〉; on the other hand, it can be treated as the
Schroedinger quantum correlator calculated over an arbitrary state | 〉 of some
operator.

As is well known, the nonzero value of quantity (24) is the fundamental
attribute of nonclassical theory in which the environmental stochastic action on
an object plays a signiˇcant role. Therefore, it is quite natural to assume that the
averaged operator in formula (24) has a fundamental meaning. In view of dimen-
sional considerations, we call it the stochastic action operator or Schroedingerian,

ĵ ≡ Δp̂ Δq̂. (25)

Of course, it should be remembered that the operators Δq̂ and Δp̂ do not
commute and their product is a non-Hermitian operator.

To analyze further, following Schroedinger, we can express the given operator
in the form

ĵ =
1
2
〈|Δp̂Δq̂ + Δq̂Δp̂ |〉 +

1
2
〈|Δp̂Δq̂ − Δq̂Δp̂ |〉 = σ̂ − i ĵ0. (26)

It allows separating the Hermitian part of ĵ from the anti-Hermitian one. Then
the Hermitian operators σ̂ and ĵ0 have the form

σ̂ ≡ 1
2
{Δp̂, Δq̂}, ĵ0 ≡ i

2
[p̂, q̂ ] =

�

2
Î . (27)

It is easy to see that the mean σ = 〈 |σ̂| 〉 of the operator σ̂ resembles the
expression for the standard correlator of coordinate and momentum �uctuations
in classical probability theory. It transforms into this expression if the operators
Δq̂ and Δp̂ are replaced with c-numbers. It re�ects the contribution to the
transition amplitude R̃pq of the environmental stochastic action. Therefore, we
call the operator σ̂ the external action operator in what follows. Previously, the
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possibility of using a similar operator was discussed by Bogoliubov and Krylov
(1939), where it was studied as a quantum analogue of the classical action variable
in the set of action-angle variables.

At the same time, the operators ĵ0 and ĵ were not previously introduced.
The operator ĵ0 of form (27) re�ects a speciˇc peculiarity of the objects to be
®sensitive¯ to the minimum stochastic action of the ®cold¯ vacuum and to respond
to it adequately regardless of their states. Therefore, it should be treated as a
minimum stochastic action operator. Its mean J0 = �/2 is independent of the
choice of the state over which the averaging is performed, and hence it has the
meaning of the invariant eigenvalue of the operator ĵ0.

5.3. Correspondence between the Constants � and (1/2)�. This implies
that in the given case, we deal with the universal quantity J0, which we call
the minimal stochastic action. Its fundamental character is already deˇned by
its relation to the Planck world constant �. But the problem is not settled yet.
Indeed, according to the tradition dating back to Planck, the quantity � is assumed
to be called the elementary quantum of the action. At the same time, the factor
1/2 in the quantity J0 plays a signiˇcant role, while half the quantum of the
action is not observed in nature. Therefore, the quantities � and (1/2)�, whose
dimensions coincide, have different physical meanings, and hence must, in our
opinion, be named differently. From this standpoint, it would be more natural to
call the quantity � the external action quantum.

Hence, the quantity � is this minimum portion of the action transferred to the
object from the environment or from another object. Therefore, photons and other
quanta of ˇelds being carriers of fundamental interactions are ˇrst the carriers of
the minimal action equal to �. The same is also certainly related to phonons.

Finally, we note that only the quantity � is related to the discreteness of the
spectrum of the quantum oscillator energy in the absence of the heat bath. At
the same time, the quantity �/2 has an independent physical meaning. On the
base of formula (9) it speciˇes the minimum value of the macroparameter Å the
internal energy U0 of the quantum oscillator in the ®cold¯ QHB (at T = 0).

We evaluate the speciˇc features of the stochastic action operator used in
the microdescription below. We recall that this operator is non-Hermitian. This
would seemingly contradict the standard requirements imposed on the operators in
quantum mechanics, but there is nothing unusual in this. Certainly, the presence
of eigenstates and real eigenvalues that are assumed to be compared with obser-
vable quantities is characteristic for Hermitian operators. But from the physical
standpoint, such eigenvalues are not so interesting, because they characterize
something invariable, such as stationary states, for example.

It is quite another matter if we are interested in genuine quantum dynamics,
which is naturally associated with transitions from one state to another. In this
case, precisely the non-Hermitian operators play an important role. The creation
and annihilation operators or, for example, the scattering matrix are among the
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most well-known of them. The Schroedingerian, or stochastic action operator,
also belongs with these operators.

6. EFFECTIVE ACTION AS A FUNDAMENTAL GENERATIVE
MACROPARAMETER

6.1. The Mean of the Operator ĵ. We now construct the macrodescription
of objects using their microdescription in the �kD. It is easy to see that the mean
J̃ of the operator ĵ of form (26) coincides with the complex transition amplitude
R̃pq or Schroedinger's correlator and, in thermal equilibrium, can be expressed
as

J̃ = 〈ΨT (q)| ĵ |ΨT (q)〉 = σ − iJ0, (28)

where σ and J0 are the means of the corresponding operators. In what follows,
we regard the modulus of the complex quantity J̃ ,

|J̃ | =
√

σ2 + J2
0 =

√
σ2 +

�2

4
≡ Jeff (29)

as a new macroparameter and call it the effective action. It has the form

Jeff =
�

2
coth

�ω

2kBT
(30)

for the quantum oscillator and coincides with a similar quantity previously pos-
tulated from intuitive considerations.

6.2. Internal Energy and Effective Temperature. We now establish the in-
terrelation between the effective action and traditional thermodynamic quantities.
Comparing expression (30) for Jeff with (22) for the internal energy U , we can
easily see that

U = ω|J̃ | = ωJeff (31)

for the quantum oscillator. In the high-temperature limit, where

σ → JT =
kBT

ω
� �

2
, (32)

relation (31) becomes
U = ωJT . (33)

Boltzmann previously obtained this formula for macroparameters in classical ther-
modynamics by generalizing the concept of adiabatic invariants used in classical
mechanics.
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Relation (31) also allows expressing the interrelation between the effective
action and the effective temperature Teff in explicit form:

Teff =
ω

kB
Jeff . (34)

This implies that

T min
eff =

ω

kB
J0 =

�ω

2kB
�= 0. (35)

Finally, we note that using formulas (31), (14), and (13), we can rewrite the
Schroedinger uncertainties relation for the quantum oscillator for T �= 0 as an
expression similar to expression (2) for the case T = 0:

Δp · Δq = |J̃ | =
U

ω
. (36)

6.3. A Geometrical Sense of the Effective Action. To stress the role of
the macroparameter Jeff , we treat formula (29) geometrically. We recall that
we pass from the ground state of the quantum oscillator belonging to the set
of CS to the state of the ®thermal¯ QHB belonging to the set of TCCS using
the Bogoliubov (u, υ)-transformation. It forms the Lie group in the states space
locally isomorphic to the Lorenz group in the two-dimensional world of events.
This means that for TCCS, we can regard the set (Jeff , σ) as a two-dimensional
time-like vector in the pseudo-Euclidean states space and the quantity J0 = �/2
as the length of this vector or an invariant of the corresponding group:

J2
eff − σ2 = J2

0 =
�

2

4
= inv. (37)

The role of the traditional Lorenz multipliers β and γ in the given case is played
by the quantities

βT =
[
cosh

�ω

2kBT

]−1

, γT = coth
�ω

2kBT
. (38)

It is easy to see that the vector of the effective action (Jeff , σ) is an analogue
of the two-dimensional momentum-energy vector (E , pc) in relativistic mechanics:

ε2 − p2c2 = ε2
0 = m2c4. (39)

In particular, for the quantum oscillator in the TCCS, the quantity Jeff is
an analogue of E and σ is an analogue of pc. If interrelation (31) between the
internal energy of the quantum oscillator and the effective action is taken into
account, then expression (37) becomes

U2 − σ2ω2 = U2
0 =

(
�ω

2

)2

. (40)
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The physical meaning of formula (40) and that of (37) are completely si-
milar to that of relation (39) characterizing the so-called mass shell in the two-
dimensional space of events.

6.4. Effective Entropy in the �kD. The possibility of introducing entropy in
the �kD is also based on using the wave function instead of the density operator.
Using the dimensionless expressions for ρ(q) = |Ψ(q)|2 and ρ(p) = |Ψ(p)|2, we
propose deˇning a formal coordinate Å momentum entropy Sqp by the equality

Sqp = −kB

{∫
ρ̃(q̃) ln ρ̃(q̃)dq̃ +

∫
ρ̃(p̃) ln ρ̃(p̃)dp̃

}
. (41)

Substituting the corresponding expressions for ρ̃(q̃) and ρ̃(p̃) in (41), we obtain

Sqp = kB

{(
1 + ln

2π

δ

)
+ ln coth

�ω

2kBT

}
. (42)

Obviously, the ˇnal result depends on the choice of the constant δ.
Choosing δ = 2π, we can interpret expression (42) as the quantum-thermal

entropy or, brie�y, the QT-entropy SQT because it coincides exactly with the
effective entropy Seff obtained earlier by us in the macrotheory framework

SQT ≡ Seff = kB

{
1 + ln

Jeff

J0

}
= kB {1 + ln Ω} , (43)

where Ω according to Boltzmann is a number of microstates in the given macro-
state. This ensures the consistency between the main results of our proposed
micro- and macrodescriptions and their correspondence to experiments.

We can approach the modiˇcation of formal expression Sqp in another way.
Combining both terms in it, we can represent it in the form

−kB

∫
dp dq{ρ(p)ρ(q)} ln{ρ(p)ρ(q)}. (44)

It is easy to see that the expression in braces is the Wigner function for the
quantum oscillator in a heat bath:

W (p, q) = ρ(p)ρ(q) = {2π(Δq)2(Δp)2}−2 exp
{
− p2

2(Δp)2
− q2

2(Δq)2

}
. (45)

The change of variables in the phase space and the passage to the dimension-
less Wigner function with its normalization taken into account allow rewriting
expression (44) in the form of the QT-entropy (43):

SQT = −kB

∫
dẼ W̃ (Ẽ) ln W̃ (Ẽ), (46)

where

W̃ =
�ω/2
kBTeff

exp
{
− E

kBTeff

}
. (47)
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7. QUANTUM STATISTICAL THERMODYNAMICS
ON THE BASE OF THE EFFECTIVE ACTION

The above presentation shows that using the �kD developed here, we can
introduce the effective action Jeff as a new fundamental macroparameter. The
advantage of this quantity is that it has a microscopic preimage, namely, the
stochastic action operator ĵ, or Schroedingerian, which has an obvious physical
sense. Moreover, we can in principle express the main thermodynamic char-
acteristics of objects in thermal equilibrium in terms of it. As is well known,
temperature and entropy are the most fundamental of them.

If the notion of effective action is used, these heuristic considerations can
acquire an obvious meaning. For this, we turn to expression (34) for Teff ∼ Jeff .
It follows from it that the effective action is also an intensive macroparameter
characterizing the stochastic action of the ®thermal¯ QHB.

In view of this, the Zero Law of equilibrium quantum Statistical Thermody-
namics can be rewritten as

Jeff = J therm
eff ± ΔJeff , (48)

where J therm
eff is effective action of QHB; Jeff and ΔJeff are the means of the

effective action of an object and the standard deviation from it. The state of
thermal equilibrium can actually be described in the sense of Newton, assuming
that ®the stochastic action is equal to the stochastic counteraction¯ in such cases.

We now turn to the effective entropy. In the absence of a mechanical contact,
its differential is

dSeff =
δQeff

Teff
=

dU

Teff
. (49)

Substituting the expressions for internal energy (31) and effective temperature
(34) in this relation, we obtain, as was waited,

dSeff = kB · d
(

ln
Jeff

J0

)
, (50)

that corresponds with formula (43). So, the effective or QT-entropy, being an
extensive macroparameter, can also be expressed in terms of Jeff .

As a result, it turns out that two qualitatively different characteristics of
thermal phenomena on the macrolevel, namely, the effective temperature and ef-
fective entropy, embody the presence of two sides of the process of stochastizing
the characteristics of an object in nature in view of the contact with the QHB.
At any temperature, they can be expressed in terms of the only macroparameter,
namely, the effective action. This macroparameter has the stochastic action oper-
ator, or Schroedingerian, simultaneously dependent on the Planck and Boltzmann
constants as a microscopic preimage in the �kD.
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8. CONNECTION WITH EXPERIMENT

Nowadays there are a number of papers on quantum gravitation and quantum
ˇeld theory where the ratio of shift viscosity to entropy volume density is the
subject of interest. It was shown by us that this quantity can be given by

Jeff

Seff
=

Jeff
min

Seff
min

cothT eff
min/T

1 + ln cothT eff
min/T

= κ
coth κω/T

1 + ln cothκω/T
→ κ. (51)

In this expression,

κ ≡ Jeff
min

Seff
min

=
�

2kB
(52)

is the limiting ratio for T 
 T eff .
In our opinion, the quantity

κ = 3.82 · 10−12 K · c (53)

is not only the notation for one of the possible combinations of the world constants
� and kB . It also has its intrinsic physical meaning. It is contained in deˇnition
of the effective temperature

T eff = κω coth
κω

T
, (54)

and also in the displacement law for equilibrium thermal radiation

T

ωmax
= 0.7κ.

We are sure that the quantity κ plays the role of a constant essentially character-
izing the holistic stochastic action on the object.

The analogical with (51) relation in QSM, in contrast to the one in �kD, has
the form

J

S
→ � exp (−�ω/kBT )

kB(�ω/kBT ) exp (−�ω/kBT )
=

T

ω
→ 0. (55)

Therefore, it is now possible to compare two theories (�kD and QSM)
experimentally by measuring the limiting value of this ratio: whether is equal to
κ or zero.

The ˇrst indication that the quantity κ plays an important role was obtained
in Andronikashvili's experiments (1948) on the viscosity of liquid helium below
the λ-point. There is also another area of Physics where the constant κ appears.
This is experiments with quarkÄgluon plasmas (RHIC accelerator, Brookhaven,
2005), where it was obtained that

Jmin

Smin
�= 0. (56)
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Now the constant κ is also observed in cold atomic gases and different solids as
a characteristic of the fundamentally new state of matter Å nearly perfect �uid.

This work was supported by the Russian Foundation for Basic Research
(project No. 10-01-90408).
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