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A brief review of the works of the authors on generalized spin glass models is given. The
problem of the dependence of transition scenario on different factors is discussed. A classiˇcation of
spin glasses behavior as depending on symmetry characteristics of systems is proposed.

PACS: 11.10.-z

In this report dedicated to the memory of Nikolay Nikolaevich Bogolyubov,
we are dealing with spin glass theory. We note that spin glass (SG) theory is
an important ˇeld of modern statistical mechanics, where, just as in other ˇelds,
Bogolyubov's concept of quasi-averages [1] is most important for understanding
the essence. While usually quasi-averages are introduced using an external ˇeld,
the quasi-averages describing replica symmetry breaking (RSB) in SG are deˇned
through inˇnitesimal interaction between the replicas∗.

Our aim now is twofold: ˇrst, we show that there exist a number of real
complex nonmagnetic physical systems that have much in common with the
traditional spin glasses and that can be described using the standard methods of
SG theory; second, we use our results to clear some points in the classiˇcation
of the different kinds of SG behavior. Extending the class of models permits
considering the role of different factors in the scenarios for the appearance of
SG-type nonergodic states.

The theory of spin glasses appeared as an attempt to describe unordered
equilibrium freezing of spins in actual dilute magnetic systems with disorder
and frustration. This problem was soon solved in principle by Sherrington and
Kirkpatrick, Edwards and Anderson, and Parisi (see [2] for a review). The

∗See, e.g., Sec. 12 in Moskalenko V. A. et al. The Self-Consistent Field Method in the Theory
of Glassy States of Spin and Quadrupole Systems (Kishinev: Shtiintsa, 1990).



2036 TAREYEVA E. E., SCHELKACHEVA T. I., CHTCHELKATCHEV N.M.

SherringtonÄKirkpatrick (SK) Hamiltonian is of the form

H = −1
2

∑
i�=j

JijUiUj, (1)

and describes Ising spins U located at the lattice sites i, j, and the quenched
interactions Jij are distributed with Gaussian probability

P (Jij) =
1√
2πJ

exp
[
− (Jij − J0)2

2J2

]
(2)

with J = J̃/
√

N , J0 = J̃0/N . To perform averaging over disorder in this case
one has to average the quenched free energy F rather than the partition sum Z
itself. The standard method for performing such an average is the replica method.
After averaging the free energy becomes a function of the order parameters
depending on replica indices:

F = F (xα, qαβ), xα =
1
N

N∑
i=1

Uα
i , qαβ =

1
N

N∑
i=1

Uα
i Uβ

i .

The free energy F (xα, qαβ) has an extremum at replica symmetric (RS) solution
when all qαβ are equals. However, this state is unstable under RSB. Parisi
proposed a schema of RSB step by step obtaining as a limit full RSB (FRSB)
when qαβ becomes a continuous function of a parameter x. The results describe
the main features of experiments on spin glasses.

So, the problem of theoretical description of SG per se was solved in prin-
ciple and at that time different other models appeared without any connection
to real experiments and real physical systems. The main feature of these mod-
els was the absence of time reversal symmetry Å in contrast to the SK model.
The most investigated among those are p-spin models and Potts models, con-
sidered in the papers by E. Gardner, A. Crisanti, H.-J. Sommers, D. Thirumalai,
T. R.Kirkpatrick, etc. The spherical p-spin model was believed to be a generic
for this class of models. From the point of view of RSB, the main feature of this
model is the stability of the ˇrst step of RSB (1RSB) down to zero temperature.
Also, the order parameter behaves jumpwise. Although this model was not aimed
to describe any actual glass, it occurs to be very interesting because its behavior
gives a scenario for real liquid-glass transition: two critical temperatures, the
number of metastable states similar to that obtained in numerical modelling. The
structure of the dynamical equations for the correlation functions of supercooled
liquids in mode-coupling theory and that for p-spin SG model are identical [3].

Based mainly on the investigation of these two models Å SK and p-spin
spherical Å a conclusion appears in the literature attributing a kind of two classes
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of universality to the models with and without re�ection symmetry. As is well
known, re�ection symmetry plays an important role in characterizing the phase
transitions in regular mean-ˇeld models without disorder. The presence of cubic
terms in the free-energy expansion leads to a ˇrst-order phase transition, and
their absence results in a second-order phase transition. In several papers where
systems with random interaction were studied in the mean-ˇeld approximation,
attempts were made to formulate a kind of universality rules for disordered case
(see, e.g., [3,4]). It is worth noting that the series in order parameter for the free
energy in replica approach contains explicitly in addition to that of the re�ection
symmetrical case

ΔF s

NkT
= lim

n→0

1
n

∑[
. . . + a3δq

αβδqβγδqγα + a′
4(δq

αβ)4+

+ a4δq
αβδqβγδqγδδqδα . . .

]

the part without re�ection symmetry: the terms with 3 equal replica indices:

ΔFns

NkT
= lim

n→0

1
n

∑[
. . . + b3(δqαβ)3 + . . . + b4δq

αβδqβγδqγαδqδα . . .
]
.

So, a natural question arises: whether there can be made a general statement
about the behavior of SG models with and without re�ection symmetry? do all
models of the ˇrst type behave in fact as SK model and all models of the second
type as p-spin model? Now we try to answer this question.

First, let us consider a generalized model with re�ection symmetry. In
this case, it occurs to be possible to prove a kind of a theorem. We consider
the Hamiltonian (1) with the interactions given by (2) and arbitrary diagonal
operators U . The re�ection symmetry means

Tr
[
Û (2k+1)

]
= 0 (3)

for any integer k. The saddle point conditions for the free energy averaged over
disorder give the glass order parameter qαβ = Tr [UαUβ exp (θ̂)]/Tr [exp (θ̂)]
and auxiliary order parameter pα = Tr [(Uα)2 exp (θ̂)]/Tr [exp (θ̂)]. Here

θ̂ =
t2

2

∑
α

pα(Uα)2 + t2
∑
α>β

qαβUαUβ, (4)

t = J̃/kT and we choose J0 = 0 for simplicity.
In RS approach one has the trivial solution qRS = 0. The bifurcation condi-

tion gives
1 − t2cp

2(tc) = 0. (5)
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This equation coincides with λrepl(RS) = 0 (see [2]). It is very important that it is
zero solution that bifurcates. Realizing the 1RSB, then 2RSB, 3RSB, and so on,
we see that the equations for the glass order parameters always contain the quantity
Tr [U exp (θ̂nRSB)]/Tr [exp (θ̂nRSB)]. Therefore, one of the solutions is trivial at
each of the RSB steps, and the appearance of the nRSB solution can be regarded
as a bifurcation of the trivial (n − 1)RSB solution. In this case, the equation
λnRSB = 0 coincides with the corresponding branching condition (5). This means
that in any case, the nRSB solutions at different stages of the symmetry breaking
can exist at the temperature T < Tc determined by this bifurcation condition, and
so we always can look for FRSB solution. Writing free energy as a series in δqαβ

near Tc (up to the fourth order of magnitude inclusively), we obtain q(x) = cx in
leading approximation (see [5] for details). It is also possible to write free energy
in the form of Parisi [2] with the only difference in the boundary conditions for
the Parisi function φ that now reads

φ(1, y) = ln Tr
{

exp
[
tyU +

t2

2
(p − q(1))U2

]}
.

Thus, we have shown that in the case of systems with re�ection symmetry,
the inˇnite FRSB occurs at the very point at which the RS solution becomes
unstable. In particular, our result means that magnetic systems of arbitrary spin
with interaction between the z components behave in the same way.

Let us consider now some examples of models without re�ection symmetry
and some real physical systems corresponding to such models (see also [6] and
the references therein). It is easy to trace how the proof given above fails using
the model of [7]. The difference between two cases is already manifested in the
RS approximation. In the case when the condition (3) is not fulˇlled for the
Hamiltonian (1) there is no trivial solution for the order parameters. The disorder
smears out the ˇrst-order phase transition; hence, instead of a transition, there is a
smooth increase in the order parameters (both glass and regular) as the temperature
decreases. This situation is seen in experiments on orientational glass phase in
ortho-para-hydrogen mixed crystals and in Ar − N2. These substances present
mixtures of spherically symmetric molecules and momentum bearing molecules.
The corresponding glass was described in [8] on the base of the Hamiltonian (1)
with U = Q, where Q = 3J2

z −2, J = 1. The RSB solution branches continuously
and smoothly on cooling. Breaking the RS results in a transition to the nonergodic
phase of quadrupolar glass.

Another example of a SG-like phase in molecular crystal is presented by pure
para-H2 (or ortho-D2) under pressure. The possibility of orientational order in
systems of initially spherically symmetric molecule states is due to the involving
of higher order orbital moments J = 2, 4, . . . in the physics under pressure. With
increasing density the anisotropic interaction potential and the crystal ˇeld grow
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rapidly and the energy of many-body system can be lowered by taking advantage
of the anisotropic interactions. The long-range orientational order appears abruptly
at a ˇxed value of pressure through the ˇrst-order phase transition just as it
takes place in ortho-para mixtures when the concentration of moment bearing
molecules achieves certain ˇxed value. In the intermediate concentration range
the frustration and disorder give the basis to the investigation of quadrupole glass
with J = 2. Such a theory was constructed in [9] for the numbers of interacting
particles p = 2, 3. The essential feature of the obtained intermediate phase in
both models is the coexistence of orientational glass with long-range orientational
order as is seen in the experiment.

For all quadrupolar glass models considered the RSB was performed and the
stability of the 1RSB solution against further RSB was checked. The very im-
portant result is that in the case of three-particle interaction between quadrupoles
with J = 2 as well as with J = 1 the ˇrst stage RSB is stable only in the ˇnite
region of temperature and not down to zero temperature.

Let us consider two more models describing SG-like states in real complex
nonmagnetic systems, namely, in systems of clusters. Although they are not
mixtures of different kinds of particles with different interactions, one can ˇnd
frustration and disorder, that is the background to consider the systems in the
spirit of SG theory. Now the operator U in (1) is replaced with continuous
functions of angles.

In [10] a model for low-temperature transition to the orientational glass state
in solid molecular C60 was developed. Although the molecules have nearly spheri-
cal shape, at low temperature there are two pronounced minima in the anisotropic
part of intermolecular interaction energy. It is possible to trace an analogy with
mixtures by studying the role of mutual molecular orientations of different types.
As a result, a model is constructed where the role of spin is played by certain
combinations of cubic harmonics. The results agree well with the experimental
data: the coexistence of the glass state and the long-range orientational order
and the existence of a wide maximum on the curve for the orientational part of
the heat capacity. Moreover, the above model permits considering the pressure
dependence of orientational transitions for small pressures.

The other model we would like to mention is the SG-like freezing of clusters
of different symmetries in supercooled liquids that gives a possible description
of liquidÄglass transition. In the papers [11] we use the microscopic approach
based on equations for distribution functions which are in spirit of Bogolyubov
hierarchy to analyze the intercluster interaction. We show that there exists a
region of densities and temperatures where this interaction changes sign as a
function of the cluster radius and there is, hence, frustration in the system.
This is the base to write a Hamiltonian of the form (1) with different point
group harmonics for U and use standard methods of SG theory to describe real
glasses.
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To conclude, we have shown that for arbitrary models with re�ection sym-
metry the Parisi FRSB always takes place. In the absence of re�ection symmetry
the situation is not so deˇnite. The behavior of the system depends on some
additional characteristics. In any case, it is not always similar to that of p-spin
spherical model, as is usually believed. We present three counterexamples. We
have shown that in this case under certain additional conditions, there exists a
ˇnite domain of stability of the 1RSB. This was apparently ˇrst shown for simple
nonspherical models in our papers [6, 9]. This fact was discovered for the Potts
model with three states in [12] earlier.
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