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Differential Faddeev equations in total angular momentum representation are used for the cal-
culations of helium trimer system. Numerical results on binding energies of 4He3 and ultracold
collisions of 4He atom on 4He dimer are reviewed.
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INTRODUCTION

Studying the special properties of tiny molecules consisting of just two or
three atoms of helium attracted considerable attention in recent years. These
systems have unique quantum properties that are of greatest importance to basic
research. For instance, the two atoms in a helium dimer are very weakly bonded
and have an interatomic spacing of about 100 atomic radii making the helium
dimer the largest known molecule that exists.

Experimentally, helium dimers have been observed for the ˇrst time in 1993
by the Minnesota group [1], and in 1994 by Schéollkopf and Toennies [2]. Later
on, Grisenti et al. [3] measured a bond length of (52 ± 4) �A for 4He2, which
indicates that this dimer is the largest known diatomic molecular ground state.
Based on this measurement they estimated a scattering length of 104+8

−18
�A and

a dimer energy of 1.1+0.3
−0.2 mK [4]. In the latter investigation [5] the trimer pair

distance is found to be 1.1+0.4
−0.5 nm in agreement with theoretical predictions for

the ground state.
Due to the small magnitude of the dimer energy, one should expect that the

4He3 trimer indeed possesses the theoretically predicted state of the Eˇmov type
(see [6Ä9]). It is this property that distinguishes the 4He atoms from the atoms of
all other noble gases, and makes the 4He clusters especially attractive objects of
experiments. Because of the possibility of experimental observation of the Eˇmov
effect [10], the 4He trimer is undoubtedly interesting for nuclear physicists as well.
In the year 2000, an interesting hypothesis [11] on the possibility of experimental
observation of the Eˇmov state in 4He3 trimers was put forward. The suggestion
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was to scatter ultracold 4He clusters on diffraction lattices with sufˇciently small
lattice spacing (of the order of 10 nm or less). The practical realization of this
experiment, see [5], did not lead to obvious success, and at present a reliable
experimental evidence on the existence of excited states in 4He3 trimers is still
missing. However, in the experiment [5], the size of the 4He3 molecule in the
ground state was estimated for the ˇrst time.

1. FORMALISM

Our previous investigation [12] (and see the ref. therein) of the 4He three-
atomic system was based on hard-core version of the Faddeev differential equa-
tions. In the exploited scheme of solving the Faddeev equations we made a
partial-wave decomposition in an auxiliary (bipolar) basis in order to reduce the
dimension of the Faddeev equations at the expense of dealing with an inˇnite
set of partial equations. In such a way, we faced the problem of the slow
convergence of the corresponding partial-wave expansion. As a consequence, the
accuracy achieved in [12], especially for the scattering length, appeared somewhat
limited [13]. A way to overcome these difˇculties with taking into account higher
numbers of two-body partial waves is to make use of the three-dimensional differ-
ential Faddeev equations [14] that are obtained from the original six-dimensional
ones by only separating off the three angular variables (Eulerian angles) that de-
scribe the rotation of the system as a whole. Here we will apply these equations
for computation of helium trimer bound state energy.

To descibe the conˇguration of the three-body system, we introduce standard
scaled Jacobi coordinates, xα, yα, α = 1, 2, 3:

xα =
[

2mβmγ

mβ + mγ

]1/2

(rβ − rγ),

yα =
[
2mα(mβ + mγ)
mα + mβ + mγ

]1/2 (
rα − mβrβ + mγrγ

mβ + mγ

)
,

(1)

where ri are the position vectors of particles; mi Å the masses and (α, β, γ) are
a cyclic permutation of the atom numbers (1, 2, 3).

The wave function Ψ of the system can be expressed as a sum of the three
Faddeev components Ψα

Ψ(x,y) =
∑
α

Ψα(xα,yα)

which obey the Faddeev equation [15]

(−Δxα−Δyα +Vα(|xα|)−E)Ψα(xα,yα) = −Vα(|xα|)
∑
β �=α

Ψβ(xβ ,yβ), (2)
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where E is the energy of the system. The potential energy of the system is
invariant with respect to rotation. This makes it possible [14] to separate out
the degrees of freedom corresponding to rotation of the system by expanding the
Faddeev components in terms of eigenfunctions of the total angular momentum.
In case of zero total angular momentum the projection of Eq. (2) takes the
form

(H0 +Vα(xα) − E)Φα(xα, yα, θα) = −Vα(xα)
∑
β �=α

Φβ(xβ , yβ, θβ),

H0 = − ∂2

∂x2
α

− ∂2

∂y2
α

−
(

1
x2

α

+
1
y2

α

)
1

sin θα

∂

∂θα
sin θα

∂

∂θα
,

(3)

where Φα are projections of the Faddeev components in subspace with ˇxed
angular momentum. Equations (3) are three-dimensional partial-wave differen-
tial equations in the internal space, which is parametrized by Jacobi coordi-
nates

xα = |xα|, yα = |yα|, cos θα =
(xα,yα)

xαyα
, α = 1, 2, 3.

Assuming that each two-body subsystem has only one bound state, one can
write the asymptotic boundary condition for the Faddeev components of the
(2 + 1 → 2 + 1; 1 + 1 + 1) scattering processes, as ρ → ∞ and/or y → ∞,

Φ(x, y, θ; p) = δl0ψd(x)
{

sin (py) + exp (ipy)
[
a0(θ; p) + o(y−1/2)

]}
+

+
exp (i

√
Eρ)

√
ρ

[
A(y/x, θ; p) + o(ρ−1/2)

]
. (4)

Here, ψd(x) is the wave function of the two-body bound state in the two-body
subsystem, E stands for scattering energy E = εd + p2 with εd being the two-
body bound state energy, and p for the relative momentum conjugates to the
variable y, ρ =

√
x2 + y2. The coefˇcients a0(θ; p) and A(y/x, θ; p) are the

amplitudes of the rearrangement and break-up processes.
To overcome the strong-repulsion problem we use the hard-core modiˇcation

of the Faddeev differential equations [16Ä18].

2. RESULTS

We have applied developed numerical algorithm for solving the above-
mentioned equations to the 4He3 three-atomic system. Number of grid points was
taken up to 300 on each variable. As HeÄHe interaction we used the LM2M2
potentials by Aziz and co-workers [19]. For the explicit form of these polarization
potentials we refer to the Appendix of [20]. We choose �

2/m4He
= 12.12 K · �A2
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Table 1. Dimer energy εd, bond length 〈R〉 and 4He−4He scattering length �
(1+1)
sc for

the potentials used, as compared to the experimental values of [4]

Potential model εd, mK �
(1+1)
sc , �A 〈R〉∗, �A

LM2M2 −1.30348 100.23 51.84

Exp. [4] 1.1+0.3
−0.2 104+8

−18 52+4
−4

∗Results from [21].

Table 2. Results for binding energies of the 4He3 trimer and the 4HeÄ4He2 scattering
lengths

∣
∣E
∣
∣, �sc

Pres.
[22] [23] [24] [25] [26] [27] [28] [29]

work
∣
∣E4He3

∣
∣, mK 126.45 125.2 125.521 126.41 126.3(9)1 126.15 126.2 126.39 125.61

∣
∣E∗

4He3

∣
∣, mK 2.2822 2.269 2.271 2.274 2.268 2.2451

�
(4He−4He2)
sc , �A 1163 115.84 120.91

1In original paper the energy value is given in cm−1 (1 cm−1 = 1.4387752 K).
2This value was rounded in [20].
3Result of extrapolation, see [13].
4Result from [30].

Surface of the wave function of the 4He3 ground state (sections at z = 0.025 (a) and

z = 0.769 (b) for the LM2M2 interaction

for comparison with the results of other authors. The 4He dimer binding energies
and 4HeÄ4He scattering lengths obtained with the LM2M2 potential are shown
in Table 1.
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Table 2 summarizes the results on trimer binding energies and HeÄHe2 scat-
tering lengths. The binding energies of the 4He trimer ground state (E4He3 ) and
excited state (E∗

4He3
) are presented in the ˇrst two rows. These results demon-

strate good agreement between the different methods. The third row contains
values of the 4HeÄ4He2 scattering lengths.
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