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DEFINITION OF FREE HYPERRADIAL DYNAMICS
FOR THE THREE-BODY PROBLEM
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Following the analysis of [1, 2], we deˇne appropriate hyperradius-distorted free incoming and
outgoing waves (HDFW) that incorporate unphysical long-range effects of the hyperradial-adiabatic
(HA) treatment of the three-body scattering problem.

PACS: 21.60.-n

INTRODUCTION

In the hyperradial-adiabatic treatment of the three-body problem the hyper-
radius R and two internal hyperangles (ξ, η) are chosen as the basic variables.

Then the total wave function is expanded as ΨHA = R−5/2
N∑
i

χi(R)ϕi(R|ξ, η).

After integration over ξ and η one arrives at a system of coupled hyperradial
equations which in matrix form reads as[

− 1
2M

d2

dR2
1 + ε(R) + 2Q(R)

d

dR + W(R)
]

χ(R) = Eχ(R). (1)

The elements of the matrices Q(R) and W(R) that constitute the so-called
nonadiabatic corrections are given as usual by

Qij(R) = − 1
2M

〈
ϕi

∣∣∣∣ d

dRϕj

〉
, Wij(R) = − 1

2M

〈
ϕi

∣∣∣∣ d2

dR2
ϕj

〉
. (2)

Moreover, ε(R) denotes the diagonal matrix of the adiabatic eigenvalues and
χ(R) Å the column vector solution. It is a well-known fact that, within the
HA approach, the nonadiabatic corrections that couple channels converging to
the same asymptotic conˇguration can show an unphysical long-range behavior
∼ 1/R [1Ä3]. Its occurrence is a purely kinematic effect, arising from the use of
the hyperradius instead of the appropriate Jacobi variables.
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Traditionally the asymptotic form of the scattering solution of (1) is then
searched in the form [5,6]

χ(R) ∼
[
e−iKR 1− eiKR S

]
B, for R → ∞, (3)

yielding the S-matrix S (B represents suitable normalization factors). Because of
the above-mentioned long-range correlations such a procedure represents, how-
ever, an ill-posed problem and is the origin of the considerable difˇculties en-
countered in practical applications. To enhance the usefulness of this approach
we propose the following strategy:

• First, ˇnd an appropriate auxiliary (®distorted-free¯) scattering equation
corresponding to (1).

• When the full equation (1) is solved subsequently, in order to deˇne the
physical S-matrix, the asymptotic comparison is then made with the solutions
of the above auxiliary equation instead of with the standard spherical waves as
in (3).

In more detail, following the analysis of [1, 2], we ˇrst have to ˇnd from
the auxiliary scattering equation the so-called hyperradius-distorted free incoming
and outgoing waves

e−iKR S̄−1/2 and eiKR S̄1/2 (4)

(see below) that incorporate the above-mentioned unphysical long-range effects
and include an auxiliary scattering matrix S̄. The latter then allows one to
calculate the physical scattering matrix S as

S = S̄−1/2SS̄−1/2, (5)

i.e., rather different from the standard S (3). Thus, in a ˇrst step a procedure to
deˇne and then to calculate the auxiliary S-matrix S̄ has to be given.

1. HYPERSPHEROIDAL HAMILTONIAN

We consider three charged particles having masses mi, position vectors xi,
(i = 1, 2, 3), and charges Z1Z2 > 0, Z1Z3 < 0. Units μ = e = � = 1 are
chosen. Introduction of the familiar prolate spheroidal coordinates ξ ∈ [1,∞) and
η ∈ [−1, 1], deˇned by r1 = R(ξ + η)/2, r2 = R(ξ − η)/2, with R = |x2 − x3|,
r1 = |x1−x3|, r2 = |x2−x3|, and of the hyperradius R = R

√
ρ(ξ, η) yields (for

nonrotational states) the hyperradial Hamiltonian depending on three variables [4]

H = h(R|ξ, η) − 1
2M

1
R5

∂

∂RR5 ∂

∂R ,

(6)

h(R|ξ, η) = −ρ2(ξ, η)
2μR2

â +
√

ρ(ξ, η)V,
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V (R|ξ, η) =
1
R

[
Z1Z2 −

2Z1Z3

ξ + η
− 2Z2Z3

ξ − η

]
. (7)

The volume element is dτ = (ξ2 − η2) dξ dη/ρ2(ξ, η). Here, the following
abbreviations have been used:

â =
1

ξ2 − η2

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1 − η2)

∂

∂η

]
,

q̂ =
1

ξ2 − η2

[
(ξ − κη)(ξ2 − 1)

∂

∂ξ
+ (η − κξ)(1 − η2)

∂

∂η

]
,

(8)

ρ(ξ, η) = 1 + α̃(ξ2 + η2 − 2κξη + κ2 − 1),

α̃ =
μ

4M
; κ =

m2 − m1

m2 + m1
, (9)

1
M

=
1

m1
+

1
m2

;
1
μ

=
1

m3
+

1
m1 + m2

.

The hyperradial-adiabatic eigenvalue equation

h(R|ξ, η)ϕi(R|ξ, η) = εi(R)ϕi(R|ξ, η) (10)

can be interpreted as describing the motion of a quasi-particle with mass μ/ρ2(ξ, η)
in a renormalized interaction potential

√
ρ(ξ, η)V (cf. (6)). As indicated, the

Hamiltonian h(R|ξ, η) depends parametrically on the hyperradius R resulting in
a 1/R-behavior of the eigenvalues εi(R) for large R, a fact established both
numerically and analytically [3].

2. ASYMPTOTIC BEHAVIOR

In order to assess the efˇciency of the HA approach, it is of importance
to study the asymptotic behavior of the various quantities occurring in (1) for
large R [3]. This is illustrated in detail at the example of the speciˇc physi-
cal three-charged particle system consisting of antiproton, electron and proton in
the Figure (see also [8]). There we show our calculated hyperradial-adiabatic
potential ε11(R) (i.e., the 11th eigenvalue) and the corresponding effective po-
tential ε11(R) + W11,11(R) which includes the diagonal nonadiabatic correc-
tions. Indeed, both curves tend asymptotically to the proper energy level of
antiprotonium (pp̄)n=5. But the speed of approach is dramatically different. The
reason is that while ε11(R) clearly displays the unphysical attractive 1/R-like
tail, the latter is, however, for a large region of R-values compensated with
sufˇcient accuracy by that of the diagonal matrix element W11,11(R) of the
nonadiabatic corrections. Obviously, for this particular system the size of the
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Lowest adiabatic potential of the (n = 5)-subset without (®adiabatic¯) and with (®effec-
tive¯) nonadiabatic correction

corrections is substantial and is thus expected to strongly in�uence the conver-
gence rate of the scattering observables (see, e.g., [6]). But it is important to
keep in mind the established fact that, within the HA approach, also nondiagonal
corrections that couple channels converging to the same conˇguration but
containing different states of the atom can show a similar long-range beha-
vior ∼ O(1/R).

3. EXAMPLE OF HYPERRADIUS-DISTORTED FREE WAVES

In order to enhance the convergence and to minimize the range of R that
should be used in the numerical solution of the hyperradius scattering equation (1),
the following robust procedure is suggested. To be speciˇc, consider the physical
reaction

(dμ−)1s + t → (tμ−)1s + d, (11)

which has been thoroughly investigated in earlier days, see, e.g., [5Ä7]. The
asymptotic form of the solution of (1), if searched in the traditional way according
to (3), includes the standard incoming (exp {−iKR}) and outgoing (exp {iKR})
spherical waves and an S-matrix S (together with a column matrix B of arbitrary
coefˇcients). Clearly, the S-matrix deˇned in this way must be expected to
be rather sensitive to the long-range kinematic effects introduced by using the
hyperradius instead of the appropriate Jacobi variables.

This fact suggests to ˇrst solve two auxiliary HA problems that physically
represent the motion of the corresponding atoms with respect to a neutral ®parti-
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cle¯ with mass of the remaining third particle, namely

(dμ−)1s + mt → (dμ−)1s + mt (V = Vdμ− , Vdt = Vtμ− = 0), (12)

(tμ−)1s + md → (tμ−)1s + md (V = Vtμ− , Vdt = Vdμ− = 0). (13)

These processes are trivial in the appropriate Jacobi variables since the corre-
sponding wave functions are just products of hydrogen-like functions and plane
waves. But when studied in the HA approach they suffer from the same kinematic
inadequacy as the original reaction (11).

For these two reactions the HA ansatz leads to a system of equations similar
to (1). Asymptotically the solution for the reaction (12) behaves as

χdμ−
(R) ∼

[
e−iKR − eiKR Sdμ−

]
Bdμ−

, for R → ∞, (14)

and for (13) as

χtμ−
(R) ∼

[
e−iKR − eiKR Stμ−

]
Btμ−

, for R → ∞. (15)

As was demonstrated in [1], the ®eigenvalues¯ and ®nonadiabatic corrections¯
for these auxiliary reactions closely resemble those of the physical problem (11)
and, what is to be particularly stressed here, the large-R behavior of the cor-
responding matrices Qdμ−

, Qtμ−
, Wdμ−

, and Wtμ−
reproduces that for the

corresponding quantities of the original physical problem (11). That is, in the
HA approach these two free-motion problems look like a multichannel scattering
problem where two different fragmentation channels are described using the same
hyperradius R.

Thus, the basic idea is to construct incoming and outgoing spherical waves
that produce a unit S-matrix for the auxiliary problems shown above, and use
them in the physical problem (11). In a ˇrst step we combine the solutions χdμ−

and χtμ−
into a common wave function, taking care of the energetic ordering of

the asymptotic states,

χ̄ =

(
χdμ−

χtμ−

)
∼

[
e−iKR 1− eiKR S̄

]
A; S̄ =

(
Sdμ−

0
0 Stμ−

)
. (16)

Let us rewrite (16) as

χ̄(R) ∼
[
e−iKR S̄−1/2 − eiKR S̄1/2

]
S̄1/2A =

[
χ̄(−)(R) − χ̄(+)(R)

]
Ā. (17)

Then all unphysical couplings inherent in the HA approach are seen to have
been incorporated in the distorted incoming and outgoing waves χ̄(−)(R) and
χ̄(+)(R). We call them hyperradius-distorted free waves (HDFW), cf. (4). And
we have arrived at a unit S-matrix as required for physical reasons.
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4. DEFINITION OF THE PHYSICAL S-MATRIX

For the physical problem (11) we rewrite the asymptotic solution (3), intro-
ducing now the hyperradius-distorted free waves χ̄(±), as

χ(R) ∼
[
e−iKR S̄−1/2S̄1/2 − eiKR S̄1/2S̄−1/2S

]
B =

=
[
χ̄(−)(R)S̄1/2 − χ̄(+)(R)S̄−1/2S

]
B =

=
[
χ̄(−)(R) − χ̄(+)(R)S̄−1/2SS̄−1/2

]
S̄−1/2B =

=:
[
χ̄(−)(R) − χ̄(+)(R)S

]
B̄, (18)

so that for the physical scattering matrix S we ˇnd the result (5).
The advantage of such an approach is evident: all unphysical long-range

effects of the HA approach have been incorporated in the similar but numerically
much simpler auxiliary problems (12) and (13). Consequently, the physical
values of scattering observables for the interesting reaction (11) are expected to
be reached at much lower values of the hyperradius than in the original version
of the method which is, of course, a very desirable feature.

Elastic cross section (in units of 10−20 cm2) for (dμ−)1s + t → (tμ−)1s + d collisions.
The center-of-mass incident energy is E = 10−2 eV

BA [7] 2.13

HDFW (5) 2.21

HA [6] 2.39

This expectation is borne out by calculations of the elastic cross section for
the reaction (11) for the energy E = 10−2 eV. In the Table we compare three
available two-state results. The best adiabatic (BA) calculations of [7] utilized
an adiabatic expansion in which molecular states are constructed in (appropri-
ate) Jacobi coordinates. Our result (second line of the Table) demonstrates the
noticeable improvement over the traditional HA approach (third line of the Ta-
ble). We mention that the multistate HA approximation of [6] produced the value
2.15 · 10−20 cm2.

CONCLUSIONS

The hyperradial-adiabatic approach is extensively used in solving various
three-body scattering problems, see, for example, [5, 6]. Though convergence of
the scattering results is usually claimed, it is not always as clear-cut as desirable.
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Here we propose for the ˇrst time to substitute the traditional way of calculating
the scattering matrix using (3) for the following more elaborate but much more
reliably looking procedure:

• As a ˇrst step solve the appropriate hyperradius-distorted free scattering
equation yielding the auxiliary S-matrix S̄.

• After that the conventional scattering matrix S is to be calculated using (3).
• The true physical scattering matrix S is then found via (5).
We mention that a related problem arises in the BornÄOppenheimer (BO)

adiabatic approximation. In [9], boundary conditions for the radial multichannel
Schréodinger equation were discussed, with the suggestion that the corresponding
scattering theory ®requires serious investigation¯. The reason for this warn-
ing is that here some matrix elements of the nonadiabatic couplings asymp-
totically approach even nonzero constant values. Clearly standard scattering
theory is not applicable in such a case since free-motion states cannot be in-
troduced.

In contrast, in the HA approach matrix elements of the nonadiabatic correc-
tions and the adiabatic eigenvalues εi(R) may behave asymptotically like 1/R.
This at least allows one to follow the distorted-wave strategy of formal scattering
theory presented here, which is distinctly different from the usual practice [5, 6].
A ˇrst application has now been provided for the physical problem (11).

In conclusion, we expect that the HA approach, supplemented with the elim-
ination of long-range parts of the unphysical couplings along the lines developed
in this paper, i.e., using HDFW, will turn out to be rather effective. The numeri-
cal example from the previous section supports this conjecture. Finally, we note
the following two features of our main result S = S̄−1/2SS̄−1/2 (5):

• If the system of coupled hyperradius equations (1) is not large enough, both
S and S represent for the same number N of equations different approximations.

• On the other hand, if N is so large as to yield a converged physical
S-matrix, the auxiliary matrix S̄ will approximately reduce to a unit matrix,
resulting in S ≈ S.

Thus, a result S̄ ≈ 1 provides an easily obtainable independent and critical
check of the convergence of the calculated scattering observables with respect
to the number N of states taken into account, without having to solve the full
physical scattering equation (1).
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