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QUASI-PARTICLE PHONON NUCLEAR MODEL FOR
ODD-MASS NUCLEI Å RECENT DEVELOPMENTS

S. Mishev∗, V. V. Voronov∗∗

Joint Institute for Nuclear Research, Dubna

An enhanced theory, based on the Extended Boson Approximation, for the lowest-lying states
in odd-mass nuclei is presented. Our approach is built on the Quasi-particle Phonon Model extending
it to take into account the ground state correlations due to the action of the Pauli principle more
accurately than in the conventional theory.

PACS: 21.60.-n

INTRODUCTION

The Quasi-Boson Approximation (QBA) underlying the Random Phase Ap-
proximation (RPA) [1] stimulates a discussion concerning its applicability towards
approaching the problem of correctly taking into account the ground state corre-
lations (GSC) in evenÄeven nuclei. An enhanced version to this approximation,
referred to as Extended RPA (ERPA), which was proposed long time ago [2] and
later developed by [3, 4], proved successful in improving the theoretical results
for most measurable quantities in the nuclear ground states as, for example, the
transition charge densities in the interior region. Other microscopic approaches
aiming to improve the RPA with respect to adding correlations to the ground
states of evenÄeven nuclei have also been attempted, as, for example, in [1,5Ä8].

In the present work, we follow the ERPA approach, extending it to provide
a reˇned version to the Quasi-particle Phonon Model (QPM) for oddÄeven nu-
clei [9Ä11,13]. The interaction strengths between the quasi-particles and phonons
in the presented model depend on the number of quasi-particles in the ground
state. In this way the coreÄparticle equations couple with the generalized equa-
tions describing the pairing correlations and the excited vibrational states of the
evenÄeven core thus forming a large nonlinear system. This model is applicable
to open-shell spherical and transitional odd-A nuclei. Our research descends from
the studies in [12, 13]. There it has been shown that the backward amplitudes
in the wave functions of these nuclei play a very important role for the better
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agreement with the experimentally measured spectroscopic factors. However, the
theory in the latter research is based on the QBA which we intend to improve
by taking into account the action of the Pauli principle more precisely due to the
Extended Boson Approximation (EBA) we use.

1. EVENÄEVEN NUCLEI

This section aims to mark the basic building blocks of the QPM and its QBA
extension for one-phonon states.

In ERPA one deˇnes the quantities ρj (referred to as ®blocking factors¯),
which are proportional to the quasi-particle occupation numbers on the level j

ρj =
1√

2j + 1

∑
m

〈|α†
jmαjm|〉, (1)

where α denotes a quasi-particle

αjm = ujajm − (−)j−m vj a†
j−m. (2)

The other key constituent of the theory is the phonon operators, deˇned as

Q†
λμi =

1
2

∑
jj′

[ψλi
jj′ A†(jj′; λμ) − (−1)λ−μϕλi

jj′ A(jj′; λ − μ)]. (3)

Here and below we follow the notations used in [4] and [13].
If the pairing vibrations are not taken into account, then one can obtain [4]

the following modiˇed QPM equations describing the states in evenÄeven nuclei:

1
2

∑
j

(2j + 1)

⎧⎨
⎩1 −

(1 − 2ρj) (Ej − λ)√
(Ej − λ)2 + Δ2

⎫⎬
⎭ = n, (4)

G

4

∑
j

2j + 1√
(Ej − λ)2 + Δ2

(1 − 2ρj) = 1, (5)

κλ

2λ + 1

∑
jj′

(1 − ρjj′ )
(fλ

jj′u
+
jj′ )

2(εj + εj′)
(εj + εj′)2 − ω2

λi

= 1, (6)

∑
jj′

(1 − ρjj′ ) [(ψλi
jj′ )

2 − (ϕλi
jj′ )

2] = 2, (7)

ρj =
1
2

∑
λij′

2λ + 1
2j + 1

(1 − ρjj′ )(ϕλi
jj′ )

2 . (8)
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The emergence of the blocking factors requires one to solve the equations
above as a system of coupled equations. As it was found in [4], this extended
version of the QRPA leads to a better reproduction of the experimentally measured
charge transition densities.

In Figs. 1 and 2 we present sample distributions of the quasi-particle and
particle occupation numbers on different levels in 130Ba calculated within the

Fig. 1. Quasi-particle distribution in the ground state of 130Ba

Fig. 2. Mean number of particle deviations (nERPA
j − nRPA

j )/nRPA
j (×100) in the ground

state of 130Ba



QUASI-PARTICLE PHONON NUCLEAR MODEL FOR ODD-MASS NUCLEI 2083

ERPA and RPA. Both graphs illustrate the dependence of these quantities on the
energy of the 2+

1 state.

2. ODDÄEVEN NUCLEI

The states in oddÄeven nuclei are described as mixed states composed of
pure quasi-particle and quasi-particles⊗phonon states including backward-going
amplitudes [12,13]

Ψν(JM) = CJνα+
JM +

∑
i

Dλi
j (Jν)P †

jλi(JM) − EJν α̃JM−

−
∑

i

Fλi
j (Jν)P̃jλi(JM)|〉, (9)

where P †
jλi(JM) = [α†

jQ
†
λi]JM is the quasi-particles⊗phonon creation operator

standing for time conjugation according to the convention ãjm = (−1)j−maj−m.
Making use of the equation of motion method and conforming to relation (1)

when calculating the matrix elements, we obtain the following generalized eigen-
value problem:⎛

⎜⎜⎝
εJ V (Jj′λ′i′) 0 −W (Jj′λ′i′)

V (Jjλi) KJ(jλi|j′λi′) W (Jjλi) 0
0 W (Jj′λ′i′) −εJ −V (Jj′λ′i′)

−W (Jjλi) 0 −V (Jjλi) −KJ(jλi|j′λi′)

⎞
⎟⎟⎠×

×

⎛
⎜⎜⎝

CJν

Dj′λ′i′(Jν)
−EJν

−Fj′λ′i′(Jν)

⎞
⎟⎟⎠ = ηJν

⎛
⎜⎜⎝

1 0 0 0
0 1 − L∗(Jjλi) 0 0
0 0 1 0
0 0 0 1 − L∗(Jjλi)

⎞
⎟⎟⎠×

×

⎛
⎜⎜⎝

CJν

Dj′λ′i′(Jν)
−EJν

−Fj′λ′i′(Jν)

⎞
⎟⎟⎠ . (10)

For reasons of conciseness, we provide only the leading terms of the expres-
sions for the matrix elements in a diagonal approximation for L [10]

V (Jjλi) = 〈|{[αJM , H ], P †
jλi}|〉 = − 1√

2
[1 − ρj + L∗(Jjλi)]Γ(Jjλi), (11)

W (Jjλi) = 〈|{[α†
JM , H ], P̃ †

jλi}|〉 =

=
πλ

πJ
εJρjϕ

λi
Jj −

1
4
[1 − ρj + L∗(Jjλi)]

πλ

πJ

∑
i1

A(λi1i)ϕλi1
Jj , (12)
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KJ(jλi|j′λ′i′) =
1
2
[IJ (jλi|j′λ′i′) + IJ (j′λ′i′|jλi)] =

= δjj′δλλ′δii′ [1 − ρj + L∗(Jjλi)](εj + wλi)−

− δjj′δλλ′δii′ (1 + L(Jjλi))
1
4

∑
ı1

A(λii1)L∗
J|j(jλi|jλi1), (13)

where
IJ (jλi|j′λ′i′) = 〈|{Pjλi(JM), [H, P+

j′λ′i′(JM)]}|〉, (14)

L∗
J|j′ (jλi|j′λ′i′) = πλλ′

∑
j1

(1 − ρj1j′)ψλ′i′

1j ψλi
1j′

{
j′ j1 λ
j J λ′

}
, (15)

L∗(Jjλi) = πλλ

∑
j1

(1 − ρj1j′ )ψλi
1jψ

λi
1j

{
j j1 λ
j J λ

}
. (16)

The above matrix element has been calculated using a simple Hamiltonian in
the form

H =
(n,p)∑

τ

{∑
jm

(Ej − λτ )a†
jmajm−

− 1
4
G(0)

τ : (P †
0 P0)τ : −1

2

∑
λμ

κ(λ) : (M †
λμMλμ) :

}

accounting for the mean ˇeld, the pairing and multipoleÄmultipole interactions,
respectively.

One appealing feature of the QPM and in particular of the version described
in this paper is that the interaction strengths between the quasi-particles and
phonons depend only on the parameters describing their internal structure without
any additional free parameters. In the limit case, where the number of the quasi-
particles in the ground state is set to zero, this system of equations decouples to
reduce to the model obtained in [13].
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