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QUANTUM SCATTERING THEORY
ON THE MOMENTUM LATTICE

O.A. Rubtsova, V. I. Kukulin, V. N. Pomerantsev

Institute of Nuclear Physics, Moscow State University, Moscow

Here we brie�y outline the main results of the Wave-Packet Continuum Discretization method.
The formalism uses the complete continuum discretization scheme in terms of the momentum sta-
tionary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the
momentum space.

PACS: 11.15.Ha

INTRODUCTION

Recently we have developed a new approach to solving few-body scattering
problems based on the complete discretization of few-body continuous spec-
trum [1Ä6]. We constructed universal formalism which uses the stationary wave
packets, i.e., L2 functions, instead of the exact scattering wave functions. This
leads to formulation of the scattering theory on the lattice in the momentum
space. In such an approach, ˇnite-dimensional (f.-d.) approximations for basic
scattering-theory operators have been obtained and matrix analogs for the scatter-
ing equations have been constructed. The approach has recently been tested for
the elastic scattering and breakup of a composite projectiles scattered off heavy
targets (with neglecting the stripping processes), where a perfect agreement with
the conventional Continuum Discretized Coupled Channel (CDCC) method has
been found [1]. Further, the method has been successfully applied to the solution
of the Faddeev equations for n − d scattering above the three-nucleon breakup
threshold [3]. Very recently some new method Å the Discrete Spectral Shift
(DSS) formalism has been developed on the base of the lattice approach. This
approach allows one to ˇnd observables for the multichannel scattering problems
from the one-fold diagonalization of the Hamiltonian matrix without solution of
any scattering equations [5].

The present paper is organized as follows. In Sec. 1 we introduce the gen-
eralized stationary wave-packet basis and describe different ways how to extract
scattering information from the total Hamiltonian matrix in such a basis. Three-
body lattice bases are deˇned in Sec. 2, where wave-packet scheme for solving
general three-body problems is derived. Brief conclusion is given at the end of
the paper.
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1. TWO-BODY SCATTERING PROBLEM

1.1. The Wave-Packet Lattice Basis. In the discretization procedure, the
continuum of the free Hamiltonian h0 is conˇned within the maximal value Emax

and the interval [0, Emax] is divided into a ˇnite number of nonoverlapping energy
bins [εi−1, εi]Ni=1 (with E0 = 0 and EN = Emax)∗. Each such an energy bin
corresponds to the momentum (or wave number) interval [qi−1, qi] on momentum
axis q, where q =

√
2με and μ is the reduced mass. The set of free stationary

wave packets (WPs) is deˇned as integrals of the plane waves |ψ0q〉 over the
above momentum bins:

|xi〉 =
1√
Bi

qi∫

qi−1

dqf(q)|ψ0q〉, i = 1, . . . , N, (1)

where f(q) is some weight function and Bi are normalization factors. The wave-
packet functions (1) form orthonormal set and vanish at inˇnity in contrast to
the initial plane waves. However, these L2-type functions are not vanishing at
very far asymptotic region up to qr ∼ 200 [3]. Thus, the wave-packet basis is
very suitable for the expansion of continuous spectrum wave functions. General
properties of WPs have been considered in detail previously [1Ä6]. The most
useful property of the WP basis is the ˇnite-dimensional representation for the

resolvent of free Hamiltonian g0(E) = [E+i0−h0]−1 ≈
N∑

i=1

|xi〉gi(E)〈xi|, where

the corresponding complex-valued eigenvalues gi(E) (or averaged on the energy
ones) have an explicit analytical form [4].

In the few-body case, few-body wave-packet bases are constructed as direct
productions of the two-body ones. Simultaneously few-body momentum space
becomes a discretized one. Thus, implementation of the WP basis is similar
to the formulation of the few-body scattering problem in the multidimensional
momentum lattice. That is why we call our wave-packet basis as the lattice one.

Using the ˇnite-dimensional WP analog for the free resolvent, one can derive
easily a matrix scheme for WP solution of the LippmannÄSchwinger equation
for the total Hamiltonian h = h0 + v, where v is the short-range interaction
potential [2, 4].

It is also possible to construct f.-d. representations for the scattering operators
using pseudostate WP formalism based on the diagonalization procedure for the
total Hamiltonian matrix in free WP basis. After this procedure one gets the
set of eigenenergies {Ei}N

i=1 and corresponding eigenfunctions {|zi〉Ni=1} ∈ L2.

∗We assume that the value Emax is sufˇciently large to provide a proper solution of the
discussed problem.
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Some part of the eigenfunctions with i � Nb approximates the bound states of
the system (if they exist), while the rest (N − Nb) of the eigenfunctions can be
considered as discretized (normalized) analogs of the scattering wave functions of
the Hamiltonian Å the so-called pseudostates. It has been shown, that such states
approximate scattering wave packets of the total Hamiltonian h. The properties
of the scattering WPs are absolutely the same as those of the free WPs. The
full set of bound states of h and scattering WP states {|zi〉}N

i=1 form a basis in
a Hilbert space. This basis can be used to construct f.-d. representation for the
total resolvent.
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Fig. 1. Comparison of exact Coulomb wave packets (solid curves) and Coulomb
pseudostates obtained in the lattice basis (dashed curves) at two different energies
E = 0.07 MeV (a) and E = 11.3 MeV (b) of the Coulomb pp Hamiltonian

The correspondence between pseudostates and scattering WPs assists also in
a case of the long-range Coulomb interaction. In Fig. 1, we compare Coulomb
scattering wave packets, corresponding to the pp interaction, constructed by the
diagonalization of Coulomb Hamiltonian on the free WP basis with those ob-
tained from exact Coulomb regular scattering wave functions by formula (1). It
is clear from the ˇgure that pseudostates are indistinguishable from the exact
Coulomb WPs.

1.2. Discrete Spectral Shift Formalism. There is another possibility of
extracting scattering information directly from the diagonalization procedure for
the Hamiltonian matrix in the lattice basis via the novel Discrete Spectral Shift
(DSS) formalism [5].

It has been shown in our recent paper [5], that local differences of the total
discretized spectrum of h0 caused by the switching on the perturbation v, i.e.,
h0 → h = h0 + v, are related to the spectral shift function (SSF) ξ(E). This
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function has been introduced in the rigorous mathematical quantum scattering
theory [7, 8] and in a single-channel case, it is equal to a partial phase shift:
δ(E) = −πξ(E) within a factor (−π). It has been shown [5,9] that the discrete
analog of the SSF, deˇned for the discretized spectrum of the free Hamiltonian
h0, can be found from the simple formula:

ξi =
Ei − E0

i

Di
, i = Nb + 1, . . . , N, (2)

where Di are bin widths. Thus, by making use of the explicit interrelation
between SSF and phase shifts, one gets discrete approximation for phase shift as
a function of energy:

δ(E0
i ) = −π

Ei − E0
i

Di
, i = Nb + 1, . . . , N. (3)

This equation allows one to ˇnd, besides eigenenergies and eigenfunctions of
bound states, also partial phase shifts in a very broad energy range.

The DSS method is fully applicable to a broad class of interactions, even for
complex-valued interaction potentials. In this case, one uses a real wave-packet
basis, however, the total non-Hermitian Hamiltonian eigenvalues will be complex-
valued. So, the phase shifts derived from these complex eigenvalues will be also
complex. As a good illustration of the applicability of the above new technique
we ˇnd the complex phase shifts for the neutron scattering off a nuclear target
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Fig. 2. Real parts of S-wave phase shifts δ (a) and inelasticity parameters η (b) for
neutronÄnucleus scattering obtained via DSS formalism in a lattice basis with dimensions
N = 100 (dashed line) and N = 200 (solid line). Black circles denote the accurate phase
shifts found with local phase-shift-equivalent potentials at neutron energies En = 7 and
26 MeV
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when the n − A interaction has the form of a complex nonlocal potential of the
Perey and Buck type. The complex S-wave phase shift δ0(E) calculated from the
complex-valued eigenenergies {Ei} as a function of energy together with those
found from the direct numerical integration of the Schréodinger equation at two
energies (for the local phase-equivalent potentials) are displayed in Fig. 2. The
potential parameters are taken the same as in [4].

In [5] we have introduced generalization of DSS formalism to the multi-
channel case.

2. THREE-BODY SCATTERING PROBLEM

To solve the general three-body scattering problem for particles 1, 2 and 3,
interacting via pair short-range potentials va (a = 1, 2, 3), it is convenient to
use three Jacobi coordinate sets corresponding to three channel Hamiltonians Ha

(a = 1, 2, 3) which deˇne asymptotic motions in the system. The respective wave-
packet basis should be constructed independently for each Jacobi set [4]. The
channel Hamiltonian Ha has the form of the direct sum Ha ≡ ha⊕ha

0, where sub-
Hamiltonian ha deˇnes the interaction in the {bc}-subsystem (i.e., including the
potential va) and the sub-Hamiltonian ha

0 corresponds to the free relative motion
of this subsystem (its center of mass) and the spectator particle a. So, one has to
introduce the WP bases {|zi〉}K

i=1 and {|xj〉}N
j=1 for two-body sub-Hamiltonians

ha and ha
0 . The three-body wave packets (3WP) are deˇned just as products of

two type wave-packet states for the above two sub-Hamiltonians (whose angular

parts are combined to the total angular momentum value): |Z(a)
S 〉 ≡ |zi, xj〉, where

S = i, j, . . . is the multiindex including bin numbers, partial wave values, etc.
The properties of the 3WP constructed in this way are the same as properties of
the two-body wave packets. We constructed [4] an analytical f.-d. approximation
for each three-body channel resolvent Ga(E) ≡ [E + i0 − Ha]−1 in its 3WP
basis. This representation is the basic feature for the wave-packet approach since
it allows one to simplify solution of the general three-body scattering problem
drastically.

By the wave-packet projection of the Faddeev equations, one gets the fol-
lowing f.-d. equations for the Faddeev components of the ®packetized¯ wave
function:

|ψ̂(a)〉 = |Z(1)
S0

〉δa1 + Gava

∑
b�=a

|ψ̂(b)〉, a = 1, 2, 3, (4)

where |Z(1)
S0

〉 is the 3WP state corresponding to the initial state |Φ01〉, while
Ga and va are wave-packet representations for the channel resolvent and pair
interaction. One of the main advantages of the momentum-lattice scheme here
is that the transformation between components in different Jacobi sets can be
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expressed by a f.-d. matrix of the ®permutation operator¯ [3] with elements

P ab
S,S′ ≡ 〈Z(a)

S |Z(b)
S′ 〉 in contrast to the direct solving of the Faddeev equations

in the momentum space, where time-consuming multidimensional interpolations
for scattering solution should be taken in different Jacobi coordinates required in
each step of the iteration.

As illustration of the effectiveness for the above lattice technique, we calcu-
lated the real phase shifts and inelasticity parameters for the three-body elastic
n− d scattering in the quartet and doublet S-wave channels with model Mal�ietÄ
Tjon NN potential [3]. The results of these calculations are shown in Fig. 3 for
the spin-quartet channel.

0.01 0.1 1 10
30

60

90

120

150

180

0 5 10 15 20 25 30
0.9

0.92

0.94

0.96

0.98

1

Ecm, MeV

�

ba

Ecm, MeV

Real ,����

Fig. 3. The energy dependence of the real phase shift and inelasticity parameters for
S-wave quartet n − d scattering calculated by means of momentum-packet discretized
Faddeev equation at different dimensions M × N of the lattice basis: 100 × 100 (dashed
curve), 200× 200 (solid curve). Results of the direct Faddeev equation solution from [10]
are marked as �

Thus, at the ˇrst time we have solved the three-body scattering problem
above the breakup threshold using f.-d. approximation of the L2 type for the
Faddeev kernel.

CONCLUSION

We have demonstrated here that the formulation of the quantum scattering
problems in terms of a wave-packet lattice basis is a very convenient language
of discretization and an effective tool for practical solutions. Along with the
main results explained in this paper, the wave-packet approach has a wide ˇeld
of application: very economical solving of coupled-channel problems for atomic,
molecular and nuclear physics cases [1], construction of effective optical potentials
of composite particle interaction [6], etc.
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