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We discuss the equations for the bound one-active electron states based on the analytic solutions
of the Schréodinger and Pauli equations for a uniform magnetic ˇeld and a single attractive δ(r)
potential. We show that the magnetic ˇeld indeed plays a stabilizing role in considered systems in the
case of the weak intensity, but the opposite occurs in the case of strong intensity. These properties
may be important for real quantum mechanical fermionic systems in two and three dimensions. In
addition, we obtained that including the spin in the framework of the nonrelativistic approach allows
correctly taking the effect of the magnetic ˇeld on the electric current into account.
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1. FORMULATION OF THE PROBLEM

The effect of an external electromagnetic ˇeld on nonrelativistic charged par-
ticles systems (such as atoms, ions, and atomic nuclei) has long been investigated
systematically (see, e.g., [1Ä15]). Although this problem has a long history, a set
of questions still requires additional study. For example, a systematic analysis of
the bound states of spin-1/2 particles in an intense magnetic ˇeld has been lacking
until now. We note that the basic results in the case of spinless particles were
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obtained using analytic solutions in nonperturbative mathematical treatments. As
usual, the exact solutions of the Schréodinger equations with Hamiltonians, taking
into account a particle bound by short-range potential in the presence of external
ˇelds, are used. Furthermore, there is a rather common opinion that the role
of the magnetic ˇeld in decays of quasi-stationary states is invariably stabiliz-
ing [3, 14, 15]. This view arises because the spinor states of electrons in an
external electromagnetic ˇeld are usually neglected in nonrelativistic treatments,
which is often inadequate [16, 17]. In this paper, we treat an essential part of
these problems.

We consider charged spin-0 and spin-1/2 particles bounded by a short-range
potential (δ potential) and located in an external stationary magnetic ˇeld with
an arbitrary intensity. We note that the zero-radius potential is a widespread
approximation for a multielectron atom ˇeld and especially for a negative ion
ˇeld [12, 18]. Energy level displacements can be seen for the particle in a
δ potential and a magnetic ˇeld. The binding-energy equation is most appropriate
for the investigation of such states [4, 12,19].

When an electron moves in a uniform magnetic ˇeld oriented in the z direc-
tion, the quantum mechanical system is invariant with respect to the z axis. The
system then becomes essentially two-dimensional in the xy plane. Many phys-
ical phenomena in axially symmetric quantum systems of electrically charged
fermions (the quantum Hall effect [20], high-temperature superconductivity [21],
various ˇlm defects [22], etc.) can be effectively studied using the nonrelativistic
equations of motion in 2 + 1 dimensions. A number of effects in constant mag-
netic ˇelds, including certain types of doped two-dimensional semimetals, can
be described using the Dirac equation in 2 + 1 dimensions [23, 24]. But there
are many physical phenomena that occur in three-dimensional space [25, 26]. In
this paper, we investigate the effect of a stationary uniform magnetic ˇeld on
localized electron states in 2 + 1 and 3 + 1 dimensions (see also [27,28]).

The effects of external electromagnetic ˇelds on bound nonrelativistic charged
particles have already been studied systematically in detail over several decades
(see, e.g., [15, 16, 29]). But although this problem has a very long history,
several problems still need additional study. In particular, such problems include
analyzing the effect of a strong magnetic ˇeld on bound charged particles with
their spin states taken correctly into account.

There is a widespread opinion that consistent including the charged-particle
spin is required only in studying relativistic effects. But this is not always the case
for a strong magnetic ˇeld, as shown in [16,30]. We note that efforts to analyze
spin effects in the nonrelativistic approximation were made many times. Models
precisely taking the effect of the ˇeld on the particle into account were used
for this purpose. We emphasize that the wide experience in describing spinless
particles bound by the δ-like potential in strong electromagnetic ˇelds has been
acquired precisely because the nonperturbative mathematical approach was used.
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Developed methods based on the exact analytic solutions of the Schréodinger
equation [15, 29, 31] were also used to study processes taking particle spins into
account. But because mathematical estimates are complicated in the case of
spinning particles, the obtained conclusions are not always sufˇciently convincing.
In our opinion, the papers [27, 30, 34], where the effects of the ˇeld on the
behavior of spinning and scalar particles were compared, are most correct from
the standpoint of the necessity to take particle spins into account. For these
purposes, the solutions of the Pauli equations, together with the solutions of the
Schréodinger equation, were also used in the indicated papers. We here consider
the effects produced by the action of a strong constant uniform magnetic ˇeld on
an electron bound by a short-range potential.

Under the action of the ˇeld, electron energy levels are shifted by a quantity
determined from the transcendental equation for the energy. We note that this
problem was analyzed in the case of a scalar particle in [31]. A similar problem
for the electron in the magnetic ˇeld with its spin states taken into account was
correctly solved in [27] quite recently.

Our main purpose is to derive equations for the binding energy of a fermion
in the ˇeld containing an attractive singular potential and a stationary external
magnetic ˇeld in the two- and three-dimensional cases. We apply standard quan-
tum mechanical methods using the expansion of the unknown wave function in a
series at the eigenfunctions obtained for the fermionic system in the pure magnetic
ˇeld. This method was used to study some physical examples of the effect of a
constant magnetic ˇeld on charged particles bound by a single attractive δ poten-
tial [32,33]. This formalism differs in principle from the traditional derivation of
wave functions in similar problems using the boundary condition typical for the
δ potential [4, 5, 14,15].

It is very important that our approach permits developing a consistent in-
vestigation of the spin effects arising in an external magnetic ˇeld. An exact
analytic expression for the wave function of a charged scalar particle in a state
bound by the δ potential and moving in a strong magnetic ˇeld was found in [31]
using Green's function of the corresponding Schréodinger equation. We note that
Green's function of a scalar particle in an external magnetic ˇeld was presented
in the classic monograph [35] (also see [14]). As is known, the electron spin can
be taken into account, for example, by passing to the nonrelativistic limit in the
solutions of the Dirac equations describing the motion of a spinning particle in a
given external ˇeld [36,37].

The general structure of the paper and its main results are as follows. In the
next section, we construct the equation for scalar particles with a low binding
energy in a stationary external magnetic ˇeld based on an explicit solution of
the Schréodinger equation. In Sec. 3, we obtain the expressions for the energy
of electron bound states in the δ potential and an external magnetic ˇeld based
on analogous analysis of explicit solutions of the Pauli equation. In Sec. 4, we
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discuss the equations for the binding energy of spin-0 and spin-1/2 particles in
the presence of both the weak and strong magnetic ˇelds because particle spin
was previously taken into account inadequately in similar problems.

Furthermore, in Sec. 5, we analyze the exact solution of the Pauli equation
for an electron moving in the potential well determined by the three-dimensional
δ function in the presence of a strong magnetic ˇeld and to obtain asymptotic
expressions for this solution in the case of different values of the problem para-
meters. In addition, in Sec. 6, we consider the probability currents for the given
particle and their dependence on the spin and magnetic ˇeld.

2. A SCALAR PARTICLE IN AN ATTRACTIVE POTENTIAL
IN THE PRESENCE OF A UNIFORM MAGNETIC FIELD

We consider a charge in a uniform magnetic ˇeld B speciˇed as

B = (0, 0, B) = ∇× A, A = (−yB, 0, 0). (1)

The Schréodinger equation in ˇeld (1) has the form

i�
∂

∂t
ψ(t, r) = Hψ(t, r), r = (x, y, z), (2)

with the Hamiltonian H being

H =
1

2m

(
−i�

∂

∂x
+

eB

c
y

)2

− �
2

2m

∂2

∂y2
− �

2

2m

∂2

∂z2
, (3)

where m and e are the particle mass and charge. The particle wave function in
ˇeld (1) has the form [19]

ψnpxpz(t, r) =
1
2

exp
(
− iEnt

�

)
exp

(
ixpx

�
+

izpz

�

)
Un(Y ), (4)

where

En = �ω

(
n +

1
2

)
+

pz
2

2m
(5)

is the electron energy spectrum, ω = |eB|/mc; and px and pz are the electron
momenta in the x and z directions.

The functions

Un(Y ) =
1

(2n!π1/2r0)1/2
exp

(
− (y − y0)2

2r2
0

)
Hn

(
y − y0

r0

)
are expressed in terms of the Hermite polynomials Hn(z), the integer n =
0, 1, 2, . . . indicates the Landau level number, r0 =

√
�c/|eB| ≡

√
�/mω is the

so-called magnetic length (see, for example, [25]) and y0 = −cp/eB.
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We now study a simple solvable model. We consider the motion of a scalar
particle in the three-dimensional case in a single attractive δ(r) potential, where
δ(r) is the Dirac delta function, in the presence of a uniform magnetic ˇeld. In
fact, we must solve the Schréodinger equation

1
2m

[(
−i�

∂

∂x
+

eB

c
y

)2

− �
2 ∂2

∂y2
− �

2 ∂2

∂z2
− �

2δ(r)

]
ΨE′(r) = E′ΨE′(r). (6)

We can take solutions of Eq. (6) in the form

ΨE′(r) =
∑

n,px,pz

CE′npxpz ψnpxpz (r) ≡
∞∑

n=0

∫
dpx dpzCE′npxpz ψnpxpz (r), (7)

where ψnpxpz (r) is the spatial part of the wave functions (4).
The coefˇcients CE′npxpz can be easily calculated, and we then obtain the

equation

1 = N

∞∑
n=0

∫
dpz

1
n + A

, (8)

where N is a normalized coefˇcient independent of the ˇeld and

A =
1
2
− E

�ω
+

pz
2

2m�ω
. (9)

Integrating over pz gives (8) in the form

1 = Nπ
√

2m�ω
∞∑

n=0

1
(n + A)1/2

. (10)

It is easy to see that Eq. (10) implicitly deˇnes the energy of a bound localized
electron state in the magnetic ˇeld. We note that (10) is consistent with analogous
result in [33], where this equation was solved numerically. But Eq. (10) can be
analytically reduced to a simpler form. Indeed, we can sum over n in the right-
hand side of Eq. (10) using the representation

1
(n + A + iε)1/2

=
e−i π

4

√
π

∞∫
0

ei(n+A+iε)

t1/2
dt. (11)

As a result, Eq. (10) becomes

1 = N1

√
�ω

e−i 3π
4

2
√

π

∞∫
0

e−i E′
�ω t

t1/2 sin (t/2)
dt, (12)
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where N1 is a real constant independent of the ˇeld. Because the required energy

E′ = −|E′| (13)

must be negative, we can rotate the integration contour through the angle π/2 in
the complex t plane. We thus obtain the real expression

−1 = N1

√
�ω

2
√

π

∞∫
0

e−
E

�ω t

t1/2 sinh (t/2)
dt, (14)

where E = |E′| � 0. If we eliminate the magnetic ˇeld, then (14) takes the form

−1 = N1

√
�

π

∞∫
0

e−E0t/�

t3/2
dt, (15)

where E0 = |E′
0| is the absolute value of the binding energy of the particle in the

δ potential without the action of the external ˇeld. Subtracting (15) from (14) and
removing the integral divergences in the lower limit by the standard regularization
procedure, we obtain

∞∫
0

e−E0t/� − e−Et/�

t3/2
dt =

∞∫
0

e−Et/�

t3/2

(
a1t

sinh (a1t)
− 1

)
dt, (16)

where a1 = ω/2. From (16), it is easy to obtain

√
E −

√
E0 =

√
E

2
√

π

∞∫
0

e−x

x3/2

(
ax

sinh (ax)
− 1

)
dx, (17)

where a = �ω/2E, which is consistent with the analogous equation obtained
by the well-known method using boundary conditions of wave functions in the
δ-potential model [5, 14,34].

Expanding the integrand function in (17) in the weak-ˇeld limit �ω � 2E0,
we obtain

E = E0

(
1 − 1

48
�

2ω2

E0
2 +

1
576

�
4ω4

E0
4

)
. (18)

We note that the quadratic term in (18) coincides with analogous result in [5].
To consider the strong-ˇeld case �ω > 2E0, we reduce the right-hand side

of (17) to the analytic form

− 1
√

a0
=

1√
2
ζ

(
1
2
,
1
2

+
1
2a

)
, (19)
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where a0 = �ω/2E0 and ζ[ν, p] is the Hurwitz (generalized Riemann) zeta func-
tion. The validity range of (19) can be found somewhat wider that was initially
assumed. In deriving (14) we assume that E′ � 0, but we can see from (19) that
argument of zeta function can continuously reach the values

1/2 + 1/2a > 0.

This condition limits the required binding-energy spectrum by

E′ <
�ω

2
. (20)

The physical meaning of this condition is the restriction to the continuous spec-
trum of the scalar particle in the magnetic ˇeld by the value of (20)
(i.e., E′ � �ω/2). We note that after a change of variables in (19), it coin-
cides with the basic equation in [5], where the case of scalar particles in the
magnetic ˇeld was considered and an analogous conclusion about limitation of
continuous spectrum was drawn.

Expanding ζ(ν, p) for p � 1 gives

ζ(1/2, p) =
1

p1/2
+ ζ(1/2) − 1

2
ζ(3/2)p +

3
8
ζ(5/2)p2 + 0[p]3. (21)

Substituting (21) in (19), we obtain the explicit equation for the bound-state
energy in the strong-ˇeld limit

E′ = �ω

(
0.205− 0.452

√
E0

�ω
− 0.367

E0

�ω

)
. (22)

We emphasize that in superstrong magnetic ˇelds, expansion (22) gives the up-
per limit

E′ = 0.205 �ω

for the binding energy of the scalar particle, which does not contradict condi-
tion (20). Furthermore, it can be seen that this limiting value is independent of
the particle energy in the absence of the ˇeld and is completely determined by
the magnetic ˇeld intensity.

It is interesting to compare the obtained results with the results in the case of
two-dimensional model. The analogue of Eq. (10) in the two-dimensional case is

1 =
1
8π

∞∫
0

e−Et/�ω

sinh (t/2)
dt, (23)

which coincides with the corresponding result in [32]. But our regularization
procedure here essentially differs from [32]. As before (see (16)), we remove the
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magnetic ˇeld and obtain

1 =
1
4π

∞∫
0

e−E0t

t
dt. (24)

With a simple calculation similar to that in the three-dimensional case, we can
write

ln
E

E0
=

∞∫
0

e−x

x

(
ax

sinh (ax)
− 1

)
dx, (25)

where a = �ω/(2E) as before. In the weak-ˇeld limit, we obtain

E = E0

(
1 − �

2ω2

24E0
2

)
(26)

from (25).
To consider the range �ω > 2E0, we must ˇrst calculate the integral in the

right-hand side of Eq. (25) analytically,

− ln
(

E

E0

)
= ln (2a) + Ψ

(
1 + a

2a

)
, (27)

where Ψ(x) is a logarithmic derivative of the Euler gamma function. We then
have the basic equation in the two-dimensional model

− ln (2a0) = Ψ
(

1
2

+
1
2a

)
, (28)

where a0 = �ω/(2E0).
In the strong-ˇeld limit, after evaluation of the function Ψ(p),

Ψ(p) = −1
p
− C +

π2

6
p +

1
2
Ψ(2)(1)p2 +

π4

90
p3 + 0[p]4, (29)

where

Ψ(n)(z) =
dn

dzn
Ψ(z) = (−1)n+1

n!ζ(n + 1, z),

we can write (28) as

ln
�ω

E0
− 1

1
2
− E′

�ω

− C +
π2

6

(
1
2
− E′

�ω

)
= 0, (30)

where C = 0.577 . . . is the Euler constant.



1700 RODIONOV V.N., KRAVTSOVA G.A.

The solution of Eq. (30), which explicitly determines the bound-state energy,
can be written as

E′

�ω
=

1
2
− 6(C − ln (�ω/E0)) +

√
24π2 + 36(C − ln (�ω/E0))2

2π2
. (31)

For ln (�ω/E0) � 1 we obtain

E′

�ω
=

1
2
− 1

ln (�ω/E0)
− C

ln2(�ω/E0)
+

(
π2/6 − C

)
ln3(�ω/E0)

+ 0[ln (�ω/E0)]4 (32)

from (31). Considering the properties of Ψ(z), we see that expansion (32) is
correct for the binding energy E′ =� �ω/2. Furthermore, this limiting value,
as before, is independent of the particle energy in the absence of the ˇeld. But
there is an essential difference from the three-dimensional case. For superstrong
magnetic ˇelds (when not only �ω/E0 is large but also ln (�ω/E0) � 1), the
upper limit of the shifted binding-energy level in the considered model tends
directly to the boundary of the continuous spectrum.

3. A SPIN PARTICLE IN AN ATTRACTIVE POTENTIAL
IN THE PRESENCE OF A UNIFORM MAGNETIC FIELD

It is very important that we can use the present approach to study the spin
effects in magnetic ˇelds in the same way. The case of a spin-1/2 particle can
be calculated based on exact solutions of the Pauli equation. The Pauli equation
in ˇeld (1) has the form

i�
∂

∂t
ψ(t, r) = Hψ(t, r), r = (x, y, z), (33)

with the Hamiltonian H being

H =
1

2m

(
−i�

∂

∂x
+

eB

c
y

)2

− �
2

2m

∂2

∂y2
− �

2

2m

∂2

∂z2
+ μσ3B, (34)

where μ = |e|�/2mc is the Bohr magneton, m is the mass of an electron and

σ3 =
(

1 0
0 −1

)
is the z component of the Pauli matrices. The last term in (34) describes the
interaction of the electron spin magnetic moment with the magnetic ˇeld. The
electron wave function in ˇeld (1) has the form

ψnpxpzs(t, r) =
1
2
ψnpxpz(t, r)

(
1 + s
1 − s

)
, (35)
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where ψnpxpz(t, r) is the solution of the Schréodinger equation in ˇeld (1) (see (4)),

Ens = �ω

(
n +

1
2

)
+

pz
2

2m
+ s�ω

1
2

(36)

is the electron energy spectrum, ω = |eB|/mc, s = ±1 is the conserved
spin quantum number; and px and pz are the electron momenta in the x and
z directions.

It is very important that the electron ground state in a magnetic ˇeld differs
essentially from the analogous state of spin-0 particles. Moreover, the continu-
ous spectrum boundaries differ for spinor and scalar particles. For example, if
the continuous spectrum of a scalar particle begins from E′ � �ω/2, then the
continuous spectrum of an electron begins from E′ � �ω for the spin directed
along the magnetic ˇeld direction and from E′ � 0 for the spin directed against
the magnetic ˇeld direction.

Taking the interaction of the electron spin magnetic moment with the mag-
netic ˇeld into account, we can write the energy equation in the three-dimensional
case in the form

√
E −

√
E0 =

√
E

2
√

π

∞∫
0

e−t

t3/2

(
at e−sat

sinh (at)
− 1

)
dt, (37)

were s = ±1 respectively corresponds to spin orientations along or against the
magnetic ˇeld direction. Expanding the integral in (37) for a � 1, we obtain the
equation

√
E −

√
E0 = − s�ω

4
√

E
+

√
E

12

(
�ω

2E0

)2

. (38)

The solution of Eq. (38) has the form

√
E

E0
=

2
(
−12E0 −

√
3
√

48E0
4 + s(�3ω3E0 − 48�ωE0

3

)
�2ω2 − 48E0

2 . (39)

Expansion (39) can be written in the weak-ˇeld limit as

E

E0
= 1 − s

�ω

2E0
− 1

48
�

2ω2

E2
0

. (40)

It is easily seen from (40) that the energy level E′
0 = −|E0| existing in

the δ potential without perturbation is shifted under the magnetic ˇeld action by
+�ω/2E0 (upward) in the case s = 1 and by −�ω/2E0 (downward) in the case
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s = −1. But the depth of the arrangement of energy levels with respect to the
continuous spectrum boundaries is the same in these two cases. We note that it
has the same depth in the case of spin-0 particles.

Integrating the right-hand side of Eq. (37), we obtain the equation in the
analytical form

− 1
√

a0
=

1√
2
ζ

[
1
2
,
1
2

+
s

2
+

1
2a

]
. (41)

In the strong-ˇeld limit �ω > E0, we can write the Hurwitz zeta function in
Eq. (41) as

1√
2
ζ

[
1
2
,
1
2

+
s

2
+

1
2a

]
=

=
1√
2

1√
1 + s

2
+

E

�ω

+
ζ[1/2]√

2
− ζ[3/2]

2
√

2

(
1 + s

2
+

E

�ω

)
. (42)

Finally, we write Eq. (41) as

1√
2

+

(√
2E0

�ω
+

ζ[1/2]√
2

)
x − ζ[3/2]

2
√

2
x3 = 0, (43)

where

x =

√
1 + s

2
+

E

�ω
.

The solutions of Eq. (43) for different spin values s = 0, +1, −1 can be repre-
sented as

E′ = �ω

(
0.205 +

s

2
− 0.452

√
E0

�ω
− 0.367

E0

�ω

)
. (44)

In Fig. 1, we show graphs of solutions of Eq. (41) for different particle spin
values with E0 = 1 and �ω = 100E0, which are typical values for experiments
on the bound-state energy in semiconductors at low temperatures in magnetic
ˇelds H ∼ 105 G.

It is obvious that the approximate solutions of (44) are quite near the inter-
sections of the graphs of left-hand side of Eq. (41) (the straight line in Fig. 1)
and of the right-hand sides of Eq. (41) (the curves in Fig. 1). We emphasize that
the dependence of energy level shifts on the particle spin does not disappear in
the strong-ˇeld limit. Moreover, the continuous spectrum boundaries are shifted
in the cases s = 0 and s = 1. Hence, the perturbative displacements of the
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Fig. 1. Solutions of Eq. (41) for different particle spin values. The horizontal straight line
is y = a0

−1/2. The curves are y = −2−1/2ζ[1/2, (1+s)/2+1/2a] and from left to right
s = −1, 0, 1. The parameter W = E′/E0 is also shown

binding-energy levels (as in the weak-ˇeld limit) are at the same distances from
the continuous spectrum boundaries in all cases.

We now consider spin interactions in the two-dimensional case. According
to our approach, we can write

ln
(

E

E0

)
=

∞∫
0

e−x

x

(
ax e−sax

sinh (ax)
− 1

)
dx, (45)

where the particle spin direction, as before, is represented by s = ±1. In the
weak-ˇeld limit, we obtain

E

E0
= 1 − s

2
�ω

E0
− 1

24

(
�ω

E0

)2

(46)

from Eq. (45). To consider the strong-ˇeld limit, we must calculate the integral
in Eq. (45) for s = ±1 in analytic form

∞∫
0

e−x

x

(
ax e−sax

sinh (ax)
− 1

)
dx = −2a

(1 + s)
2

− ln (2a) − Ψ
(

1
2a

)
. (47)

We can then write the equations for energy displacements for �ω > E0 as

ln
(

E

E0

)
= 2a

(1 − s)
2

− ln (2a) + C − π2

12a
. (48)
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For the case s = −1 in the strong-ˇeld limit (ln �ω/E0 � 1) we immediately
obtain

E′ = −�ω

(
1

ln �ω/E0
+

C

ln �ω/E0

)
(49)

from Eq. (45).
For the opposite spin orientation (s = 1) in Eq. (47), we must ˇrst use the

recurrent relation for Ψ(p)

1
x

+ Ψ(x) = Ψ(1 + x). (50)

Using the asymptotic expansion for Ψ(p) (see (29)), we then obtain

E′ = �ω

(
1 − 1

ln �ω/E0
− C

(ln �ω/E0)2

)
. (51)

The dependence on the spin parameters can be interpreted as in the three-
dimensional model. We can write this equation in the form

ln
(

�ω

E0

)
= −ψ

(
1 + s

2
+

1
2a

)
. (52)

In Fig. 2, we show graphs of the solutions of Eq. (52) for different particle
spin values with E0 = 10−3 eV and �ω = 100E0. The main difference from the
three-dimensional model is that the perturbative binding-energy levels converge
to the continuous spectrum boundaries in a superstrong magnetic ˇeld in this case.

Fig. 2. Solutions of Eq. (52) for different particle spin values. The horizontal straight line
is y = ln �ω/E0. The curves are y = −Ψ[(1 + s)/2 + 1/2a] and from left to right
s = −1, 0, 1. The parameter W = E′/E0 is also shown
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4. THE BINDING ENERGY OF SPIN-0 AND SPIN-1/2 PARTICLES
IN THE PRESENCE OF BOTH THE WEAK

AND STRONG MAGNETIC FIELDS

We have shown that the effect of a magnetic ˇeld on localized electron states
leads to equations for the binding energy of spin-0 and spin-1/2 particles. In
the weak-ˇeld limit (�ω � E0), the energy displacements of scalar and spinor
particles are described by the expressions

s = 0:
�ω

2E0
+

E

E0

s = 1:
�ω

E0
+

E

E0

s = −1:
E

E0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= 1 +

�ω

2E0
− �

2ω2

48E0
2 (53)

in the three-dimensional case and

s = 0:
�ω

2E0
+

E

E0

s = 1:
�ω

E0
+

E

E0

s = −1:
E

E0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= 1 +

�ω

2E0
− �

2ω2

24E0
2 (54)

in the two-dimensional case. From Eqs. (53) and (54) we can also obtain

s = 0: E = E0 −
�

2ω2

24δE0
,

s = 1: E = E0 −
�ω

2
− �

2ω2

24δE0
, (55)

s = −1: E = E0 +
�ω

2
− �

2ω2

24δE0
,

where δ = 2 and δ = 1 in the three-dimensional and in the two-dimensional
cases, correspondingly.

The dependence on the particle spin does not disappear in the strong-ˇeld
limit (�ω � E0). In three-dimensional case, the perturbative energy levels
approach speciˇc spectral values determined by the magnetic ˇeld intensity. For
different particle spin values, the displacements of the binding-energy levels as
before (see Eqs. (53) and (54)) are at identical distances from the continuous
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spectrum boundaries and can be represented in the form

s = 0:
�ω

2
− E′

s = 1: �ω − E′

s = −1: −E′

⎫⎪⎪⎬⎪⎪⎭ = �ω

(
0.295 + 0.452

√
E0

�ω
+ 0.367

E0

�ω

)
. (56)

Removing the braces in Eq. (56), we ˇnd

s = 0: E′ = 0.205�ω − 0.452
√

E0�ω − 0.367E0,

s = 1: E′ = 0.705�ω − 0.452
√

E0�ω − 0.367E0, (57)

s = −1: E′ = −0.295�ω − 0.452
√

E0�ω − 0.367E0.

In particular, from Eq. (57) one can immediately see that the value of the
binding energy level is positive both in the case of spinless particles (s = 0) and
in the case where the electron spin is oriented along the magnetic ˇeld direction
(s = 1), but it remains negative in the case where the electron spin is oriented
against the magnetic ˇeld direction (s = −1).

It can be easily seen that the dependence on the spin parameters in the
two-dimensional case can be written analogously,

s = 0:
�ω

2
− E′

s = 1: �ω − E′

s = −1: −E′

⎫⎪⎪⎬⎪⎪⎭ =
�ω

ln �ω/E0
+

C �ω

(ln �ω/E0)2
, (58)

and without braces we have

s = 0: E′ =
�ω

2
− �ω

ln (�ω/E0)
− C �ω

ln2(�ω/E0)
,

s = 1: E′ = �ω − �ω

ln (�ω/E0)
− C �ω

ln2(�ω/E0)
, (59)

s = −1: E′ = − �ω

ln (�ω/E0)
− C �ω

ln2(�ω/E0)
.

It can be seen from Eqs. (58) and (59) that the energy levels in the basic terms
are also independent of the particle energy in the absence of the magnetic ˇeld.
The distinctive feature of this case is that the binding-energy levels for super-
strong magnetic ˇelds (when ln (�ω/E0) � 1) directly approach the continuous
spectrum boundaries for all considered spin values.

We have shown that the energy levels of a polarized electron under the action
of a weak magnetic ˇeld for different particle spin values are shifted similarly in
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the three-dimensional and two-dimensional models. We have the line displace-
ments as the levels themselves for s = 1 and s = −1 and analogous shifts of the
continuous spectrum boundaries for s = 1. We also have the same picture in the
case of a spinless particle with the line shift of the continuous spectrum boundary.
Clearly, in case of weak intensity, a magnetic ˇeld indeed plays a stabilizing role
in the considered systems because the depth of the perturbative binding-energy
levels from the continuous spectrum boundaries is shifted downward under the
ˇeld action independently of the particle spin. But our results show a nonlin-
ear dependence on the ˇeld intensity in the strong-ˇeld limit. Nevertheless, the
continuous spectrum boundaries in the cases s = 0 and s = 1, as before, have
a linear dependence on the ˇeld in this limit. In superstrong magnetic ˇelds,
the binding-energy levels can approach the continuous spectrum boundaries. The
distinctions can be formulated as follows. In the three-dimensional model, there
is a ˇxed depth of the energy levels from the continuous spectrum boundaries
that is the same for all spin values. In the two-dimensional model, the energy
levels in a superstrong magnetic ˇeld tend asymptotically to the continuous spec-
trum boundaries. But in both cases, the system instability increases in strong
magnetic ˇelds. This conclusion therefore disproves the opinion that a magnetic
ˇeld always plays a stabilizing role in the systems of bound particles.

5. THE EXACT ANALYTIC SOLUTION OF THE PAULI EQUATION
FOR THE ATTRACTIVE THREE-DIMENSIONAL δ WELL

AND ITS ASYMPTOTIC EXPRESSIONS

Green's function obtained in [36] is the solution of the Pauli equation with
a δ source and can be represented as an integral over time [28,37]. This integral
determining Green's function admits a Wick rotation to the lower complex half-
plane of the variable t (see, e.g., [25]). This operation makes the integral purely
real. As a result, stationary Green's function can be represented in the form

GW (r,0) = −i

(
m

2π

)3/2 ω
H

2
e−imω

H
xy/4×

×
∞∫
0

dt

t1/2
sinh−1

(
ω

H
t

2

)
eS/�

(
1/2 + s

1/2 − s

)
, (60)

where m is the particle mass; ω
H

= eH/mc is the cyclotron frequency; e is the
absolute value of the particle charge; H is the strength of the uniform magnetic
ˇeld oriented along the z axis; s = ±1/2 is the spin number, and the argument
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of the exponential in the integrand is in fact the classical action function

S = −mz2

2t
− 1

4
mω

H
ρ2 coth

(
ω

H
t

2

)
+ (W − s · �ω

H
)t (61)

(although the argument of the exponential formally contains the Planck constant,
this dependence vanishes because of the shift in the energy of a bound spinning
particle in a magnetic ˇeld [27]). In formulas (1) and (2), x, y, and z are the
Cartesian coordinates, ρ2 = x2 + y2, and W < 0 is the total energy of the bound
particle. We note that (1), (2) is the ordinary propagator of a charged particle
moving in a magnetic ˇeld and is continued to the range of negative energies.

We write the spatial part of the wave function in the form

ψ(r) = Ñ e−imω
H

xy/4

∞∫
0

dt

t1/2
sinh−1

(
ω

H
t

2

)
eS/�, (62)

where Ñ is the normalizing coefˇcient. We pass to more natural variables using
characteristic scales of the problem. As an energy scale, we take |W0|, which is
the absolute value of the particle binding energy in the absence of a magnetic ˇeld.
We let w = W/|W0| denote the dimensionless binding energy in such units. It is
equal to −1 in the absence of the external ˇeld. Of course, w depends on both the
external ˇeld H and the spin direction in the general case [27]. It is convenient
to measure the magnetic ˇeld in the dimensionless units h = �ω

H
/|W0|. The

de Broglie wavelength l0 = �(2m|W0|)−1/2 of the particle for the zero magnetic
ˇeld can serve as a natural coordinate scale, and the quantity t0 = �|W0|−1 can
serve as a time scale. Using such units for the spatial part of the wave function,
we obtain

ψ(r ) = N e−ihx̃ỹ/4

∞∫
0

dτ

τ1/2

exp
[
− z̃2/(4τ) − hρ̃2 coth (hτ/2)/8 − w̃τ

]
1 − e−hτ

, (63)

where N is the normalizing coefˇcient in the new variables, and x̃, ỹ, z̃, and τ
are the dimensionless coordinates and time. The analogy between the integrand
in (4) and the classical Planck formula for the black-body emission spectrum
is interesting. The quantizing character of the magnetic ˇeld (as the quantum
character of radiation) is not manifested until the exponent factor hτ in the
denominator in the right-hand side of (4) is sufˇciently small. We also call
attention to the phase factor e−ihx̃ỹ/4, whose presence explicitly demonstrates the
existence of the orbital probability current.

To calculate the normalizing coefˇcient in (4), we must evaluate several
integrals. The integrals over the coordinates are assumed to be purely Gaussian,
and the integral over time can be reduced to the generalized Riemann zeta function
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ζ(3/2, ε) by a simple change of variables. As a result, we obtain

N =
h5/4

2πl
3/2
0

ζ−1/2

(
3
2
,
w̃

h

)
, (64)

where w̃ = wsh − w is the absolute value of the so-called effective energy of
the particle. The parameter w̃ appears because the lower edge of the continuum,
together with the bound states w, is shifted in the magnetic ˇeld. Consequently,
the binding effective energies are now measured from new boundaries determined
by the expression wsh = (s+1/2)h [27]. It also follows directly from this relation
that the shift wsh in the continuum depends explicitly on both the magnetic ˇeld
and the particle spin orientation. But it was shown in [27] using weak (h � 1)
and strong (h � 1) ˇelds as examples that w̃ is independent of the spin.

It is easy to see that the integral in (4) can be related to Laplace-type inte-
grals [38,39]. The relevant integration domain is determined by a neighborhood
of a single point of the exponential maximum. We consider the contribution of
the saddle point to the integral in (4) written in the form

∞∫
0

du

u1/2

e−hg(u)

1 − e−u
, g(u) =

z̃2

4u
+

ρ̃2

8
coth

(
u

2

)
+

w̃

h2
u. (65)

Here, u = hτ , and the saddle point is a root of the equation

Bu2 − A =
u2

sinh2(u/2)
, A = 4z̃2ρ̃−2, B = 16w̃ρ̃−2h−2. (66)

A graphic illustration of the search for the solution of this transcendental
equation is shown in Fig. 3, which shows the family of parabolas corresponding
to the left-hand side of Eq. (7) for different values of the parameter h (the solid

Fig. 3. The solution of transcendental equa-
tion (7) in the plane z = 1.6 for ρ = 1. The
solid curves correspond to the left-hand side
of Eq. (7) for different values of the magnetic
ˇeld, and the dash-dotted curve is the graph
of the right-hand side of Eq. (7)
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curves) and the graph of the function in the right-hand side of the equation (the
dash-dotted curve). It is easy to verify that the parabola branch can intersect the
monotonic function u2 sinh−2(u/2) in various ranges of the integration parame-
ter u. Hence, in the range u � 1, the right-hand side of the equation differs
slightly from the constant, and the saddle point, which is the root of the quadratic
equation in this case, is given by

u0 =
h
√

ρ̃2 + z̃2

2
√

w̃
. (67)

In the other limit case u � 1, the right-hand side of Eq. (7) almost vanishes, and
for the saddle point, we have

u0 =
hz̃

2
√

w̃
. (68)

Finally, for the intermediate range, the solution of Eq. (7) can be written in the
approximate form

u0 ≈
[
z̃2h2

8w̃
− 6 + 6

[
1 +

z̃2h2

24w̃
+

ρ̃2h2

12w̃
+

z̃4h4

2304w̃2

]1/2]1/2

. (69)

It is easy to see that this solution in the limits of weak (h � 1) and strong (h � 1)
ˇelds, respectively, transforms into (8) and (9). In this case, the evaluation of
integral (6) obtained by the saddle point approximation is written as

I(z̃, ρ̃) ≈ 2
√

π

h

[
4z̃2

u2
0

sinh2

(
u0

2

)
+

ρ̃2u0

2
coth

(
u0

2

)]−1/2

e(u0/2)−hg(u0). (70)

We now turn to studying the wave function in the limits of weak and strong
ˇelds. We see in what follows that these concepts require some more accurate
deˇnitions in the problem under consideration. If h � 1 and if ρ̃ and z̃ are not
very large, then solution (8) reduces to

u0 =
hr̃

2
√

w̃
� 1, (71)

where r̃ =
√

z̃2 + ρ̃2 is the dimensionless radial coordinate. In the limit under
consideration, this expression in fact determines the spherical type of symmetry
of the electron cloud.

As is already stated in the introduction, the behavior of the bound energy level
of a spinning particle located in a δ well in the magnetic ˇeld was studied in [27].
It is important that the obtained solution has stable asymptotic expressions with
respect to the spin variable in the limits of weak and strong ˇelds, i.e., the effective
energy characteristic w̃ is independent of the spin in both cases. Although the
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computational technique used in [27] differs slightly from techniques used for
scalar particles in the previous papers [14,31], the results obtained in the limits of
weak and strong ˇelds in [27] agree completely. In particular, according to [27],
we have w̃ ≈ 1 + h/2 for small magnetic ˇelds, whence it can be directly seen

Fig. 4. The exact dependence of the func-
tion ζ(3/2, w̃/h) on the magnetic ˇeld
h (the dashed curve) and the dependence
determined by the right-hand side of for-
mula (13) (the solid curve)

that there is no dependence of w̃ on the
particle spin.

Taking the foregoing into account,
we use the estimate for the zeta function

ζ

(
3
2
,
w̃

h

)
∼ 2h1/2, (72)

which is applicable in the range h � 1.
In particular, the graphs shown in Fig. 4
demonstrate that such an asymptotic ex-
pression is valid. Therefore, for the range
under consideration h < 1 (and not very
far from the δ well), we obtain the ex-
pression

ψ(r ) ≈ N
2
√

π

hr̃
exp

(
− i

4
hx̃ỹ− r̃

)
(73)

for the spatial part of the wave function.
To represent the results graphically, it

is convenient to use the function χ(r) =
rψ(r) having no singularities at zero and determining the spatial distribution of
the probability density of the electron cloud in the spherical system of coordinates:

dW ∼ 2π|χ(r)|2 sin (θ) dθ dr.

Figure 5 shows the graph of |χ(r)|2. In this case, the de Broglie wavelength
is assumed to be unity. We stress that this estimate for the wave function was
obtained in the vicinity of the δ well in the weak ˇeld limit. But we note that
the ˇeld of the order of several tenths of the interatomic ˇeld is not weak in the
ordinary sense.

Far from the δ well, even in the weak ˇeld approximation, the case changes
cardinally. For hz̃ � 1, from formula (10), we have

u0 =
hz̃

2
√

w̃
� 1 (74)

for the saddle point. As a result, the asymptotic expression for the spatial part of
the wave function becomes

ψ(r) ≈ N

√
π

1 + h/2
exp

(
− i

4
hx̃ỹ − hρ̃2

8
− z̃

√
1 +

h

2

)
. (75)
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Fig. 5. The dependence of the dimensionless squared function |χ(r)|2 on the transverse
(x) and longitudinal (z) coordinates for ˇelds h � 1

This expression is important for a qualitative analysis. The solution has an axial
symmetry in this range. It is clear that the value of the ˇeld determines the range
where the spherical symmetry typical of the bound s state transforms into the
axial symmetry inherent in the wave functions of particles in a purely magnetic
ˇeld. In addition, it can be seen that at large distances from the δ well even in
the weak-ˇeld case, only the ground level of the effective energy makes the main
contribution, i.e., the level located at the smallest distance from the continuum
edge (1+h/2 in our adopted units). This agrees completely with the conclusions
in [27, 31]. In the case where the processes with free particles in an external
magnetic ˇeld are considered, it is usually assumed that the weak ˇeld does not
always exhibit its quantizing character, yielding only small corrections to the cross
sections of the corresponding processes. In contrast, it is traditionally assumed
that only several minimum-energy levels contribute in the strong-ˇeld case [25].

In contrast to this, in the case of a bound state, any arbitrarily weak ˇeld
behaves as a strong ˇeld at large distances from the center. In particular, it
follows from (16) that the magnetic ˇeld compresses the electron cloud not only
in the direction transverse to the ˇeld (which can be expected) but also along the
ˇeld. But if the shift in the ground level of the effective energy in the magnetic
ˇeld is neglected, i.e., if it is assumed that w̃ = 1, then such effects cannot be
described. We note that under these simplifying assumptions, solution (16) agrees
with the basic function used in [32].

For a strong ˇeld, the case is more complicated. The reason is obvious be-
cause the intermediate range in which the symmetry transforms from the spherical
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into the axial one in this case belongs to the range where the wave function differs
signiˇcantly from zero. Using the results in [27] on determining the effective
energy of the electron in strong ˇelds (h � 1), w̃ ≈ 0.295h, we consider a
small neighborhood of the δ center. For r̃ � 1/

√
h, the position of the saddle

point is determined by expression (12). For the wave function, using relations (4)
and (11), we obtain an analogue of expression (14) but with a different effective
energy:

ψ(r) ≈ N
2
√

π

hr̃
exp

(
− i

4
hx̃ỹ − r̃

√
0.295h

)
. (76)

Therefore, supplementing our conclusions on the behavior of the function at large
distances in a weak ˇeld, we note that any arbitrarily strong ˇeld behaves as a
weak one in the direct vicinity of the attractive δ center. The reason is that the
depth of the δ well is much greater than any ˇnite shift in the energy level in the
magnetic ˇeld. The equation for the bound level energy w(h) follows precisely
from the fact that the character of this asymptotic expression is independent of
the external magnetic ˇeld [14,27,31].

The wave function becomes axially symmetric in the strong ˇeld at distances
z̃ � 1/

√
h. For h � 1 and ˇxed ρ̃ 	= 0 and z̃ 	= 0, we obtain formula (15).

For the wave function, from relations (4) and (11), we obtain an analogue of
formula (16) in the case of strong ˇelds:

ψ(r) ≈ N

√
π

0.295h
exp

(
− i

4
hx̃ỹ − hρ̃2

8
− z̃

√
0.295h

)
. (77)

It is easy to see that also in this case, only the ground level of the effective energy
contributes.

Spherically symmetric estimate (12) and axially symmetric estimate (15) of
the maximum point agree in a neighborhood of the straight line ρ̃ = 0. It is
interesting that the dependence of the bound level energy on the magnetic ˇeld
was ˇrst obtained in [31], where the limit transition in the expression for the wave
function was used precisely along this line. Therefore, to extend the applicability
range of the obtained expression (18) to the range of small z, we can expand
the denominator in initial formula (4) into a geometric series in terms of partial
effective levels,

w̃k = w̃ + kh, k = 0, 1, 2, . . . , (78)

replacing the Landau levels in a purely magnetic ˇeld [19], and use estimate (18)
for each term. The wave function in this case becomes

ψ(r) ≈ N
√

π exp
(
− i

4
hx̃ỹ − hρ̃2

8

) K∑
k=0

e−z̃
√

(0.295+k)h√
(0.295 + k)h

. (79)
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It is easy to verify that if the maximum number K of levels taken into account
increases, then the applicability range for the obtained formula can be extended
to arbitrarily small values of the coordinate z.

In Fig. 6, the squared function |χ|2 calculated using exact formula (4) is
compared with asymptotic expressions (18) and (20) for the ˇeld h = 100 and
the axis ρ = 0. The larger the parameter

√
hz is, the better the series in

solution (20) converges (and the ˇrst term of series (18) consequently approaches
the exact solution). This turns out to be important because the probability current
is maximum in this range.

Fig. 6. The dependence of |χ(r)|2 on z on
the axis ρ = 0 for the ˇeld h = 100. The
points correspond to the calculation using
formula (4), and the solid curves (succes-
sively from the bottom up) determine the
strong ˇeld approximations: the contribu-
tion of the ground level (18) and the con-
tributions for K = 20 and K = 2000 cal-
culated using formula (20)

Fig. 7. The dependence of |χ|2 on ρ for the
ˇeld h = 100 and different z. The points
correspond to the calculation using exact
formula (4), and the solid curves corre-
spond to strong ˇeld approximations using
formulas (10) and (11)

Figure 7 shows the comparison of the expressions for |χ|2 in the case of three
different values of z (z = 0, 0.3, 0.6) and the strong ˇeld h = 100 calculated using
exact formula (4) and approximate formula (11) with (10) taken into account.

We brie	y summarize the results in this section. The solution of the Pauli
equation is spherically symmetric for a weak magnetic ˇeld in the entire relevant
range of coordinates. It is in fact determined only by the character of the singu-
larity in the δ well; all effective partial levels w̃k contribute to the formation of
this singularity (see formula (19)). The quantizing character of the magnetic ˇeld
(i.e., the tangibility of the contribution of individual energy levels) is manifested
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only far from the center in the region where the wave function is exponentially
suppressed. For the strong ˇeld, the character of the solution symmetry changes
in the relevant range of coordinates. The relative contribution of individual levels
for a ˇxed ˇeld strength is mainly determined by the longitudinal coordinate (in
the magnetic ˇeld direction), although the electron cloud is mainly compressed
by the magnetic ˇeld in the transverse direction.

6. PROBABILITY CURRENTS OF A PARTICLE BOUND
BY THE δ POTENTIAL IN A MAGNETIC FIELD

The general expression for the nonrelativistic probability current of the spinor
was given in the classic monograph [19]. Using the usual tensor notation, we
represent this current Jk in the form

Jk = −i
�

2m
[(∇kψ∗

α)ψα − ψ∗
α∇kψα]+

+
e

mc
Akψ∗

αψα − μc

e|s|εkpq∇p(ψ∗
ασ̂q

αβψβ), (80)

where k = 1, 2, 3 are the spatial coordinate indices; α = 1, 2 are the spin in-
dices; ∇k is the usual gradient operator; Ak is the vector potential of the external
magnetic ˇeld; μ is the electron magnetic moment; εkpq is the unit totally antisym-
metric tensor, and σ̂q

αβ are the binary sigma matrices. The complete normalized
solution of the Pauli equation can be represented in the form

ψα(r) = ψ(r)

(
1/2 + s

1/2 − s

)
,

where the spatial part ψ(r) is given by (4). The ˇrst and second terms in (21)
determine the gradient (orbital) current, and the last term corresponds to the spin
current.

Contracting spin indices with the explicit form of the sigma matrices taken
into account, we obtain the spatial components of the total probability current

Jx = −i
�

2m

(
∂ψ∗

∂x
ψ − ψ∗ ∂ψ

∂x

)
+

e

mc
Axψ∗ψ − μc

e

s

|s|
∂

∂y
(ψ∗ψ),

Jy = −i
�

2m

(
∂ψ∗

∂y
ψ − ψ∗ ∂ψ

∂y

)
+

e

mc
Ayψ∗ψ +

μc

e

s

|s|
∂

∂x
(ψ∗ψ),

Jz = −i
�

2m

(
∂ψ∗

∂z
ψ − ψ∗ ∂ψ

∂z

)
+

e

mc
Azψ

∗ψ.
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We must ˇx the gauge of the vector potential for further calculations. Choos-
ing it as Ax = −Hy and Ay = Az = 0 and passing to the dimensionless
coordinates, we obtain

J =
(
|W0|
2m

)1/2
h

2
ψ∗ψ(jx̃ − iỹ) +

(2m|W0|)1/2

2�

μc

e

s

|s|ψ
∗ψ̃(jx̃ − iỹ), (81)

where i and j are the unit vectors of the Cartesian system and the function ψ̃(r)
has the form

ψ̃(r) = N e−ihx̃ỹ/4

∞∫
0

dτ

τ1/2

1 + e−hτ

[1 − e−hτ ]2
exp

[
− z̃2

4τ
− h

8
ρ̃2 coth

(
hτ

2

)
− w̃τ

]
.

Assuming that the electron magnetic moment is equal to the Bohr magneton, we
obtain

J =
(
|W0|
2m

)1/2
h

2
ψ∗(ψ + 2sψ̃)(jx̃ − iỹ). (82)

Using exact expression (4) for the spatial part of the wave function, we obtain
the formula for the probability current in the case of an arbitrary spin orientation
and ˇeld strength:

J = Mh7/2ζ−1

(
3
2
,
w̃

h

)
(jx̃ − iỹ)×

×
∞∫
0

dτ

τ1/2

exp
[
−z̃2/(4τ) − hρ̃2 coth (hτ/2)/8 − w̃τ

]
1 − e−hτ

×

×
∞∫
0

dτ

τ1/2

exp[−z̃2/(4τ) − hρ̃2 coth (hτ/2)/8 − w̃τ ]
1 − e−hτ

[
1 + 2s coth

(
hτ

2

)]
, (83)

where M = m|W0|2/4π2
�

3 is a dimension factor independent of the magnetic
ˇeld.

We obtain the estimates for the current in the weak-ˇeld approximation. In
this case, we have

ψ̃(r) ≈ N
8
√

π

h2r̃3
(1 + r̃) exp

(
− i

4
hx̃ỹ − r̃

)
.

Also taking (14) and (23) into account, we write the expression for the probability
current in the weak magnetic ˇeld:

J = Mζ−1

(
3
2
,
1
h

+
1
2

)
4πh3/2

r̃2
e−2r̃

[
1 + 2s

4(1 + r̃)
hr̃2

]
(jx̃ − iỹ). (84)
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Figure 8, a shows the dependences of the logarithm of |J |/M on the trans-
verse coordinate ρ in different planes z = const for the ˇeld h = 0.1; they are
calculated using exact and approximate formulas (24) and (25) for s = −1/2,
i.e., for the particle with the spin oriented opposite the ˇeld. In the case of
the particle with the spin along the ˇeld, only the orientation of the vector J
changes, i.e., the direction of the particle rotation changes. This occurs because
the second term in (25) in the vicinity of the δ well turns out to be much greater
than the ˇrst term. In other words, the orbital probability current in this case is
negligibly small compared with the spin one. They become comparable only at
a distance r̃ ∼ 1/h from the center, where the current in the weak ˇeld (h � 1)
is exponentially suppressed. This conclusion is conˇrmed by comparing Fig. 8, a
with Fig. 8, b, where the same quantity ln

(
|J |/M

)
is constructed for the scalar

particle. In this case, the spatial part of the wave function in the weak ˇeld (see
formula (14)) is independent of the spin. The obtained result is quite expectable
if we recall that in the case of a weak ˇeld, the δ well itself can bind a charged
particle only if it is in the s state.

Fig. 8. The dependences of ln
(
|J |/M

)
on the transverse coordinate in the planes z = const

for the weak ˇeld h = 0.1 in the cases of the particle with spin directed opposite the
ˇeld (a) and the scalar particle (b). The points correspond to the calculation using exact
formula (24), and the solid curves correspond to weak-ˇeld approximation (25)

The dependences of ln (|J |/M) on the transverse coordinate in the planes
with different z for the strong magnetic ˇeld h = 100 demonstrating the spatial
distribution of the probability currents are shown in Fig. 9, a for the electron with
the spin directed opposite the ˇeld and in Fig. 9, b for the scalar particle. Exact
formula (24) is used in the calculation.
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Fig. 9. The dependences of ln
(
|J |/M

)
on the transverse coordinate calculated using exact

formula (24) in the planes z = const for the strong ˇeld h = 100 in the cases of the
particle with the spin directed opposite the ˇeld (a) and the scalar particle (b)

Fig. 10. The dependence of ln (|J |/M) on
the transverse coordinate obtained using ex-
act formula (24) in the case of the plane
z = 0 and the strong ˇeld h = 100 for
different spin orientations (along the ˇeld
and opposite the ˇeld) and the zero spin

Figure 10 shows the comparison of the behavior of ln (|J |/M) for the scalar
particle with that for the electron with its different spin orientations in the case of
the strong ˇeld and the plane z = 0. In particular, it can be seen from Fig. 8 that
the orbital and spin currents in the strong ˇeld become comparable in the vicinity
of the δ center. As should be expected, in the case of the electron with the
spin oriented opposite the magnetic ˇeld, the current decreases more rapidly as
the distance from the center increases, i.e., this particle motion is localized. The
range where the orbital and spin currents turn out to be comparable is probably
most interesting for studies.
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