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SOLITONIC BRANES AND WRAPPING RULES
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We show that the solitonic branes of ten-dimensional IIA/IIB string theory must satisfy,
upon toroidal compactiˇcation, a speciˇc wrapping rule in order to reproduce the number of half-
supersymmetric solitonic branes that follows from a supergravity analysis. The realization of this
wrapping rule suggests that IIA/IIB string theory contains a whole class of so-called ®non-standard¯
KaluzaÄKlein monopoles.
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INTRODUCTION

It is by now well-understood that branes form a crucial ingredient of string
theory. For instance, they have been used to calculate the entropy of certain black
holes [1] and they are at the heart of the AdS/CFT correspondence [2]. In general,
branes are massive objects that divide space-time into a number of world volume
and transverse directions. For instance, a ten-dimensional string corresponds to 2
worldvolume and 8 transverse directions. The question we would like to address
in this talk is: what can we learn about branes by using as input supergravity as
a low-energy approximation to string theory? Often, the presence of a p-brane in
string theory can be deduced from the presence of a rank (p + 1)-form potential
in the corresponding supergravity theory. At ˇrst sight, the relation between the
branes of string theory and the potentials of its supergravity approximation could
have been investigated many years ago. The new twist we want to give to this
old question is to make use of the relatively new insight that the potentials of a
given supergravity theory are not only the ones that describe the physical degrees
of freedom of the supermultiplet. It turns out that the supersymmetry algebra
allows additional high-rank potentials that do not describe any degree of freedom
but, nevertheless, play an important role in describing the coupling of branes to
background ˇelds.
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One can divide branes into standard branes, with T � 3 transverse directions,
and non-standard branes, with 0 � T � 2 transverse directions. The standard
branes are asymptotically �at. The remaining set of non-standard branes are not
asymptotically �at. The consistency of these non-standard branes requires to
consider a given number of them, in combination with a so-called orientifold.
In this talk we will not pursue this but, instead, consider single branes only
and see whether they satisfy some half-supersymmetric brane criterion, to be
deˇned later on in this talk∗. It is easy to see that the standard branes always
couple to potentials that describe physical degrees of freedom. For instance, in
D = 10 dimensions, the standard p-branes, with 0 � p � 6, couple to physical
(p + 1)-form potentials, which include the dual potentials. The highest-rank
potential is a 7-form potential which is dual to a vector. The non-standard branes
with T = 2 transverse directions are special in the sense that they couple to
(D− 2)-form potentials that are dual to the scalars of the supergravity non-linear
sigma models. Due to the non-linearity of the scalars, this duality is non-trivial
and unusual in the sense that the number of physical scalars and dual potentials
are not the same. For the exact relation between the numbers, we refer to [3]
where the branes with T = 2 have been denominated ®defect branes¯ since
they include objects such as four-dimensional cosmic strings and ten-dimensional
Dirichlet 7-branes. The non-standard branes with T = 1 transverse directions
are domain-walls and they couple to (D − 1)-form potentials. One can view
these potentials as being the duals of an integration constant such as the massive
Romans parameter in IIA supergravity or any gauge coupling constant in gauged
supergravity. Finally, the non-standard branes with zero transverse directions are
called ®space-ˇlling¯ branes. They are special in the sense that they only allow a
double dimensional reduction to a lower-dimensional space-ˇlling brane. These
space-ˇlling branes play an important role in describing superstring theories with
less than the maximum number of supercharges.

All potentials, whether describing physical degrees of freedom or not, can
be classiˇed according to the allowed U-duality representations. The U-duality
representations of the physical potentials have been classiˇed a long time ago,
and they follow from the representation theory of the supersymmetry algebra.
The physical potentials of the different maximal supergravity theories are related
to each other via toroidal reduction. The lower-dimensional ones all follow from
the reduction of the ten-dimensional IIA or IIB potentials. Remarkably, the U-
duality representations of the remaining higher-rank potentials that do not describe
physical degrees of freedom have also been classiˇed recently [4Ä6]. In principle,
these representations can be derived by the requirement that the supersymmetry

∗By half-supersymmetric we mean invariance under 16 of the 32 supercharges. In this talk we
do not consider branes with less or no supersymmetry.
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algebra is realized on these ˇelds. This has been explicitly veriˇed in D = 10
dimensions in which case the physical potentials of IIA and IIB supergravity can
be extended with the potentials given in Table 1 [7].

Table 1. This table lists the U-duality representations of all potentials, both physical
and un-physical, that are consistent with the IIA or IIB supersymmetry algebra. The
representations in the IIB case refer to the SL(2,R) S-duality group

p

D 0 1 2 3 4 5 6 7 8 9

IIA 1 1 1 1 1 1 1 1 2 × 1
IIB 2 1 2 3 4 ⊕ 2

A distinguishing feature of the un-physical potentials is that, when considered
in different dimensions, they are not related to each other by toroidal compactiˇca-
tion. This is unlike the ®physical¯ potentials, including the dual potentials, whose
numbers are ˇxed by the representation theory of the supersymmetry algebra.
Supergravity is therefore not complete in the sense that the lower-dimensional
supergravity theories, including the un-physical potentials, do not follow from
the reduction of the ten-dimensional supergravity theory. It is this incomplete
nature of supergravity that will lead us to suggest at the end of this talk a class
of non-standard KaluzaÄKlein (KK) monopoles in string theory.

In this talk we will consider the supersymmetric branes of the IIA/IIB string
theory compactiˇed on a torus, which couple to the ˇelds of the corresponding
maximal supergravities. As mentioned above, these ˇelds do not only include the
physical potentials, i.e., the p-forms with 0 � p � D−2, but also the un-physical
potentials, i.e., (D−1)-forms (which are dual to constant parameters) and D-forms
(that have no ˇeld strength). While standard branes are automatically classiˇed
because their number coincides with the dimension of the U-duality representation
of the corresponding ˇeld, we ˇnd that this is in general not true for the non-
standard branes. In fact we ˇnd two new features for the non-standard branes:

1) Not every U-duality representation corresponds to half-supersymmetric
branes;

2) Not each component of a U-duality representation corresponds to a half-
supersymmetric brane.

For instance, of all potentials corresponding to the non-standard branes in
D = 10 dimensions, see Table 1 for p = 7, 8 and 9, only a subset, see Table 2,
corresponds to a half-supersymmetric brane.

To determine whether a given potential couples to a half-supersymmetric
brane or not, we ˇrst construct a gauge-invariant WessÄZumino (WZ) term,
which is always possible at the cost of having to introduce a number of world-
volume potentials. Next, we impose the following half-supersymmetric brane
criterion [8, 9]: a potential can be associated to a half-supersymmetric brane if
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Table 2. This table shows that the only supersymmetric non-standard branes in D = 10
dimensions are the D7-brane and its S-dual (IIB), the D8-brane (IIA) and the D9-brane
and its S-dual (IIB)

p

D 7 8 9
IIA 0 ⊂ 1 1 0 ⊂ 2 × 1
IIB 2 ⊂ 3 (2 ⊂ 4) ⊕ (0 ⊂ 2)

the corresponding gauge-invariant WZ term requires the introduction of world-
volume ˇelds that ˇt within the bosonic sector of a suitable supermultiplet with
16 supercharges.

Since many different branes will pass by in this talk, it is useful to classify
them in different ways. We already discussed the distinction between standard
branes, with T � 3 transverse directions, and the non-standard ones, with 0 �
T � 2 transverse directions. These are the defect branes (T = 2), the domain
walls (T = 1) and the space-ˇlling branes (T = 0). Another useful way to
classify the branes of string theory is according to the way that the string tension
T scales with the string coupling constant gs. Introducing an integer number
α � 0, this scaling is given by

T ∼ (gs)α. (1)

This leads us to fundamental branes (α = 0), Dirichlet branes (α = −1), solitonic
branes (α = −2), etc. To determine the value of α corresponding to a given
potential, it is easiest to decompose in each dimension D = 10− d the U-duality
representations in terms of T-duality representations as

U-duality ⊃ SO(d, d) × R
+. (2)

The value of α then follows from the R
+-weight of the corresponding potential.

We now want to proceed with the analysis of the non-standard solitonic
supersymmetric branes of maximal supergravity theories. Before discussing these
branes, we will ˇrst discuss all the standard ones in the next section. These branes
have α = 0, −1 and −2, and we will show how the counting of the half-super-
symmetric branes leads to interesting so-called ®wrapping rules¯ for each value
of α. We will then discuss the non-standard solitonic, i.e. α = −2, branes in
Sec. 2, and see how the wrapping rules apply to these branes as well by means
of generalized KK monopoles.

1. THE ®STANDARD¯ BRANES

It is well-known that both the IIA and the IIB string theory have a single
fundamental string that couples to the NSÄNS 2-form potential. Since strings
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can wrap we have in D < 10 dimensions both strings and wrapped strings, i.e.,
0-branes, which couple to 2-forms and 1-forms, respectively. Naively, one would
expect one wrapped string for each compactiˇed direction. Instead, we end up
with two 0-branes for each compactiˇed direction. This is due to the fact that
IIA/IIB string theory also contains a pp-wave which, upon reduction, gives rise
to an additional 0-brane. Effectively, we therefore end up with two 0-branes for
each compactiˇed direction. This is precisely what we need in order that the
corresponding 1-forms B1,A (A = 1, . . . , 2d) organize themselves as a vector of
the T-duality group SO(d, d).

It turns out that in each dimension D < 10 the T-duality singlet 2-form B2

and the T-duality vector B1,A transform under each other's gauge transformation
and together form a ®p-form algebra¯. Therefore, both are needed to construct a
gauge-invariant WZ term. To construct a gauge-invariant WZ term, we need to
introduce a T-duality vector b0,A of additional world volume scalars:

LWZ(D < 10) = B2 + ηABF1,AB1,B, F1,A = db0,A + B1,A. (3)

Together with the embedding scalars, these ®extra¯ scalars will not ˇt into a
world volume scalar multiplet. To get the correct counting, we need to impose a
self-duality condition on the extra scalars like in doubled geometry [10].

The lower-dimensional fundamental branes (0-branes F0A and string F1)
can be nicely understood as the result of the following simple ®wrapping rule¯:

wrapped → doubled,
(4)

unwrapped → undoubled,

when applied to the single fundamental IIA/IIB string, see Table 3.

Table 3. Applying the fundamental wrapping rule (4) to the IIA/IIB fundamental string
gives rise, in each dimension 3 � D � 9, to a singlet fundamental string F1 and a
T-duality vector of 0-branes F0A

Fp-brane IIA/IIB 9 8 7 6 5 4 3

0 2 4 6 8 10 12 14
1 1/1 1 1 1 1 1 1 1

Similarly, one can analyze the Dirichlet branes, i.e., the branes with α = −1.
One can show that they satisfy the wrapping rule

wrapped → undoubled,
(5)

unwrapped → undoubled.
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Unlike the fundamental branes, the D-branes are complete by themselves in the
sense that the realization of the D-brane wrapping rule (5) does not require the
input of any gravitational solutions.

The third set of standard branes we consider are the standard solitons,
i.e., branes with α = −2 and T � 3 transverse directions. The IIA/IIB string
theory has a single solitonic NSÄNS 5-brane. Upon wrapped reduction, it gives
rise to a single D = 9 solitonic 4-brane and upon unwrapped reduction it leads
to a single D = 9 solitonic 5-brane. It turns out that in this case the solitonic
5-brane is doubled due to the presence of a single KaluzaÄKlein monopole in the
IIA/IIB string theory. This leads to the following dual or solitonic wrapping rule:

wrapped → undoubled,
(6)

unwrapped → doubled.

When applied to the solitonic NSÄNS 5-brane of the IIA/IIB string theory, it
gives rise to a singlet S(D − 5)-brane soliton and a T-duality vector S(D − 4)A

of brane-solitons, see Table 4.

Table 4. Applying the solitonic wrapping rule (6) to the NSÄNS solitonic 5-brane of the
IIA/IIB string theory leads to a lower-dimensional singlet S(D − 5)-brane soliton and
a vector SD(D − 4)A of brane-solitons

Sp-brane IIA/IIB 9 8 7 6 5 4 3

0 1 12
1 1 10
2 1 8
3 1 6
4 1 4
5 1/1 2

This ˇnishes our discussion of the standard branes. The question is now
what happens with the non-standard solitonic branes, i.e., the α = −2 branes
with T � 2 transverse directions. We will discuss this in the next section.

2. THE ®NON-STANDARD¯ SOLITONIC BRANES

Our discussion on the solitonic branes, started in the previous section, has not
ˇnished yet. A supergravity analysis, making use of the decomposition (2), shows
that there are more ®non-standard¯ solitonic branes, i.e., branes with 0 � T � 2
transverse directions. They occur as antisymmetric tensor representations of
the T-duality group, see Table 5. This table should be read as follows. In
each dimension D there are solitonic branes in antisymmetric representations of
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increasing rank, starting with rank 0 at the top row up to a maximum rank rmax

given by rmax = d if D � 6, which always corresponds to a solitonic 5-brane,
and rmax = 4 if D � 6. The solitonic 5-brane with maximum rank representation
decomposes into a self-dual and anti-self-dual representation of the SO(d, d)
T-duality group. One of these representations has a world volume vector multiplet,
while the other has a world volume self-dual tensor multiplet.

Table 5. This table indicates all D-dimensional solitonic branes, standard as well as
non-standard ones. For a given dimension D the maximum rank under T-duality is
given by rmax = d if D � 6, corresponding to a solitonic 5-brane, and rmax = 4 if
D � 6

S(D − 5)-brane

[S(D − 4)-brane]A
[S(D − 3)-brane]AB

[S(D − 2)-brane]ABC

[S(D − 1)-brane]ABCD

As we already anticipated in the introduction, the non-standard branes behave
differently than the standard ones in the sense that not each component of the
antisymmetric tensor representations occurring in Table 5 corresponds to a half-
supersymmetric solitonic brane. Imposing our half-supersymmetric brane criterion
discussed in the introduction leads to the correct number of supersymmetric
branes. The result of this analysis can be found in Table 6, which contains
the half-supersymmetric standard solitonic branes as well.

Table 6. This table indicates the number of half-supersymmetric solitonic branes, both
the standard and the non-standard ones for dimensions 3 � D � 10

Sp-brane IIA/IIB 9 8 7 6 5 4 3

0 1 12 84
1 1 10 60 280
2 1 8 40 160 560
3 1 6 24 80 240
4 1 4 12 32 80
5 1/1 2 4 8 16

Surprisingly, we ˇnd that the numbers of half-supersymmetric solitons, given
in Table 6, are precisely the same as the ones one obtains by extending the
solitonic wrapping rule (6) from standard solitons only to standard as well as non-
standard half-supersymmetric solitons! Strictly speaking, without saying explicitly
we also extended the wrapping rule for the fundamental branes and D-branes
from standard to non-standard ones. The difference is that in that case all
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components of the scalar, vector and spinor T-duality representations involved
correspond to supersymmetric branes. In the case of fundamental branes, non-
standard strings only happen for D � 4 dimensions, while non-standard 0-branes
only occur in D = 3 dimensions. Non-standard D-branes already occur in D = 10
dimensions.

We are now faced with the following question: where do the solitons that
realize the solitonic wrapping rule (6) come from? In the case of the standard
solitons, the answer to this question is that the solitonic wrapping rule can be
realized due to the presence of the KaluzaÄKlein (KK) monopole in D = 10
dimensions. The difference between the KK monopole and the other branes is that
these monopoles divide space-time into three in-equivalent directions. Besides the
world volume and transverse directions, which we already encountered with the
branes, there is a third so-called ®isometry¯ direction. We call the KK monopole
a ®standard¯ KK monopole because it has three transverse directions. It turns
out that in the same way that the standard KK monopole is needed to realize
the solitonic wrapping rule (6) and obtain the standard solitons, a new kind of
so-called ®non-standard¯ KK monopoles, with T � 2 transverse directions, are
needed to realize the same wrapping rule and obtain the non-standard solitonic
branes. Precisely this class of non-standard KK monopoles have been analyzed
and classiˇed some time ago in [11]. They are local solutions of the corresponding
supergravity theory. It remains to be seen whether they can be realized as non-
singular ˇnite-energy solutions within string theory.
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