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In this paper we demonstrate the effectiveness of the action-angle variables in the study of su-
perintegrable systems. As an example, we construct the spherical and pseudospherical generalizations
of the two-dimensional superintegrable models introduced by Tremblay, Turbiner and Winternitz, and
by Post and Winternitz.
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INTRODUCTION

Prominent in the theory of integrable systems is the Liouville theorem, which
states that any 2N -dimensional Hamiltonian system with N mutually commuting
constants of motion is integrable. Besides, the theorem states that, if the level
surface of these constants of motion are compact and connected manifolds, then
they are diffeomorphic to N -dimensional tori. This enables one to introduce
action-angle variables (I,Φ), so that the Hamiltonian depends only on the action
variables I, which are constants of motion. The formulation of an integrable
system in terms of these variables yields a comprehensive geometric description
of its dynamics and is a useful tool for developing perturbation theory [1]. For
these reasons, action-angle variables have been widely exploited in celestial me-
chanics since the 19th century and play a central role in the BohrÄSommerfeld
semiclassical quantization. However, after invention of the canonical quantization
and completing the theory of quantum mechanics, the interest to the action-angle
variables waned. To the moment, besides the standard textbook problems such as
the harmonic oscillator or the Kepler potential, action-angle variables seem to be
absent in the literature for the vast variety of known integrable models, invented
over the last ˇfty years, such as integrable systems in a curved space, multi-
particle systems of Calogero type [2] (except for rational Calogero models [3]),
as well as a particle systems coupled to a monopole or instanton background.
Therefore, we have recently begun to develop this issue by analyzing the (one-
dimensional) dihedral systems related to the three-particle Calogero model [4] as
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well as two-dimensional oscillator-like systems in magnetic ˇeld, which are rel-
evant to certain models of quantum rings and lenses [5]. Then we suggested the
integrable deformations of the d-dimensional oscillator and Coulomb systems and
of their generalizations to (pseudo)spheres [6,7], based on the use of action angle-
variables [8]. Finally, we used the action-angle variables for the analyses of the
relativistic particle system moving near the horizon of extreme black holes [9,10].
We found, to our surprize, that, in fact, in each considered example, the use of
action-angle variables immediately provide us with some qualitatively new in-
formation, which was not observed in previous studies performed by common
methods. Say, action-angle variable formulation of the (one-dimensional!) dihe-
dral systems [4] immediately established the equivalence of A2 and G2 rational
Calogero models, as well as allowed us to demonstrate the locality of the equiva-
lence of the rational Calogero model and free particle, which has been intensively
discussed in literature in the last decade [11]; while action-angle description of
the relativistic particle near extreme Kerr throat visualized the existence of the
critical point |pφ| = mcRSch (with m being the mass of the particle, c denoting
the speed of light, RSch = 2γM/c2 being the Schwarzschild radius of a black
hole with mass M , and γ denoting the gravitational constant), where the trajec-
tories close, and the system becomes exactly solvable [10]. Finally, we found
that action-angle variables give transparent explanation of the superintegrability
property of the recently suggested deformations of the two-dimensional oscilla-
tor system (TremblayÄTurbinerÄWinternitz system) [12] and of two-dimensional
Coulomb system (PostÄWinternitz system) [13], and allow us to immediately
construct their (pseudo)spherical generalizations [8]. The discussion of the last
issue is the subject of this paper.

The paper is arranged as follows. In Sec. 1 we give the necessary information
on action-angle variables and their supergeneralizations. In Sec. 2 we give the
action-angle variable formulation of the certain dihedral systems on the circle and
discuss their consequences concerning rational Calogero models. In Sec. 3 we
construct the spherical and pseudospherical generalizations of the TTW and PW
systems. We demonstrate the superintegrability of these systems and write down
their hidden constants of motion.

1. ACTION-ANGLE VARIABLES

The well-known Liouville theorem gives the exact criterion of integrability
of the N -dimensional mechanical system, that is, the existence of N mutually
commuting constants of motion F1 = H, . . . , Fn: {Fi, Fj} = 0, i, j = 1, . . .N .
The theorem also states that if the level surface Mf = ((pi, qi) : Fi = const) is a
compact and connective manifold, then it is diffeomorphic to the N -dimensional
torus T N . The natural angular coordinates Φ = (Φ1, . . . , ΦN) parameterizing that
torus satisfy the motion equations of a free particle moving on a circle. These
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coordinates form, with their conjugate momenta I = (I1, . . . , IN ), a full set of
phase space variables called ®action-angle¯ variables. One of the results of the
theorem is that the momenta I depend on constants of motion only I = I(F). So,
there exists a canonical transformation to the new variables (p,q) �→ (I,Φ), in
which the Hamiltonian depends on the constants of motion I (which are called
action variables) only. Consequently, the equations of motion read

dI
dt

= 0,
dΦ
dt

=
∂H(I)

∂I
, {Ii, Φj} = δij , Φi ∈ [0, 2π), i, j = 1, . . . , N.

(1.1)
Besides the practical importance, the action-angle formulation has an academic
interest as well. From the academic viewpoint, it gives a precise indication of the
(non)equivalence of different Hamiltonian systems. Indeed, gauging the integrable
system by action-angle variables, we preserve the freedom only in the functional
dependence of the Hamiltonian from the action variables, H = H(I), and in the
range of validity of the action variables, Ii ∈ [β−

i , β+
i ]. Hence formulating the

systems in terms of action-angle variables, we can indicate the (non)equivalence
of different integrable systems.

The general prescription for the construction of action-angle variables looks
as follows [1]. In order to construct the action-angle variables, we should ˇx
the level surface of the Hamiltonian F = c and then introduce the generating
function for the canonical transformation (p,q) �→ (I,Φ), which is deˇned by
the expression

S(c,q) =
∫

F=c

p dq, (1.2)

where p is expressed via c,q by the use of the constants of motion. The action
variables I can be obtained from the expression

Ii(c) =
1
2π

∮
γi

p dq, (1.3)

where γi is some loop of the level surface F = c. Then inverting these relations,
we can get the expressions of c via action variables: c = c(I). The angle
variables Φ can be found from the expression

Φ =
∂S(c(I),q)

∂I
. (1.4)

The supergeometric generalization of the Liouville theorem has been known
for many years [14]. For our context of one-dimensional supersymmetric me-
chanics, we follow here the construction of action-angle (super)variables as pre-
sented in [15]. Let us have N=2M supersymmetric mechanics deˇned on a
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(2N |2M)-dimensional phase superspace, coordinatized by (pϕ, ϕ|θα, θ
β
). The

supersymmetry algebra reads

{Qα, Q
β} = 2δαβHs,

{Qα, Hs} = {Qβ
, Hs} = 0 = {Qα, Qβ} = {Qα

, Q
β},

(1.5)

where α, β = 1, . . . , M .
Fixing the level supersurface, Hs = hs, Qα = qα and Q

α
= qα, we arrive

at a (N |0)-dimensional torus in the phase superspace. On this torus, one deˇnes
bosonic action-angle variables (Φs, Is), analogous to the non-supersymmetric
case, as well as fermionic ones, Θα = Qα/

√
2hs, with the following non-zero

Poisson brackets

{Φi
s, I

j
s} = δij and {Θα, Θ

β} = δαβ . (1.6)

In these variables, the Hamiltonian does not depend on Θα or Θ
α
, hence Hs(Is)

is just like previously.
Hence, for any integrable Hamiltonian system, formulated in action-angle

variables, we can construct formal N = 2M supersymmetric extension, deˇned by
supercharges Qα =

√
2hsΘα. Nevertheless, the canonical transformation from the

initial to the action-angle supervariables does mix bosonic and fermionic degrees
of freedom. Moreover, this supersymmetrization procedure has no any sense
until deˇning the supercanonical transformation from the initial phase superspace
variables (p, q, θα, θ

α
) to the action-angle ones, given by (Is, Φs, Θα, Θ

α
).

Let us demonstrate this issue on the simple case of N = 2 supersymmetric
mechanics [4]. For this purpose, let us choose a more �exible form of the
supercharges, namely

Q =
√

2Hs eıλ(I,Φ)θ =
√

2Hs Θ and Q =
√

2Hs e−ıλ(Ĩ,Φ)θ =
√

2Hs Θ,
(1.7)

where λ(I,Φ) is an arbitrary real function of the action-angle variables of the
underlying bosonic system. By expressing (I,Φ) through (p,q), the supercharges
are functions of the initial phase superspace variables. These supercharges also
generate the superalgebra (1.5) (with M=1) and produce the Hamiltonian

H :=
1
2
{Q, Q} = Hs + ıθθ{Hs, λ}. (1.8)

The freedom of an arbitrary real function λ(I,Φ) leads to a well-known variety
of N = 2 supersymmetric extensions of a given bosonic system. For example, it
was used in [16] for the construction of N = 2 superconformal extension of the
particle near KerrÄNeeman AdSÄdS black hole throat.
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Applying the (super-)Liouville theorem to the supersymmetric system given
by (1.7) and (1.8), we obtain

Is = I + ıθθ {λ(I,Φ),Φ}, Φs = Φ + ıθθ {λ(I,Φ), I}, (1.9)

Θ = eıλ(I,Φ)θ, Θ = e−ıλ(I,Φ)θ. (1.10)

As already said, the Hamiltonian in these variables is of the same form as the
non-supersymmetric one, Hs = H .

Let us demonstrate the procedure for the simplest case of N=2, given by
the classical counterpart of Witten's model of supersymmetric mechanics. It is
deˇned by

Hs =
1
2
(
p2+W ′2(q)

)
+ıθθ W ′′(q), Q = θ

(
p+ıW ′(q)

)
, Q = θ

(
p−ıW ′(q)

)
,

(1.11)
with a chosen superpotential function W (q). These functions obey the superal-
gebra (1.5) with M=1, by virtue of

{p, q} = 1 and {θ, θ} = 1. (1.12)

Quantization replaces θ and θ by the Pauli matrices σ+ = (1/2)(σ1 + ıσ2)
and σ− = (1/2)(σ1 − ıσ2), respectively, and ıθθ goes to σ3. In this way, we
arrive at one-dimensional N=2 supersymmetric quantum mechanics of a spinning
particle interacting with an external ˇeld. However, when passing to action-angle
variables, it turns out that there is no spin interaction, and the supersymmetric
extension is rather trivial. On the other hand, Witten's model is quite special:
its supercharges allow no momentum dependence in the nilpotent part of the
Hamiltonian.

To formulate the standard N=2 supersymmetric mechanics construction (1.11)
in action-angle variables, we must choose

√
2H eıλ(I(p,q),Φ(p,q)) = p + ıW ′(q) ⇒ tan λ =

W ′(q)
p

. (1.13)

Note that λ = λ(I) yields trivial supersymmetry, with no spin interaction. An-
other interesting case is λ = Φ/I , which produces a coordinate-independent
spin-background interaction.

2. DIHEDRAL SYSTEMS

Let us construct the action-angle variables for the dihedral systems on a
circle, which are deˇned by the Hamiltonian

I(pϕ, ϕ|k) =
1
2
p2

ϕ + Vk(ϕ), Vk(ϕ) =
k−1∑
�=0

1
(a� · n)2

, where n =
(

cos ϕ
sin ϕ

)
(2.1)
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and a� are the positive roots of a two-dimensional Coxeter system I2(k) called
dihedral system. The full set of roots forms a regular star shape with an angular
separation of π/k. Since the symmetry relates the root lengths as |a�|2 = |a�+2|2,
for odd k all roots have the same length, say α0, while for even k we may put
|aeven| = α1 and |aodd| = α2. Clearly, we have to distinguish between k being
even or odd. As a�·n is proportional to cos (φ − �π/k), it is a matter of simple
algebra to perform the ˇnite sums and obtain

Vk(ϕ) =
k2α2

0

2 cos2 kϕ
for k = 2k′+1, (2.2)

Vk(ϕ) =
(k′α1)2

2 cos2 k′ϕ
+

(k′α2)2

2 sin2 k′ϕ
for k = 2k′, (2.3)

with k′ ∈ N. Hence, the odd systems feature one coupling (α0), while the even
ones allow for two (α1, α2), all naturally positive. For α1=α2, the even potential
attains the same form as the odd one. So, we get precisely the PéoschlÄTeller
system for the odd k, and modiˇed PéoschlÄTeller system for the even k [17].
Their action-angle variable looks as follows.

For the systems with odd k, one has

I =
1
k

√
2I(pϕ, ϕ) − α0, Φ = arcsin

{ √
2I(pϕ, ϕ)√

2I(pϕ, ϕ) − k2α2
0

sin kϕ

}
. (2.4)

In these variables the Hamiltonian reads

I =
k2

2
(I + α0)2. (2.5)

For the case (2.3), i.e., for the systems with even k, k = 2k′, the action-angle
variables read

I =
1
k′

√
2I − (α1 + α2), Φ =

1
2

arcsin
{

1
a
[cos 2k′ϕ + b]

}
, (2.6)

where a and b are deˇned by the expressions

a =

√
1 − k′2(α2

1 + α2
2)

I(pϕ, ϕ)
+

k′4(α2
1 − α2

2)2

4I2(pϕ, ϕ)
, b =

k′2(α2
2 − α2

1)
2I(pϕ, ϕ)

. (2.7)

Respectively, the Hamiltonian looks as follows:

I =
k′2

2
(I + (α1 + α2))2. (2.8)
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Comparing the results (2.5) and (2.8), obtained by a canonical transformation
from (2.2) and (2.3), respectively, we conclude that they differ in the ®mass¯ of
the (locally equivalent) free particle as well as in the domain of the momentum
(action) variable. Thus, in general, all systems can be distinguished globally.
Interestingly, however, any odd system (kodd; α0) matches globally to a one-
parameter family system of even systems (keven; α1, α2) by the equivalence

(kodd; α0) ∼ (2kodd; β, α0 − β) with 0 < β < α0. (2.9)

Particularly, choosing k = 2, we establish the global equivalence of A2 and G2

rational Calogero models, and their local equivalence with a free particle on the
circle.

3. SUPERINTEGRABLE SYSTEMS

The action-angle variables elegantly explain the superintegrability of the re-
cently suggested deformation of the two-dimensional oscillator system introduced
by TremblayÄTurbinerÄWinternitz [12] and also of the Coulomb versions treated
by PostÄWinternitz [13]. They also allow us to construct analogous deformations
of the spherical and pseudospherical generalizations of oscillator and Coulomb
systems suggested in [8],

H =
p2

r

2
+

IPT(pϕ, ϕ)
r2

+ V (r), {pr, r} = 1. (3.1)

Here, we introduced a radial coordinate r and momentum pr, and IPT is a
generalized PéoschlÄTeller system on the circle

I(pϕ, ϕ|k) =
1
2
p2

ϕ +
(kα1)2

2 cos2 kϕ
+

(kα2)2

2 sin2 kϕ
, {pϕ, ϕ} = 1. (3.2)

Choosing the oscillator potential

V (r) =
1
2
ω2r2, (3.3)

we will arrive at the TremblayÄTurbinerÄWinternitz system.
With the choice of the Coulomb potential

V (r) = −γ

r
, γ > 0, (3.4)

we will get PostÄWinternitz system.
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Their generalizations to the sphere and pseudosphere are obvious. Those are
deˇned by the following redeˇnition:

SN : r = r0 sin χ, pr = r−1
0 pχ, V (r) → V (r0 tan χ), (3.5)

R
N : r = r0χ, pr = r−1

0 pχ, V (r) → V (r0χ), (3.6)

HN : r = r0 sinh χ, pr = r−1
0 pχ, V (r) → V (r0 tanh χ), (3.7)

where r0 is the radial scale and {pχ, χ} = 1 is a dimensionless canonical pair.
Let us show that these systems are superintegrable ones for the rational k.

Formulating these system in the action-angle variables, we get that the Hamil-
tonian of the TremblayÄTurbinerÄWinternitz system looks as follows:

Hω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω (2Iχ + k(I + α1 + α2)) for R
2,

1
2
(2Iχ + k(I + α1 + α2) + ω)2 − ω2

2
for S2,

−1
2
(2Iχ + k(I + α1 + α2) − ω)2 +

ω2

2
for H2

(3.8)

and depends only on the combination 2Iχ+k(I + α1 + α2). Thus, the evolution
of the angle variables is given by

Φχ(t) = 2Ωt, Φϕ(t) = kΩt, with Ω =
dHω

d(2Iχ+k(I + α1 + α2))
. (3.9)

For rational values of k the trajectories are closed. It then follows that the hidden
constant of motion is∗

Ihidden = cos (mΦχ−2nΦϕ) for k = m/n. (3.10)

The construction of superintegrable deformations of the Coulomb system,
i.e., the PostÄWinternitz system and its generalization to the (pseudo)spherical
environment, proceeds completely similarly. The Hamiltonians depend only on
the combination Iχ+k(I + α1 + α2),

Hγ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−γ2

2
(Iχ + k(I + α1 + α2))−2 for R

2,

−γ2

2
(Iχ + k(I + α1 + α2))−2 +

1
2
(Iχ + k(I + α1 + α2))2 for S2,

−γ2

2
(Iχ + k(I + α1 + α2))−2 − 1

2
(Iχ + k(I + α1 + α2))2 for H2.

(3.11)

∗For the oscillator case, the hidden constants of motion have been constructed in [18].
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Hence, for rational k = m/n the trajectories are closed, while the hidden sym-
metry is deˇned by the expression

Ihidden = cos (mΦχ − nΦϕ). (3.12)

Thus, we get superintegrable (pseudo)spherical analogs of the TremblayÄTurbinerÄ
Winternitz and of the PostÄWinternitz models.
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