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NEW CHALLENGES IN UNIFIED THEORIES
G. Zoupanos∗

Theory Group, Physics Department, CERN, Geneva, Switzerland∗∗

Among the research directions that we have presented during the Workshop SQS'2011, we have
chosen to discuss here in some detail the derivation of the effective action in four dimensions of
the ten-dimensional N = 1 heterotic supergravity coupled to N = 1 supersymmetric YangÄMills
resulting from the dimensional reduction over nearly Kéahler manifolds.
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INTRODUCTION

A large and sustained effort has been done in the recent years, aiming to
achieve a uniˇed description of all interactions. Out of this endeavor, two main
directions have emerged as the most promising to attack the problem, namely,
the superstring theories and noncommutative geometry. The two approaches,
although at a different stage of development, have common uniˇcation targets
and share similar hopes for exhibiting improved renormalization properties in
the ultraviolet (UV) as compared to ordinary ˇeld theories. Moreover, the two
frameworks came closer by the observation that a natural realization of non-
commutativity of space appears in the string theory context of D-branes in the
presence of a constant background antisymmetric ˇeld. However, despite the
importance of having frameworks to discuss quantum gravity in a self-consistent
way and possibly to construct there ˇnite theories, it is very interesting to search
for the minimal realistic framework in which ˇniteness can take place. In ad-
dition, the main goal expected from a uniˇed description of interactions by the
particle physics community is to understand the present-day large number of free
parameters of the Standard Model (SM) in terms of a few fundamental ones. In
other words, to achieve reduction of couplings at a more fundamental level. It
is a thoroughly fascinating fact that many interesting ideas that have survived
various theoretical and phenomenological tests, as well as the solution to the UV
divergences problem, ˇnd a common ground in the framework of N = 1 Finite
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Uniˇed Theories, which is one of the research directions that we have presented
at the Workshop SQS'2011. From the theoretical side, they solve the problem
of UV divergences in a minimal way. On the phenomenological side, since they
are based on the principle of reduction of couplings (expressed via RGI relations
among couplings and masses), they provide strict selection rules in choosing
realistic models which lead to testable predictions [1].

Given the above considerations, our group is developing activities in the
following research directions:

1. Dimensional Reduction of the heterotic string over nearly Kéahler Mani-
folds [2, 4].

2. Higher dimensional Uniˇcation with Fuzzy Extra Dimensions [5Ä8].
3. Finite Uniˇcation [1].
Due to lack of space, we discuss in the present contribution only parts of the

ˇrst research direction.

1. DIMENSIONAL REDUCTION OVER NEARLY KéAHLER MANIFOLDS

The main research objective in this direction is the full dimensional reduc-
tion of the Heterotic String using nonsymmetric coset spaces, which admit an
SU(3)-structure, in the presence of background �uxes and gaugino condensates.
CY manifolds were proposed as internal spaces for compactiˇcations in view
of the requirement that a four-dimensional N = 1 supersymmetry is preserved.
Namely, they admit a nowhere-vanishing, globally deˇned spinor, which is co-
variantly constant with respect to the (torsionless) Levi-Civita connection. How-
ever, a wider class of manifolds exists for which the spinor is covariantly con-
stant with respect to a connection with torsion. These are called manifolds with
SU(3)-structure and clearly CY manifolds belong to this class too.

SU(3)-structure manifolds are characterized by a real 2-form J and a com-
plex 3-form Ω, which may be deˇned as bilinear forms of the covariantly constant
spinor, and they satisfy certain algebraic and differential relations. The structure
forms J and Ω are not closed, and in particular their exterior derivatives deˇne the
ˇve intrinsic torsion classes Wi, i = 1, . . . , 5, which fully characterize the intrin-
sic torsion of the manifold and may be used in the classiˇcation of the different
types of manifolds. It is worth noting that a complex manifold has vanishing
torsion classes W1 and W2, while a Kéahler manifold has in addition vanishing
torsion classes W3 and W4. A CY manifold has all the torsion classes equal to
zero, and only in this case the structure forms J and Ω are evidently closed.

In the present study, we focus on an interesting class of SU(3)-structure
manifolds called nearly Kéahler manifolds. In this case all the intrinsic torsion
classes but W1 are zero. The fact that the torsion class W1 does not vanish means,
according to the above, that the manifolds we deal with are not complex. The
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homogeneous nearly Kéahler manifolds in six dimensions have been completely
classiˇed, and they are the coset spaces G2/SU(3), Sp4/SU(2) × U(1) and
SU(3)/U(1)× U(1) and the group manifold SU(2) × SU(2).

A very interesting feature of the six-dimensional nonsymmetric coset spaces
is that they have simple and well-known geometry. Indeed, the most general
S-invariant metric can be easily determined, and the S-invariant p-forms are
known explicitly. Indeed, as far as the most a general S-invariant metric is con-
cerned, it is always diagonal and depends on the number of radii that each spaces
admits. In particular, G2/SU(3) admits only one radius R1, Sp4/SU(2)×U(1)
admits two radii R1, R2, and SU(3)/U(1) × U(1) admits three radii R1, R2,
R3. Then the metric �uctuations can be parameterized by one, two and three
scalar ˇelds, respectively. Regarding the S-invariant p-forms on these manifolds,
the common feature is that they do not admit S-invariant 1-forms. On the
contrary, S-invariant 2-forms ωi exist in all cases, and in particular there is one
for G2/SU(3), two for Sp4/SU(2) × U(1) and three for SU(3)/U(1) × U(1).
Moreover, all the three spaces admit two S-invariant 3-forms ρ1 and ρ2.

In two recent publications [2, 3], we have studied the dimensional reduction
of the low-energy ˇeld theory limit of the Heterotic String on nearly Kéahler man-
ifolds. In particular, the bosonic sector of the ten-dimensional action was studied,
which contains the EinsteinÄHilbert action in ten dimensions, the dilaton, the
NSÄNS 3-form H and the gauge ˇelds. Initially, all the ˇelds of the theory were
expressed in terms of their four-dimensional counterparts, and the ten-dimensional
action was dimensionally reduced to four dimensions. Subsequently, a case-by-
case analysis for all the nearly Kéahler manifolds was performed by applying the
general results in all the speciˇc cases, thus obtaining the corresponding effec-
tive actions in four dimensions for each case. The resulting theories are N = 1
supersymmetric E6 GUTs, and they also contain terms which could be inter-
preted as soft scalar masses and trilinear soft terms in four dimensions, in case
the minimization of the full potential would lead to Minkowski vacuum. Their
superpotential is determined in a straightforward way via the heterotic GukovÄ
VafaÄWitten formula, and their Kéahler potential is determined using results of the
special Kéahler geometry. It would be interesting to study further the possibility
to determine a Minkowski vacuum with stabilized moduli in this context. Several
directions exist in order to explore this possibility, such as gaugino condensation
and the KKLT scenario. Moreover, the inclusion of more general �uxes combined
with the ones already considered could serve as another possibility to determine
such vacua.

On the other hand, progress has been made recently concerning the dimen-
sional reduction of the N = 1 supersymmetric E8 gauge theory, resulting in
the ˇeld theory limit of the heterotic string over the nearly Kéahler manifold
SU(3)/U(1)×U(1). More speciˇcally, an extension of the Standard Model (SM)
inspired by the E8 × E8 heterotic string was derived [4] (see also the contribu-
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tion of N. Irges and G. Zoupanos in the present proceedings). In order that a
reasonable effective Lagrangian is presented, we neglected everything else other
than the N = 1 ten-dimensional supersymmetric YangÄMills sector associated
with one of the gauge factors and certain couplings necessary for anomaly can-
cellation. A compactiˇed space-time M4 × B0/Z3 was considered, where B0 is
the nearly Kéahler coset manifold S/R = SU(3)/(U(1) × U(1)) and Z3 a freely
acting discrete group on B0. Then we reduced dimensionally the E8 on this
manifold and employed the Wilson �ux mechanism, leading in four dimensions
to a gauge theory with the spectrum of an N = 1 supersymmetric theory. We
computed the effective four-dimensional Lagrangian and demonstrated that an
extension of the SM is obtained. The gauge group contains, beyond that of the
SM, two extra anomalous U(1) factors. One of them is precisely the Baryon
number (B) and the other a PecceiÄQuinn (PQ) symmetry. They both break at a
high scale, leaving their corresponding global quantum numbers conserved at low
energies. Their anomalies are cancelled by a combination of Stueckelberg and
WessÄZumino terms which render the effective Lagrangian gauge-invariant [9].
After Electroweak (EW) symmetry breaking the low-energy spectrum is affected
by the presence of the extra U(1)'s via heavy neutral gauge bosons, the so-called
Z ′ gauge bosons, just as in D-brane models [10]. The mass scale of these Z ′

bosons is determined by the radii of the compact space and can be as low as a
few TeV. The Z ′ associated with B is naturally leptophobic. Anomalous U(1)'s
typically have an additional distinctive signature, the so-called axi-Higgs [9],
which is an axion-like particle that survives at low energies. It originates from
the anomaly-cancelling terms and should be considered as the low-energy rem-
nant of the ten-dimensional GreenÄSchwarz (GS) mechanism. We consider the
latter one of the most characteristic low-energy signatures of string theory.

2. TOWARDS DIMENSIONAL REDUCTION
OF THE HETEROTIC STRING

2.1. Nearly Kéahler Manifolds. According to the discussion in Sec. 1, CY ma-
nifolds are extensively used in string compactiˇcations because they preserve
N = 1 supersymmetry in four dimensions [11]. This feature stems from
the existence of a nowhere-vanishing, globally deˇned spinor on these man-
ifolds, which is covariantly constant with respect to the Levi-Civita connec-
tion. However, another possibility is to use a connection with torsion. The
six-dimensional manifolds which admit a spinor which is covariantly constant
with respect to the new connection are called manifolds with an SU(3)-structure.
Their structure is completely speciˇed by a real two-form J and a complex three-
form Ω, which are both globally-deˇned and nonvanishing and they satisfy the
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compatibility conditions

J ∧ J ∧ J =
3
4
iΩ ∧ Ω∗, J ∧ Ω = 0. (1)

In addition, the exterior derivatives of these structure forms deˇne the components
Wi, i = 1, . . . , 5, of the intrinsic torsion as

dJ =
3
4
i(W1Ω∗ −W∗

1Ω) + W4 ∧ J + W3,

(2)
dΩ = W1J ∧ J + W2 ∧ J + W∗

5 ∧ Ω.

The intrinsic torsion classes Wi can be used to classify several types of mani-
folds [12].

Nearly Kéahler manifolds are deˇned in the above context as the ones whose
only nonvanishing torsion class is W1. The homogeneous nearly Kéahler mani-
folds in six dimensions have been classiˇed in [13], and they are the coset spaces
G2/SU(3), Sp4/SU(2)×U(1)nonmax, SU(3)/U(1)× U(1) and the group man-
ifold SU(2) × SU(2). The ˇrst three cases are well-known to be the only non-
symmetric coset spaces S/R in six dimensions which preserve the rank, namely
rankS = rankR. They have been studied extensively in [14] in the reduction of
ten-dimensional gauge theories to four dimensions. Therefore, it is interesting to
study the dimensional reduction of the heterotic supergravity YangÄMills theory
over these spaces and determine the corresponding effective actions in four di-
mensions. In our examination we ignore the group manifold case since it cannot
lead to chiral fermions in four dimensions.

In order to perform the dimensional reduction from ten to four dimensions,
the forms on which several ˇelds will be expanded have to be speciˇed. A natural
basis of expansion forms consists of the S-invariant forms of the manifolds [15].
Let us mention that all the nonsymmetric coset spaces do not admit S-invariant
one-forms. However, S-invariant two-forms, which we shall denote by ωi, exist
in all cases, and in particular there is one for G2/SU(3), two for Sp4/(SU(2)×
U(1))nonmax and three for SU(3)/U(1) × U(1). Finally, all the three spaces
admit two S-invariant three-forms, which we shall denote by ρ1 and ρ2. Forms
of higher rank also exist, but they are not important in our context. The above
forms are related to the structure forms J and Ω of the SU(3)-structure as

J = R2
i ωi, Ω = V (ρ2 + iρ1), (3)

where Ri refers to the radii of the manifolds and V to their volume. In particular,
G2/SU(3) admits only one radius R1, Sp4/(SU(2) × U(1))nonmax admits two
radii R1, R2 and, ˇnally, SU(3)/U(1) × U(1) admits three radii R1, R2, R3.
Therefore, the volume is R3

1, R2
1R2 and R1R2R3, respectively, in each case.
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2.2. Dimensional Reduction. The bosonic sector of the Lagrangian of the
heterotic supergravity coupled to supersymmetric YangÄMills [16], which is the
low-energy limit of the heterotic superstring theory, can be written as

ê−1Lb = − 1
2κ̂2

(
R̂∗̂1 +

1
2

e−φ̂Ĥ(3) ∧ ∗̂Ĥ(3) +
1
2
dφ̂ ∧ ∗̂dφ̂ +

+
α′

2
e−φ̂/2 Tr (F̂(2) ∧ ∗̂F̂(2))

)
. (4)

The above Lagrangian, written in the Einstein frame, contains the ten-dimensional
EinsteinÄHilbert action, the kinetic term of the ten-dimensional dilaton φ̂, the
kinetic term for the gauge ˇelds Â and the corresponding one for the three-form
Ĥ . The hats denote ten-dimensional ˇelds, while κ̂ is the gravitational coupling
constant in ten dimensions with dimensions [length]4; ê is the determinant of the
metric, while ∗̂ is the Hodge star operator in ten dimensions.

In order to dimensionally reduce the above Lagrangian to four dimensions,
we perform the following Anséatze for the ˇelds appearing in (4). The metric
Ansatz is

dŝ2 = e2αϕ(x)ηmn em en + e2βϕ(x)γab(x) ea eb, (5)

where e2αϕ(x)ηmn is the four-dimensional metric and e2βϕ(x)γab(x) is the internal
metric, while em are the one-forms of the orthonormal basis in four dimensions
and ea are the left-invariant one-forms on the coset space. The exponentials
rescale the metric components in order to obtain an action without any prefactor
for the four-dimensional EinsteinÄHilbert part. In order to achieve this, we have
to choose the values of α and β to be −

√
3/4 and

√
3/12, respectively. Moreover,

the dilaton is trivially reduced by φ̂(x, y) = φ(x), since it is already a scalar in
ten dimensions.

The three-form Ĥ is given in general by

Ĥ = d̂B̂ − α′

2
ω̂YM, (6)

where B̂ is the Abelian two-form potential, which we expand in the S-invariant
forms of the internal space as

B̂ = B(x) + bi(x)ωi(y), (7)

and ω̂Y M is the YangÄMillsÄChernÄSimons form. In (6) a term involving the
LorentzÄChernÄSimons form has to be included too. However, it is not needed in
the minimal supergravity Lagrangian and therefore we shall not consider it here.

Finally, in order to reduce the gauge sector, we employ the Coset Space
Dimensional Reduction (CSDR) scheme [14]. The original CSDR of a mul-
tidimensional gauge ˇeld Â on a coset S/R is described by a generalized
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invariance condition

LXI Â = DWI = dWI + [Â, WI ], (8)

where WI is a parameter of a gauge transformation associated with the Killing
vector XI of S/R and LXI denotes the Lie derivative with respect to XI .
The Ansatz for the higher dimensional gauge ˇeld that solves the invariance
condition (8) is

ÂĨ = AĨ + φĨ
A eA, (9)

where Ĩ is a gauge index and A an S-index, which can be split into indices
i, a running in the group R and the coset, respectively. The same Ansatz is
used for the reduction of the ω̂YM. It is important to mention that in the CSDR
scheme the gauge group G in ten dimensions is broken down to the centralizer
CG(R) of the group R in G in four dimensions. In the present cases, the initial
E8 × E8 gauge group is broken down to E6 × E8 and therefore the resulting
theories are N = 1 supersymmetric E6 GUTs. Moreover, in the CSDR scheme
the soft supersymmetry breaking sector of the four-dimensional N = 1 theories
is obtained [17].

The effective action in four dimensions is obtained by substituting the above
expressions in the original ten-dimensional action. This procedure results in the
Lagrangian

Lb = − 1
2κ2

R ∗ 1 − 1
2

Re (f)F I ∧ ∗F I +
1
2

Im (f)F I ∧ F I−

− 1
κ2

Gij̄dΦi ∧ ∗dΦ̄j̄ − V (Φ, Φ). (10)

In (10) κ is the gravitational coupling in four dimensions, related to the ten-
dimensional one by κ2 = κ̂2/V ; f is the gauge kinetic function, and Gij̄ is the
Kéahler metric. The potential has the form

V (Φ, Φ̄) =
1
κ4

eκ2K

(
Kij̄ DW

DΦi

DW

DΦ̄j̄
− 3κ2WW

)
+ D − terms, (11)

where the derivatives involved are the Kéahler covariant derivatives, W is the
superpotential, and by Φi we collectively denote the chiral supermultiplets. The
superpotential W can be determined by the GukovÄVafaÄWitten formula [18,19],
which has the form

W =
1
4

∫
S/R

Ω ∧ (Ĥ + idJ), (12)
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while the Kéahler potential can be determined as the sum of two terms K =
KS + KT , which are given by the expressions

KS = − ln (S + S∗), KT = − ln
(

1
6

∫
S/R

J ∧ J ∧ J

)
, (13)

where S is the dilaton superˇeld. A third contribution to the Kéahler potential due
to the complex structure moduli is not present here since the SU(3)-structures
we consider are real.

Applying (12) to the cases of G2/SU(3), Sp4/(SU(2) × U(1))nonmax and
SU(3)/U(1)× U(1), respectively, the corresponding superpotentials take the
form

W1 = 3T1 −
√

2α′dijkBiBjBk, (14)

W2 = 2T1 + T2 −
√

2α′dijkBiBjΓk, (15)

W3 = T1 + T2 + T3 −
√

2α′dijkAiBjΓk, (16)

where Ti are the superˇelds of the geometric moduli, Ai, Bi, Γi are the vector
superˇelds, and dijk is the symmetric tensor of E6. Also, applying (13), the
corresponding Kéahler potentials are

K1 = − ln (S + S∗) − 3 ln (T1 + T ∗
1 − 2α′BiB

i), (17)

K2 = − ln (S + S∗) − 2 ln (T1 + T ∗
1 − 2α′BiB

i)−
− ln (T2 + T ∗

2 − 2α′ΓiΓi), (18)

K3 = − ln (S + S∗) − ln (T1 + T ∗
1 − 2α′AiA

i) − ln (T2 + T ∗
2 − 2α′BiB

i)−
− ln (T3 + T ∗

3 − 2α′ΓiΓi). (19)

Finally, in all the three cases the gauge kinetic function turns out to be f(S) = S.

CONCLUSIONS

In this contribution we have presented the main steps of the derivation of the
four-dimensional effective action which results from the heterotic supergravity
coupled to supersymmetric YangÄMills theory from ten dimensions to four, using
homogeneous six-dimensional nearly Kéahler manifolds as internal spaces.
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