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BRST RENORMALIZATION
P. M. Lavrov 1,∗, I. L. Shapiro 2,∗∗

1Department of Mathematical Analysis, Tomsk State Pedagogical University,

Tomsk, Russia
2Departamento de F��sica, ICE, Universidade Federal de Juiz de Fora,

Juiz de Fora, MG, Brazil

We consider the renormalization of general gauge theories on curved space-time background,
with the main assumption being the existence of a gauge-invariant and diffeomorphism invariant
regularization. Using the BatalinÄVilkovisky (BV) formalism, one can show that the theory possesses
gauge-invariant and diffeomorphism invariant renormalizability at quantum level, up to an arbitrary
order of the loop expansion.
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INTRODUCTION

The quantum ˇeld theory (QFT) in curved space is an important ingredi-
ent of our general understanding of the quantum description of nature. One of
the most important aspects of the modern QFT is the theory of gauge ˇelds
and their perturbative renormalization. It is quite interesting to know whether
the existing methods to analyze renormalizability of gauge theories are working
well in curved space. In the previous considerations of the problem [1, 2] (see
also [3]), it has been assumed that the gauge-invariant renormalization of the
theory is indeed possible, due to the existence of both gauge-invariant and diffeo-
morphism invariant regularization, such as, for instance, dimensional one. Start-
ing from this point, it is possible to establish the prescription for constructing the
renormalizable theories of interacting matter ˇelds on curved background [1,4].

Here we consider, in a more formal way than it was done before, the issue
of gauge-invariant renormalizability in curved space-time. For this end, we are
going to apply the BV formalism [5]. It is well known that this formalism enables
one to prove the gauge-invariant renormalizability of general gauge theories in
a situation when all ˇelds under consideration are quantum ones [6]. It is of
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course important to generalize these considerations to the case when the QFT
is deˇned in the presence of external conditions, in particular, in curved space-
time. In this case, one has to take care about both gauge symmetries and general
covariance. The last symmetry involves both quantum and external ˇelds, making
the consideration more complicated. Our main purpose is to consider the general
features of renormalization of the theory of quantum matter ˇelds in curved
space-time, using the powerful BV formalism.

1. GENERAL GAUGE THEORIES IN CURVED SPACE

Let us consider a theory of gauge ˇelds Ai in an external gravitational ˇeld
gμν . The classical theory is described by the action which depends on both
dynamical ˇelds and external metric,

S0 = S0(A, g). (1)

Here and below we use the condensed notation g ≡ gμν for the metric, when it
is an argument of some functional or function. The action (1) is assumed to be
gauge-invariant,

S0,iR
i
a = 0, δAi = Ri

a(A, g)λa, λa = λa(x) (a = 1, 2, . . . , n), (2)

as well as covariant,

δgS0 =
δS0

δAi
δgA

i +
δS0

δgμν
δggμν = 0, (3)

where λa are independent parameters of the gauge transformation, corresponding
to the symmetry group of the theory. The diffeomorphism transformation of the
metric in Eq. (3) has the form

δggμν = −gμα∂νξα − gνα∂μξα − ∂αgμνξα =
= −gμα∇νξα − gνα∇μξα = −∇μξν −∇νξμ. (4)

Here ξα are the parameters of the coordinates transformation,

ξα = ξα(x) (α = 1, 2, . . . , d). (5)

As usual, an explicit expression for δgA
i depends on tensor (or spinor)

properties of Ai. For example, in the case of a scalar ˇeld A one has δgA =
−∂αAξα, while in the case of a vector ˇeld Aμ the transformation rule is δgA

μ =
Aν∇νξμ−ξν∇νAμ, etc. In general, our interest is to explore the renormalization
properties of the theories which include all three kind of ˇelds (fermions, vectors
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and scalars), such that, for instance, the Standard Model and its extensions,
including Grand Uniˇed Theories (GUTs), would be covered. Therefore, the
notation Ai in (2) and (3) means the set of ˇelds with the different transformation
rules.

The generating functional Z(J, φ∗, g) of the Green functions can be con-
structed in the form of the functional integral

Z(J, φ∗, g) =
∫

dφ exp
{ i

�

[
Sψ(φ, φ∗, g) + JAφA

]}
. (6)

Here∗ φA = (Ai, Ba, Ca, C̄a) represents the full set of ˇelds of the complete con-
ˇguration space of the theory under consideration and φ∗

A = (A∗
i , B

∗
a , C∗

a , C̄∗
a) are

corresponding antiˇelds. Finally, Sψ(φ, φ∗, g) is the quantum action constructed
with the help of the solution S = S(φ, φ∗, g) of the master equation (for details
see [5])

(S, S) = 0, S(φ, φ∗, g)|φ∗=0 = S0(A, g) (7)

in the form

Sψ(φ, φ∗, g) = S

(
φ, φ∗ +

δΨ(φ, g)
δφ

, g

)
. (8)

In the last equation, (8), Ψ(φ, g) is a gauge ˇxing functional. Note that Sψ

satisˇes the master equation

(Sψ, Sψ) = 0. (9)

From the gauge invariance of initial action (2), in the usual manner one can
derive the BRST symmetry and the Ward identities for generating functionals
(see [6]).

A solution to the master equation (7) can be always found in form of a series
in antiˇelds φ∗ (see [5]),

S(φ, φ∗, g) = S0(A, g) + A∗
i R

i
a(A, g)Ca + C̄∗

aBa + . . . , (10)

where dots mean higher order terms in ˇelds Ba, Ca. We assume that every
term in (10) is transformed as a scalar under arbitrary local transformations of
coordinates xμ → xμ+ξμ(x). It means the general covariance of S = S(φ, φ∗, g),

δgS(φ, φ∗, g) =
δS

δφA
δgφ

A + δgφ
∗
A

δS

δφ∗
A

+
δS

δgμν
δggμν = 0. (11)

∗We restrict ourselves to the case of irreducible close gauge theories only, in order to simplify
the description of the conˇguration space.
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Let us choose the gauge ˇxing functional Ψ = ψ(φ, g) in a covariant form

δgΨ = 0, (12)

then the quantum action Sψ = Sψ(φ, φ∗, g) obeys the general covariance too,

δgSψ = 0. (13)

From Eq. (13) and the assumption that the term with the sources JA in (6) is
covariant

δg(JAφA) = (δgJA)φA + JA(δgφ
A) = 0, (14)

follows the general covariance of Z = Z(J, φ∗, g). Indeed,

δgZ(J, φ∗, g) =

=
i

�

∫
dφ

[
δgΦ∗

A

δSψ(φ, φ∗, g)
δφ∗

A

+
δSψ(φ, φ∗, g)

δgμν
δggμν + (δgJA)φA

]
×

× exp
{ i

�

[
Sψ(φ, φ∗, g) + JAφA

]}
. (15)

Making change of integration variables in the functional integral, (15),

φA → φA + δgφ
A, (16)

we arrive at the relation

δgZ(J, φ∗, g) =

=
i

�

∫
dΦ

[
δgSψ + δg(JAφA)

]
exp

{ i

�

[
Sψ(φ, φ∗, g) + JAφA

]}
= 0. (17)

From (17) it follows that the generating functional of connected Green func-
tions W(J, φ∗, g),

W(J, Φ∗, g) =
i

�
ln Z(J, φ∗, g), (18)

obeys the property of the general covariance as well

δgW(J, φ∗, g) = 0. (19)

Consider now the generating functional of vertex functions Γ = Γ(Φ, Φ∗, g),

Γ(φ, φ∗, g) = W(J, φ∗, g) − JAφA, (20)
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where

φA =
δW(J, φ∗, g)

δJA
, JA = −δΓ(φ, φ∗, g)

δφA
. (21)

From the deˇnition of φA (21) and the general covariance of W (J, φ∗, g), we can
conclude the general covariance of JAφA. Therefore,

δgΓ(φ, φ∗, g) = δgW(J, φ∗, g) = 0. (22)

2. GAUGE-INVARIANT RENORMALIZATION
IN CURVED SPACE-TIME

Up to now we have considered non-renormalized generating functionals of
Green functions. The next step is to prove the general covariance for renor-
malized generating functionals. For this end, let us ˇrst consider the one-loop
approximation for Γ = Γ(φ, φ∗, g),

Γ = Sψ + Γ̄(1) = Sψ + �
[
Γ̄(1)

div + Γ̄(1)
fin

]
+ O(�2), (23)

where Γ̄(1)
div and Γ̄(1)

fin denote the divergent and ˇnite parts of the one-loop approx-

imation for Γ. The divergent local term Γ̄(1)
div gives the ˇrst counterpart in the

one-loop renormalized action Sψ1,

Sψ → Sψ1 = Sψ − �Γ̄(1)
div. (24)

From (13) and (22) it follows that in the one-loop approximation we have

δg

[
Γ̄(1)

div + Γ̄(1)
fin

]
= 0, (25)

and therefore Γ̄(1)
div and Γ̄(1)

fin obey the general covariance independently:

δgΓ̄
(1)
div = 0, δgΓ̄

(1)
fin = 0. (26)

In its turn, the one-loop renormalized action Sψ1 (i.e., classical action, renor-
malized at the one-loop level) is covariant:

δgSψ1 = 0. (27)

Constructing the generating functional of the one-loop renormalized Green func-
tions Z1(J, φ∗, g), with the action Sψ1 = Sψ1(φ, φ∗, g), and repeating the argu-
ments given above, we arrive at the relation

δgZ1 = 0, δgW1 = 0, δgΓ1 = 0. (28)
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In the last equation we have introduced the new useful notation for the effective
action Γ1 renormalized up to the one-loop order. This functional includes the
contributions of one-loop and also higher loop orders, however, only the one-loop
divergences are removed by renormalization. This means that Γ1 is ˇnite in the
O(�) order, but may be divergent starting from O(�2) and beyond.

The generating functional of vertex functions Γ1 = Γ1(φ, φ∗, g), which is
ˇnite in the one-loop approximation, can be presented in the form

Γ1 = Sψ + �Γ̄(1)
fin + �

2
[
Γ̄(2)

1,div + Γ̄(2)
1,fin

]
+ O(�3). (29)

Indeed, this functional contains a divergent part Γ̄(2)
1,div and deˇnes renormalization

of the action Sψ in the two-loop approximation:

Sψ → Sψ2 = Sψ1 − �
2Γ̄(2)

1,div. (30)

Starting from (26), (27) and (28), we derive

δgΓ̄
(2)
1,div = 0, δgΓ̄

(2)
1,fin = 0. (31)

The last equation means that the general covariance condition is satisˇed sep-
arately for the divergent and ˇnite parts of Γ̄1 in the two-loop approximation.
As a consequence, the two-loop renormalized action Sψ2 = Sψ2(Φ, Φ∗, g) is a
covariant functional

δgSψ2 = 0. (32)

Applying the induction method, we can repeat the procedure to an arbitrary
order of the loop expansion. In this way, we arrive at the following results:

a) The full renormalized action, SψR = SψR(Φ, Φ∗, g),

SψR = Sψ −
∞∑

n=1

�
nΓ̄(n)

n−1,div, (33)

which is local in each ˇnite order in �, obeys the general covariance

δgSψR = 0. (34)

b) The renormalized generating functional of vertex functions, ΓR =
ΓR(Φ, Φ∗, g)),

ΓR = Sψ +
∞∑

n=1

�
nΓ̄(n)

n−1,fin, (35)

which is ˇnite in each ˇnite order in �, is covariant:

δgΓR = 0. (36)
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It was proved in [6] that the renormalized action SψR satisˇes the master
equation

(SψR, SψR) = 0 (37)

and the Ward identities for non-renormalized and renormalized generating func-
tionals of vertex functions have the form

(Γ, Γ) = 0, (ΓR, ΓR) = 0. (38)

The last equations mean that the gauge-invariant renormalizability (38) of a
quantum ˇeld theory takes place in the presence of an external gravitational ˇeld,
such that the general covariance of Effective Action (36) is also preserved. In
order to use this important result, we have to perform an additional consideration
and check how the covariance is preserved in case when we use apparently non-
covariant techniques, e.g., related to the representation of the metric as a sum of
the �at one and perturbation. This subject will be treated in the next section.

3. NON-COVARIANT GAUGES

In many cases, it is interesting to consider the renormalization of quantum
ˇeld theory in curved space using the non-covariant gauge ˇxing functionals. Let
us see how the non-covariant gauge ˇxing can be implemented in the quantum
theory.

Our purpose is to investigate the problem of general covariant renormaliz-
ability for general gauge theories in the presence of an external gravitational ˇeld,
when one uses non-covariant gauge ˇxing functional Ψ = Ψ(φ, g),

δgΨ �= 0. (39)

As before, we assume that the classical action of the theory S = S(φ, φ∗, g)
is covariant, i.e., δgS = 0, but now the action Sψ = Sψ(φ, φ∗, g) = S(φ, φ∗ +
δΨ/δφ, g) is not covariant, δgSψ �= 0. Our consideration will be essentially based
on the known formalism for investigating the gauge dependence in general gauge
theories, given in [6]. Non-covariance of Sψ can be described in the form of
anticanonical inˇnitesimal transformation with the odd generating functional

X(φ, φ∗, g) = φ∗
AφA + δgΨ(φ, g), (40)

ΦA =
δX(φ′, φ∗, g)

δφ∗
A

= ΦA′
, φ∗′

A =
δX(φ′, φ∗, g)

δφ
′
A

= φ∗
A +

δδgΨ
δφA

, (41)

when

δgSψ =
δδgΨ
δφA

δSψ

δφ∗
A

= (δgΨ, Sψ). (42)
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The variation of Sψ leads to the variations of generating functionals of the
Green functions Z = Z(J, φ∗, g), connected Green functions W = W(J, φ∗, g)
and vertex functions Γ = Γ(φ, φ∗, g) in the form

δgZ =
i

�
JA

δ

δφ∗
A

δgΨ
(

�

i

δ

δJ
, g

)
Z, δgW = JA

δ

δφ∗
A

〈δgΨ〉,

δgΓ = (〈〈δgΨ〉〉, Γ),

where the notations

〈δgΨ〉 = δgΨ
(

δW
δJ

+
�

i

δ

δJ
, g

)
, 〈〈δgΨ〉〉 = δgΨ

(
φ + i�(Γ

′′
)−1 δl

δφ
, g

)
,

Γ
′′

AB =
δl

δφA

δ

δφB
Γ

were used. These results can be immediately reproduced in the renormalized
theory [6]. Namely, for the variation (42), the corresponding variation of renor-
malized action δgSψR can be presented in the form

δgSψR = (δgΨR, SψR) (43)

of the anticanonical transformation with local generating functional X = φ∗
AφA +

δgΨR,

δgΨR(φ, φ∗, g) = δgΨ(φ, g) −
∞∑

n=1

�
nδgΨ

(n)
n−1,div(φ, φ∗, g), (44)

while the variation of renormalized vertex generating functional δgΓR has the
form

δgΓR = (〈〈δgΨR〉〉R, ΓR), (45)

which corresponds to ˇnite anticanonical transformation with generating function

X = φ∗
AφA + 〈〈δgΨR〉〉R, 〈〈δgΨR〉〉R = δgΨ(φ, g) +

∞∑
n=1

�
nδgΨ

(n)
n−1,fin. (46)

In the formulas presented above, we have used the notations δgΨ
(n)
n−1,div and

δgΨ
(n)
n−1,fin for the divergent and ˇnite terms, respectively, of the n-loop approx-

imation for the generating function of an anticanonical transformation which is
ˇnite in (n − 1)th order approximation and is constructed on the basis of the
theory with the action Sψ(n−1).

The interpretation of the relations (45) and (46) is that the theory with external
gravitational ˇeld may have non-covariance in the renormalized effective action,
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but it comes only from the possible non-covariance of the arguments. Therefore,
the violation of the general coordinate symmetry which can occur because of
the non-covariant gauge-ˇxing can be always included into the arguments. As
a consequence, one can always deˇne some special set of arguments, in terms
of which the quantum dynamics is described in a completely covariant way.
One important aspect of this feature is that we can actually perform general
considerations or make practical calculations in non-covariant gauges. After that
we can always restore the covariance, using those parts of effective action which
are not affected by gauge transformation. Practical examples of this technique can
be found in many publications, but here we constructed a theoretical background
for its consistent description. In the next sections we will also see that this result
opens the way for a practical construction of renormalizable gauge theories in
curved space-time.

Note that there exists another interpretation of the gauge dependence of
effective action (see [7]). Namely, it can be proved that dependence on the
gauge of effective action is proportional to its extremals, i.e., physical quantities
calculated on shell do not depend on the gauge.

CONCLUSIONS

We have considered the general scheme of gauge-invariant and covariant
renormalization of the quantum gauge theory of matter ˇelds in curved space-
time. Using the BatalinÄVilkovisky formalism, we have shown that in the theory
which admits gauge-invariant and diffeomorphism invariant regularization, these
two symmetries hold in the counterterms to all orders of the loops expansion.
Starting from a renormalizable theory in �at space-time and using a standard
prescription [1, 4], one can always arrive at the theory which is renormalizable
in curved space-time as well.

Acknowledgements. The authors are grateful to I. L. Buchbinder for useful
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