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We report on the status of an ongoing effort to calculate the complete one-loop low-energy
effective actions in the EinsteinÄMaxwell theory with a massive scalar or spinor loop, and to use them
for obtaining the explicit form of the corresponding M -graviton/N -photon amplitudes. We present
explicit results for the effective actions at the one-graviton four-photon level and for the amplitudes
at the one-graviton two-photon level. As expected on general grounds, these amplitudes relate in
a simple way to the corresponding four-photon amplitudes. We also derive the gravitational Ward
identity for the 1PI one-graviton Ä N -photon amplitude.

PACS: 14.70.Kv

INTRODUCTION

In string theory, the prototypical example of relations between gravity and
gauge theory amplitudes are the ®KLT¯ relations discovered by Kawai et al. [1].
Schematically, they are of the form

(gravity amplitude) ∼ (gauge amplitude)2

and follow naturally from the factorization of the graviton vertex operator into a
product of two gauge boson vertex operators (see, e.g., [2]):

V closed = V open
left V̄ open

right . (1)

These string relations induce also relations in ˇeld theory. For example, at
four and ˇve point one has [2]

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3),
M5(1, 2, 3, 4, 5) = is12s34A5(1, 2, 3, 4, 5)A5(2, 1, 4, 3, 5)+ (2)

+ is13s24A5(1, 3, 2, 4, 5)A5(3, 1, 4, 2, 5).
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Here the Mn are n-point tree-level graviton amplitudes, and the An are (colour-
stripped) tree-level gauge theory amplitudes. The sij = (ki +kj)2 are kinematical
invariants.

Although the work of [1] was at the tree level, by unitarity those tree-level
relations induce also identities at the loop level. By now, many relations between
graviton and gauge amplitudes have been derived along these lines at the one-
loop level and beyond (see [3] and refs. therein). Presently a key issue here is
the possibility that the ˇniteness of N = 4 SYM theory may extend to N = 8
supergravity (see [3, 4] and P. Vanhove's talk at this conference). Finiteness of
a quantum ˇeld theory usually implies extensive cancellations between Feynman
diagrams, and it is presently still not well-understood what are the precise extent
and origin of such cancellations in the supergravity case.

In this respect, gravity amplitudes are more similar to QED amplitudes than
to non-Abelian amplitudes, since colour factors greatly reduce the potential for
cancellations between diagrams. In QED, there are many cases of surprising
cancellations between diagrams. A famous case is the three-loop QED β-function
coefˇcient, involving the sum of diagrams shown in Fig. 1. As discovered by
Rosner in 1967 [5], individual diagrams give contributions to the β-function
coefˇcient that involve ζ(3), however those terms cancel out, leaving a simple
rational number for the sum of diagrams. Such cancellations are usually at-
tributed to gauge invariance, since they generally appear inside gauge-invariant
sets of graphs. Even for QED, little is still known about the in�uence of these
cancellations on the large-order behaviour of the QED perturbation series [6, 7].
For recent gravity-inspired studies of the structure of QED amplitudes, see [8,9].

Fig. 1. Sum of diagrams for the three-loop QED photon propagator

Considering the enormous amount of work that has been done on the struc-
tural relationships between gauge and gravity amplitudes, it is surprising that
relatively few results exist for mixed gravitonÄgluon or gravitonÄphoton ampli-
tudes [10Ä12]. In this talk, we report on the status of an ongoing effort to calculate
the complete one-loop low-energy effective actions in the EinsteinÄMaxwell the-
ory with a massive scalar or spinor loop, and to use them for obtaining the explicit
form of the corresponding M -graviton/N -photon amplitudes [13Ä15]. The talk
is organized as follows: in Sec. 1 we will shortly summarize what is presently
known about the QED N -photon amplitudes. In Sec. 2 we summarize the re-
sults of [13,14] on the one-loop effective action in the EinsteinÄMaxwell theory,
and also improve somewhat on the form of its one-graviton four-photon part
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as compared to [14]. Section 3 is devoted to the gravitonÄphotonÄphoton ampli-
tude. Our conclusions are presented in the ˇnal section.

1. PROPERTIES OF THE QED N -PHOTON AMPLITUDES

We shortly summarize what is known about the N -photon amplitudes in
scalar and spinor QED (results given refer to the spinor case unless stated
otherwise).

Although the one-loop four-photon amplitude was calculated by Karplus and
Neumann already in 1950 [16], progress towards higher leg or multiloop photon
amplitudes has been extremely slow. The one-loop six-photon amplitude (recall
that by Furry's theorem there are no amplitudes with an odd number of photons)
was obtained only quite recently [17], and only for the massless case. On-
shell amplitudes for gauge bosons are nowadays generally given in the helicity
eigenstate decomposition; using CP invariance, the six-photon amplitude then
has four independent components, which can be chosen as A(+ + + + ++),
A(+ + + + +−), A(+ + + + −−), A(+ + + − −−) (in the gluonic case there
will be more independent components since the ordering of the legs matters).

Apart from these explicit low-order calculations, there are also a number of
all-N results. First, for massless QED there is Mahlon's vanishing theorem [18],
stating that AN (+ + + . . . + +) = AN (− + + · · · + +) = 0 for N > 4. Mahlon
also obtained a closed formula for the ˇrst nonvanishing case of two negative
helicities A(−− + . . . +) in terms of dilogarithms [19].

More recently, Badger et al. [8] have shown that the massless N -photon
amplitudes for N � 8 fulˇll the ®no triangle¯ property; that is, after the usual
reduction from tensor to scalar integrals they involve only box integrals but
not triangle ones. This is analogous to the ®no triangle¯ property of N = 8
supergravity [20], which is important for the possible ˇniteness of that theory.

An explicit all-N calculation is possible for the low-energy limit of the
massive photon amplitudes, where all photon energies are small compared to the
electron mass, ωi � m. The information on the N -photon amplitudes in this
limit is contained in the well-known EulerÄHeisenberg [21] (for spinor QED)
resp. Weisskopf [22] (for scalar QED) effective Lagrangians:

Lspin(F ) = − 1
8π2

∞∫
0

dT

T 3
e−m2T

[
(eaT )(ebT )

tanh (eaT )tan (ebT )
− 1

3
(a2 − b2)T 2 − 1

]
,

(3)

Lscal(F ) =
1

16π2

∞∫
0

dT

T 3
e−m2T

[
(eaT )(ebT )

sinh (eaT ) sin (ebT )
+

1
6
(a2 − b2)T 2 − 1

]
.

Here T is the proper time of the loop scalar or spinor particle and a, b are deˇned
by a2 − b2 = B2−2, ab = E · B. Extracting the on-shell amplitudes from the
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effective action is a standard procedure in quantum ˇeld theory. In the helicity
decomposition, one ˇnds [23]

A
(EH)
spin [ε+

1 ; . . . ; ε+
K ; ε−K+1; . . . ; ε

−
N ] = − m4

8π2

(2ie

m2

)N

(N − 3)!×

×
K∑

k=0

N−K∑
l=0

(−1)N−K−l Bk+lBN−k−l

k!l!(K − k)!(N − K − l)!
χ+

Kχ−
N−K (4)

and a similar formula for the scalar QED case [23]. Here the Bk are Bernoulli
numbers, and the variables χ±

K are written, in spinor helicity notation (our spinor
helicity conventions follow [24])

χ+
K =

(K/2)!
2K/2

{
[12]2[34]2 · · · [(K − 1)K]2 + all permutations

}
,

χ−
K =

(K/2)!
2K/2

{
〈12〉2〈34〉2 · · · 〈(K − 1)K〉2 + all permutations

}
.

(5)

These variables appear naturally in the low-energy limit. Since they require even
numbers of positive and negative helicity polarizations, in this low-energy limit
we ˇnd a ®double Furry theorem¯: Only those helicity components are non-
zero where both the number of positive and negative helicity photons are even.
It is easy to show that this even holds true to all loop orders. For the MHV
(®maximally helicity violating¯ = ®all +¯ or ®all −¯) case (4) and its scalar
analogue imply that the scalar and spinor amplitudes differ only by the global
factor of −2 for statistics and degrees of freedom:

A
(EH)
spin [ε+

1 ; . . . ; ε+
N ] = −2A

(EH)
scal [ε+

1 ; . . . ; ε+
N ]. (6)

This well-known relation is actually true also away from the low-energy limit
and can be explained by the fact that the MHV amplitudes correspond to a
self-dual background, in which the Dirac operator has a quantum-mechanical
supersymmetry [25].

2. ONE-LOOP EFFECTIVE ACTION IN EINSTEINÄMAXWELL THEORY

The calculation of the one-loop effective action in the EinsteinÄMaxwell the-
ory is usually done using heat kernel techniques. The ˇrst calculation of relevance
in our present context of the on-shell photonÄgraviton amplitudes was performed
by Drummond and Hathrell [26], who obtained the terms in the fermionic effec-
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tive Lagrangian involving one curvature tensor and two ˇeld strength tensors:

L(DH)
spin =

1
180(4π)2m2

×

×
(

5RF 2
μν − 26RμνFμαF ν

α + 2RμναβFμνFαβ + 24(∇αFαμ)2
)

(7)

(we will often absorb the electric charge e into the ˇeld strength tensor F ).

Recently, some of the present authors used the worldline formalism [27,28]
to obtain master formulas for the Scalar and Spinor QED low-energy effective
actions that generalize the above QED Lagrangians to the level of the N -photon Ä
one-graviton amplitudes in the EinsteinÄMaxwell theory [13]. Those master
formulas involve two-parameter integrals of trigonometric power series in the
ˇeld strength matrix; to extract from them the part relevant at the one-graviton
N -photon level, one has to expand the integrand in powers of Fμν up to Fn,
after which the integrals are polynomial and thus can be done by computer. After
this, the gauge and gravitational Bianchi identities can be used to greatly reduce
the number of terms. At the one-graviton Ä two-photon level, one ˇnds [13]

Lhγγ
scal =

1
360 m2(4π)2

[
5(6ξ − 1)RF 2

μν + 4RμνFμαF ν
α − 6RμναβFμνFαβ−

− 2(∇αFαμ)2 − 8(∇αFμν)2 − 12Fμν�Fμν
]
, (8)

Lhγγ
spin =

1
180 m2(4π)2

[
5RF 2

μν − 4RμνFμαF ν
α − 9RμναβFμνFαβ+

+ 2(∇αFαμ)2 − 7(∇αFμν)2 − 18Fμν�Fμν
]
. (9)

The result for the spinor loop case differs from the DrummondÄHathrell La-
grangian (7) by a total derivative term [13]. The parameter ξ appearing in the
scalar case represents a nonminimal coupling to gravity. At the next, N = 4
level (there are no amplitudes with an odd number of photons by an extension
of Furry's theorem to the photonÄgraviton case) this procedure is already quite
laborious. It was carried through in [14], but here we give the results in a slightly
more compact form than was obtained there:

Lh,4γ
spin = − 1

8 π2

1
m6

[
− 1

432
R(Fμν)4 +

7
1080

R tr[F 4] − 1
945

Rαβ(F 4)αβ−

− 1
540

Rαβ(F 2)αβ(Fγδ)2 +
4

135
Rαμβν(F 3)αμF βν +

1
108

RαμβνFαμF βν(Fγδ)2+

+
7

270
(F 3)μν �Fμν +

1
108

Fμν�Fμν(Fγδ)2 +
1

270
Fμν;αβ(F 2)αβFμν−
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− 1
540

(Fαβ;γ)2(Fμν)2 − 1
945

Fμν;α Fμν
;β(F 2)αβ − 11

945
Fαβ;γF β;γ

μ (F 2)αμ−

− 2
189

Fαβ;γF γ
μν; FαμF βν − 2

189
Fαβ;γF α

μ ;δF
βμF γδ

]
, (10)

Lh,4γ
scal =

1
16 π2

1
m6

[
− 1

144

(
ξ̄ +

1
12

)
R(Fμν)4 − 1

180

(
ξ̄ +

1
12

)
R tr[F 4]−

− 1
945

Rαβ(F 4)αβ +
1

1080
Rαβ(F 2)αβ(Fγδ)2 −

1
270

Rαμβν(F 3)αμF βν+

+
1

432
RαμβνFαμF βν(Fγδ)2 −

1
540

(F 3)μν �Fμν−

+
1

432
Fμν�Fμν(Fγδ)2 −

1
540

Fμν;αβ(F 2)αβFμν+

+
1

1080
(Fαβ;γ)2(Fμν)2 − 1

945
Fμν;α Fμν

;β(F 2)αβ−

− 1
1890

Fαβ;γF β;γ
μ (F 2)αμ +

1
1890

Fαβ;γF γ
μν; FαμF βν+

+
1

1890
Fαβ;γF α

μ ;δF
βμF γδ

]
(11)

(ξ̄ = ξ − 1/4). This improvement over the formulas given in [14] is due to the
following consequence of the Bianchi identities, that had been overlooked in the
list of identities used there:

Rαμβν (F 2)αβ (F 2)μν = −1
2
Fμν;αβ (F 2)αβ Fμν − 1

2
Rαμβν (F 3)αμ F βν−

− Fμν;αβ (F 2)αν F βμ . (12)

3. THE GRAVITONÄPHOTONÄPHOTON AMPLITUDE

We proceed to the simplest amplitude case, the gravitonÄphotonÄphoton am-
plitude shown in Fig. 2.

Getting its low-energy limit from the three-point Lagrangians (8), (9) (or
equivalently from (7) in the spinor case) is straightforward. In the helicity basis,
and using the standard factorization of the graviton polarization tensor in terms
of vector polarizations, ε±±

0μν(k0) = ε±μ (k0)ε±ν k0), one ˇnds that only the ®all +¯
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Fig. 2. GravitonÄphotonÄphoton diagram

and ®all −¯ components are nonzero:

A
(++;++)
spin =

κ e2

90(4π)2m2
[01]2 [02]2,

A
(−−;−−)
spin =

κ e2

90(4π)2m2
〈01〉2 〈02〉2.

(13)

Here the ˇrst upper index pair refers to the graviton polarization, and κ is the
gravitational coupling constant. Moreover, those components fulˇll the MHV
relation (6),

A
(++;++)
spin = (−2)A

(++;++)
scal ,

A
(−−;−−)
spin = (−2)A

(−−;−−)
scal .

(14)

Also, these gravitonÄphotonÄphoton amplitudes relate to the (low-energy) four-
photon amplitudes in the following way: From (4), (5) the only nonvanishing
components of those are

A++++[k1, k2, k3, k4] ∼ [12]2[34]2 + [13]2[24]2 + [14]2[23]2,

A++−−[k1, k2, k3, k4] ∼ [12]2〈34〉2,
A−−−−[k1, k2, k3, k4] ∼ 〈12〉2〈34〉2 + 〈13〉2〈24〉2 + 〈14〉2〈23〉2.

(15)

Replacing k1 → k0, k2 → k0 in the four-photon amplitudes, the middle one of
these three components becomes zero, and the remaining ones become propor-
tional to the corresponding components of (13),

A++++[k0, k0, k3, k4] ∼ 2[03]2[04]2 ∼ A++;++[k0, k3, k4], (16)
A−−−−[k0, k0, k3, k4] ∼ 2〈03〉2〈04〉2 ∼ A−−;−−[k0, k3, k4].

Thus effectively two photons have coalesced to form a graviton, clearly a result
in the spirit of the KLT relations.

At the next level of one graviton and four photons, the conversion of the
effective action into amplitudes becomes already extremely laborious. Moreover,
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here there are already one-particle reducible contributions to the amplitudes, with
the graviton attached to a photon, and those are essential to arrive at a well-deˇned
helicity decomposition. This is because the 1PI amplitudes are transversal in the
photon indices, but not in the graviton ones; rather, one has the inhomogeneous
Ward identity [15]

2k0μAμν,α1...αN [k0, . . . , kN ] =

= −
N∑

i=1

Aμα1...α̂i...αN [k0 + ki, k1, . . . , k̂i, . . . , kN ](δαi
μ kν

i − ηαiνkiμ) (17)

(where a ®hat¯ means omission) which connects the one-graviton Ä N -photon
amplitudes to the N -photon amplitudes.

CONCLUSIONS

We have presented here the ˇrst results of a systematic study of the mixed
one-loop photonÄgraviton amplitudes with a scalar or spinor loop in the low-
energy limit. At the one-graviton Ä two-photon level, we ˇnd a KLT-like factor-
ization of the graviton into two photons. If this type of factorization persists for
higher points, it would imply that, in the low-energy limit, the full information
on the M -graviton Ä N -photon amplitudes is contained in the N + 2M -photon
amplitudes. However, the three-point result may not be representative due to the
absence of one-particle reducible contributions. The situation will be clearer after
the completion of the one-graviton Ä four-photon calculation, which is presently
in progress.
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