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STRINGY DIFFERENTIAL GEOMETRY FOR
DOUBLE FIELD THEORY, BEYOND RIEMANN∗

J.-H. Park∗∗

Department of Physics, Sogang University, Seoul

While the fundamental object in Riemannian geometry is a metric, closed string theories call for
us to put a two-form gauge ˇeld and a scalar dilaton on an equal footing with the metric. Here we
propose a novel differential geometry which treats the three objects in a uniˇed manner, manifests not
only diffeomorphism and one-form gauge symmetry but also O(D, D) T-duality, and enables us to
rewrite the known low-energy effective action of them as a single term. We comment that the notion
of cosmological constant naturally changes.

PACS: 02.40.-k

INTRODUCTION

Symmetry guides the structure of Lagrangians and organizes the physical
laws into simple forms. For example, in Maxwell theory, the Abelian gauge
symmetry does not allow for an explicit mass term of the vector potential, and
Lorentz symmetry uniˇes the original Maxwell's four equations into two.

In general relativity, where the key quantity is the space-time metric, the
diffeomorphism symmetry ˇrst demands replacing ordinary derivatives by co-
variant derivatives which involve a connection. Setting the metric to be covariant
constant determines the (torsionless) connection, i.e., the Christoffel symbol, in
terms of the metric and its derivatives, and hence diffeomorphism uniquely picks
up the scalar curvature as the covariant term which is lowest order in derivatives
of the metric.

On the other hand, in string theories, the metric, gμν , accompanies a KalbÄ
Ramond two-form gauge ˇeld, Bμν , and a scalar dilation, φ, since the three of
them complete the bosonic massless sector of a closed string. Their low-energy
effective action is of the well-known form:

Seff =
∫

dxD√
−g e−2φ

(
R + 4∂μφ∂μφ − 1

12
HλμνHλμν

)
, (1)
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where R is the scalar curvature of the metric and Hλμν is the three-form ˇeld
strength of the two-form gauge ˇeld. Here and henceforth we consider an arbitrary
space-time dimension, D, without restricting ourselves to the critical values, 10
or 26. Each term in (1) is clearly invariant under the diffeomorphism as well as
the one-form gauge symmetry,

xμ → xμ + δxμ, Bμν → Bμν + ∂μΛν − ∂νΛμ. (2)

Moreover, though not manifest, the action enjoys T-duality which mixes the three
companions, gμν , Bμν , φ, in a nontrivial manner, ˇrst noted by Buscher [6Ä8] and
further studied in [9Ä13]: If we redeˇne the dilaton, φ → d, and set a 2D × 2D
symmetric matrix, HAB from gμν , Bμν [14], as

e−2d =
√−g e−2φ, HAB =

(
g−1 −g−1B

Bg−1 g − Bg−1B

)
, (3)

T-duality is conveniently realized by an O(D, D) rotation which acts on the
2D-dimensional vector indices, A, B, . . . , in a standard manner, while d is taken
to be an O(D, D) singlet. The O(D, D) group is deˇned by the invariance of
the constant metric of the following form:

JAB :=
(

0 1
1 0

)
. (4)

Throughout the present paper, this metric is being used to freely raise or lower
the 2D-dimensional vector indices. Indeed, Hull and Zwiebach [15,16], later with
Hohm [17,18], managed to rewrite the effective action (1) in terms of the redeˇned
dilaton, d, the 2D×2D matrix, HAB , and their ordinary derivatives, such that the
O(D, D) T-duality structure became manifest, yet the diffeomorphism and the
one-form gauge symmetry were not any more. In their approach, the space-time
dimension is formally doubled from D to 2D, with coordinates, xμ → yA =
(x̃μ, xν). The new coordinates, x̃μ, may be viewed as the canonical conjugates
of the winding modes of closed strings. However, as a ˇeld theory counterpart
to the level matching condition in closed string theories, it is required that all
the ˇelds, as well as all of their possible products, should be annihilated by the
O(D, D) d'Alembert operator, ∂2 = ∂A∂A,

∂2Φ ≡ 0, ∂AΦ1∂
AΦ2 ≡ 0. (5)

This ®level matching constraint¯ Å which we also assume in this paper Å actually
means that the theory is not truly doubled: there is a choice of coordinates (x̃′, x′),
related to the original coordinates (x̃, x), by an O(D, D) rotation, in which all
the ˇelds do not depend on the x̃′ coordinates [17]. Henceforth, the equivalence
symbol, ®≡¯, means an equality up to the constraint (5).

Combining the two types of the parameters,

XA = (Λμ, δxν),



1232 PARK J.-H.

the diffeomorphism and the one-form gauge transformations (2) can be expressed
in a uniˇed fashion,

δXHAB ≡ XC∂CHAB + 2∂[AXC]HC
B + 2∂[BXC]HA

C ,
(6)

δX

(
e−2d

)
≡ ∂A

(
XAe−2d

)
.

These expressions can be identiˇed as the generalized Lie derivatives whose
commutator leads to the Courant bracket [13, 19, 20]. In fact, in our previous
work [1], starting from the observation that HAB given in (3) assumes a generic
form of a symmetric O(D, D) element∗, we constructed a certain differential
operator which can be made compatible with the gauge transformations (6), being
characterized by a projection:

PAB = PBA =
1
2
(J + H)AB, PA

BPB
C = PA

C . (7)

In this work, generalizing the results of [1] (and also [21] by Hassan in
®undoubled¯ space-time), we propose a novel differential geometry apt for the
unifying description of the closed string massless sector, which manifests all the
relevant structures simultaneously:

• O(D, D) T -duality.
• Gauge symmetry:

1. Double-gauge symmetry:

Å Diffeomorphism,
Å One-form gauge symmetry.

2. Local Lorentz symmetry.

In particular, we reformulate the effective action (1) into a single term, like

Seff ≡
∫

dy2D e−2d HABSAB. (8)

1. SEMI-COVARIANT DERIVATIVE

Employing the main idea of [1], we start with a differential operator, ∇C =
∂C + ΓC , which acts on a generic quantity carrying O(D, D) vector indices,

∇CTA1A2···An := ∂CTA1A2···An − ωΓB
BCTA1A2···An+

+
n∑

i=1

ΓCAi

BTA1···Ai−1BAi+1···An , (9)

∗The expression of HAB in (3) is the most general form of a 2D×2D matrix, satisfying
HAB = HBA, HA

BHB
C = δA

C , and that the upper left D×D block is nondegenerate [1].
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where ω denotes the given weight of each ˇeld, TA1A2···An , and the connection
must satisfy,

ΓCAB + ΓCBA = 0, ΓABC + ΓCAB + ΓBCA = 0. (10)

The only quantity which has a nontrivial weight in this paper is e−2d having
ω = 1. Thanks to the symmetric properties (10), the ordinary derivatives in the
deˇnition of the generalized Lie derivative [13, 19, 20] can be replaced with our
differential operator to give

L̂XTA1···An := XB∇BTA1···An + ω∇BXBTA1···An+

+
n∑

i=1

2∇[Ai
XB]TA1···Ai−1

B
Ai+1···An , (11)

since the connection terms cancel.
We ˇx the connection by requiring

∇APBC = 0, ∇AP̄BC = 0, ∇Ad := ∂Ad +
1
2
ΓB

BA = 0, (12)

where P̄AB = (J − P )AB corresponds to the ®antichiral¯ projection which is
complementary to the ®chiral¯ projection, PAB in (7). Further, ∇Ad is deˇned
by the relation,

∇A(e−2d) = −2(∇Ad) e−2d. (13)

It follows that
∇AJBC = 0, ∇AHBC = 0. (14)

That is to say, our differential operator thoroughly annihilates the closed string
massless sector represented by d and HAB , which indicates that we are on a right
track to achieve a unifying description of the massless modes.

In terms of P , P̄ , d and their derivatives, the connection reads explicitly
(cf. [1]),

ΓCAB = 2
(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E

)
∂DPEC−

− 4
D − 1

(
P̄C[AP̄B]

D + PC[APB]
D

)(
∂Dd + (P∂EPP̄ )[ED]

)
. (15)

Furthermore, if we set

PCAB
DEF := PC

DP[A
[EPB]

F ] +
2

D − 1
PC[APB]

[EPF ]D,
(16)

P̄CAB
DEF := P̄C

DP̄[A
[EP̄B]

F ] +
2

D − 1
P̄C[AP̄B]

[EP̄F ]D,
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which satisfy

PCABDEF = PDEFCAB = PC[AB]D[EF ],

PCAB
DEFPDEF

GHI = PCAB
GHI ,

PA
ABDEF = 0, PABPABCDEF = 0, etc.,

(17)

the connection (15) belongs to the kernel of these rank six-projectors,

PCAB
DEF ΓDEF = 0, P̄CAB

DEF ΓDEF = 0. (18)

Under the double-gauge transformations (6), the connection and the deriva-
tive (9) transform as

(δX−L̂X)ΓCAB ≡ 2
[
(P+P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F ∂[DXE],

(δX−L̂X)∇CTA1···An≡
∑

i 2(P+P̄)CAi
BFDE∂F ∂[DXE]T···B···.

(19)

Hence, they are not double-gauge covariant. We say, a tensor is double-gauge
covariant if and only if its double-gauge transformation agrees with the gener-
alized Lie derivative. Nonetheless, the characteristic property of our derivative,
∇A, is that, combined with the projections, it can generate various O(D, D) and
double-gauge covariant quantities, as follows:

PC
DP̄A1

B1 P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn ,

P̄C
DPA1

B1PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn ,

PABP̄C1
D1P̄C2

D2 · · · P̄Cn
Dn∇ATBD1D2···Dn ,

P̄ABPC1
D1PC2

D2 · · ·PCn
Dn∇ATBD1D2···Dn ,

PABP̄C1
D1P̄C2

D2 · · · P̄Cn
Dn∇A∇BTD1D2···Dn ,

P̄ABPC1
D1PC2

D2 · · ·PCn
Dn∇A∇BTD1D2···Dn .

(20)

Here, the latter second order derivatives actually follow from the recurrent appli-
cations of the former ˇrst order derivatives. The index n can be trivial, such that
the covariant quantities include PAB∇ATB and P̄AB∇ATB .

The above result suggests us to call the differential operator, ∇A, a ®semi-
covariant¯ derivative.
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2. CURVATURES

Straightforward computation can show that the usual curvature,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED, (21)

set by the connection (15), is not double-gauge covariant, yet it satisˇes

RCDAB = R[CD][AB], PC
I P̄D

JRIJAB = 0. (22)

We deˇne, as for a key quantity in our formalism,

SABCD :=
1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
, (23)

which can be shown, by brute force computation, to meet

SABCD = S{ABCD} :=
1
2
(S[AB][CD] + S[CD][AB]), SA[BCD] = 0,

P A
I P B

J P̄ C
K P̄ D

L SABCD ≡ 0,

P A
I P̄ B

J P C
K P̄ D

L SABCD ≡ 0,

PI
AP̄J

CHBDSABCD ≡ 0,

(24)

and have a connection to a commutator,

PI
AP̄J

B[∇A,∇B]TC ≡ 2PI
AP̄J

BSCDABT D. (25)

Under the double-gauge transformations (6), we get

(δX − L̂X)SABCD ≡ 4∇{A

[
(P+P̄)BCD}

EFG∂E∂[F XG]

]
, (26)

from which double-gauge and O(D, D) T-duality covariant, rank two-tensor as
well as scalar follow,

PI
AP̄J

BSAB, HABSAB. (27)

Here we set
SAB= SBA:= SC

ACB, (28)

which turns out to be, from direct computation, traceless,

SA
A ≡ 0. (29)

Especially, the covariant scalar constitutes the effective action (8) as

HABSAB ≡ R + 4�φ − 4∂μφ∂μφ − 1
12

HλμνHλμν , (30)

and this is consistent with [1, 18].
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Under arbitrary inˇnitesimal transformations of the dilaton and the projection
(of which the latter should obey, from (7), δP = PδP P̄ + P̄ δPP ), we get

δSABCD = ∇[AδΓB]CD + ∇[CδΓD]AB, (31)

where explicitly

δΓCAB = 2P D
[A P̄ E

B] ∇CδPDE + 2(P̄ D
[A P̄ E

B] − P D
[A P E

B] )∇DδPEC−

− 4
D − 1

(P̄C[AP̄ D
B] + PC[AP D

B] )(∂Dδd + PE[G∇GδPE
D])−

− ΓFDE δ(P + P̄)CAB
FDE .

Now, with (31) and ∇Ad = 0, from the manipulation,

δSeff ≡
∫

dy2D 2 e−2d
(
δPABSAB − δdHABSAB

)
,

it is very easy to rederive the equations of motion [18,22]:

P(I
AP̄J)

BSAB = 0, HABSAB = 0. (32)

3. COMMENTS

In the stringy differential geometry we have proposed, the dilaton, d, appears
only explicitly as the overall factor of the action, and its derivatives are completely
absorbed into the connection (15), which therefore implies the tight symmetric
structure of our formalism. Furthermore, it appears that the natural ®cosmological
constant term¯ is nothing but∫

dy2D e−2dΛ ≡
∫

dxD √
−g e−2φΛ. (33)

As φ dynamically grows, this term becomes exponentially suppressed, irrespec-
tive of the choice of the frame, i.e., string or Einstein. In this way, the notion of
the cosmological constant naturally changes in our stringy differential geometry.
This may provide a new spin on the cosmological constant problem.

It has been said that string theory is a piece of 21st century physics that
happened to fall into the 20th century. Perhaps, our formalism might provide
some clue to a new framework beyond Riemannian geometry.
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