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We discuss a D-dimensional Abelian 3-form gauge theory within the framework of Bonora—
Tonin’s superfield formalism and derive the off-shell nilpotent and absolutely anticommuting Becchi—
Rouet—Stora—Tyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our
homage to V.I.Ogievetsky (1928-1996), who was one of the inventors of Abelian 2-form (anti-
symmetric tensor) gauge field, we go a step further and discuss the above D-dimensional Abelian
3-form gauge theory within the framework of BRST formalism and establish that the existence of the
(anti-)BRST invariant Curci—Ferrari (CF)-type of restrictions is the hallmark of any arbitrary p-form
gauge theory (discussed within the framework of BRST formalism).

PACS: 11.15.-q; 12.20.-m; 03.70.+k

INTRODUCTION

In recent years, the study of higher p-form (p = 2,3,4,...) gauge theories
has become quite fashionable because of its relevance in the context of (su-
per)string theories and related extended objects (see, e.g., [1,2]). It is worthwhile
to mention, in this context, that Ogievetsky and Polubarinov [3] were the first
to study the 2-form antisymmetric tensor gauge field (way back in 1966-1967).
Our presentation is a tribute to V.I. Ogievetsky (1928-1996) because we go a
step further in the direction of the study of higher p-form (p > 2) gauge theories
and discuss the Abelian 3-form gauge theory in arbitrary D-dimensions of space-
time within the framework of superfield approach to Becchi—Rouet—Stora-Tyutin
(BRST) formalism, proposed in [4, 5].

We derive the proper (i.e., off-shell nilpotent and absolutely anticommuting)
(anti-)BRST symmetry transformations for the above 3-form (A3 = (1/3!)(dz*A
dz” A dz")A,.,) totally antisymmetric tensor gauge field A,,,,, which appears
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in the quantum excitations of the (super)strings. Furthermore, we also obtain
the proper (anti-)BRST transformations associated with the (anti-)ghost fields of
the theory. Our main goal is to establish that the existence of the Curci-Ferrari
(CF)-type restrictions [6] is the hallmark of any arbitrary p-form (p = 1,2,3,...)
gauge theory when it is discussed within the framework of superfield approach to
BRST formalism. In fact, we show that the derivation of the CF-type condition(s)
is a very natural consequence of the application of the superfield approach [4, 5]
to BRST formalism.

Our present write-up is organized as follows. In Sec. 1, we recapitulate the
bare essentials of the horizontality condition and apply it to the Abelian 3-form
gauge theory. In the next section, we derive the proper (anti-)BRST symmetry
transformations and corresponding coupled (but equivalent) Lagrangian densities
for the present theory. Section 3 deals with the critical and crucial comments on
the CF-type restrictions. Finally, in Conclusion, we summarize our key results
and make some concluding remarks.

1. HORIZONTALITY CONDITION

Let us begin with the starting Lagrangian density of the Abelian 3-form field
1
L:O = ﬂHanﬁHuunnv Hp,l/'r]/{ = ap,Au'r]m - aVA'rmu + a’r]Amuu - anA;wnv (D

where the 4-form HY) = dA®) = (1/4!)(dz* Adx¥ Adz" Adx")H,,,,,, defines the
curvature tensor H,,,,, which is derived from the exterior derivative d = daz*0,,
(d? =0,u,v,1m,...=0,1,2,...,D — 1) and the 3-form A that encodes the
totally antisymmetric tensor gauge connection A,,,. It can be easily seen that,
under the following local gauge symmetry transformations d, (with the local
infinitesimal antisymmetric gauge parameter A,, = —A,,):

6gA;u/n = 8HAI/7] + 81//\77;1, + 877/\;“/7 (2)

the Lagrangian density and the curvature tensor H,,,, remain invariant. Thus,
the gauge invariant curvature tensor H,,,, derived from the 4-form H (4), is a
physical quantity (in some sense). One of the most intuitive approaches to covari-
antly quantize any arbitrary p-form gauge theory is the BRST formalism where
the local gauge symmetry transformations (e.g., (2)) are traded with the proper
(i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry
transformations.

The above (anti-) BRST symmetries can be derived by exploiting the geomet-
rical superfield formalism [4, 5] where any arbitrary D-dimensional gauge theory
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is generalized onto the (D, 2)-dimensional supermanifold as [7]:

d—d=dzZ™oy = da" 0, +d Oy + d0 0, z' — ZM = (2",6,0),

(3)
~ dZM NdZN AN dZE) -
A® - AG) = ( 3l ) Aumnk, Om = (0u,09,0z).
Here the superspace variables Z™ = (z#,0,0) are the generalization of the

ordinary D-dimensional coordinates x* that incorporate a pair of Grassmannian
variables # and 6, too, which satisfy 62 = 82 = 0,00+06 = 0. In the horizontality
condition (HC), we require the physical (geometrical) quantity H*) to remain
independent of the Grassmannian variables, namely:

H® — HW — JAB) — gA4®). 4)

This leads, automatically, to the derivation of the off-shell nilpotent (s(Qa)b =

0) and absolutely anticommuting (spSep + Sapsy = 0) (anti-)BRST symmetry
transformations (sq);) for the gauge field and corresponding (anti-)ghost fields
of the theory which we discuss, in detail, in the following section.

2. PROPER (ANTI-)BRST SYMMETRIES

It is clear from equation (4) that the r.h.s. of it contains only the space-time
differentials (i.e., dA®) = (1/41)(dz" A dz¥ A dz" A dz*)H,,,s). However,
the Lh.s. contains the space-time differentials together with the Grassmann dif-
ferentials. Thus, it is evident that the HC amounts to setting equal to zero the
coefficient of all the differentials that contain Grassmannian variables. To check
the above statement, it is imperative to compute the Lh.s. explicitly. Towards
this goal, it can be seen that equation (3) implies [7]

A® = %(dm” Nda Ndz") Ay + 5 (dat N da” N dO) Ao+
+ %(dm” Adx¥ NdO)A,,5 + %(d@ A df A dB) Aggg + %(dé A df A dB) Agz+
+ (dz# Adf A df)A,p + %(dm” AdO A dO)A,ge + %(d@ AdO A dB)Aggs+
+ %(dm” ANdf A df)A,gs + %(de AdOAdO)Apzs. (5)

Keeping in mind the nature of the superfields, we make the suitable identifica-
tions: A/wn = Auun(x,ﬂ,é), flwe = .7?“,,(§,9,§), flwg = fuy(x,ﬂ,é), flwg =
®,,(2,0,0), (1/3)Ap9 = Fa(x,0,0), (1/3)Ag55 = Fa(x,0,0), (1/2)Agg5 =
Fi(@,0,0), (1/2)Aggs = F1(x,6,0), (1/2)4,55 = By(x,0,0) and (1/2) 4,60 =

Bu(z,0,0) as the generalization of the D-dimensional local fields A,,,,, Cy.,



1298 MALIK R.P.

Cys dp> Ca, Ca, C1, C1, By, B, of the (anti-)BRST invariant local D-dimensional
ordinary theory onto the (D, 2)-dimensional supermanifold (within our superfield
formalism).

The super-expansions of the above superfields, along the Grassmannian di-
rections of the (D, 2)-dimensional supermanifold are as follows [7]:

A/wn(m ¢ é) = AH’/VI( )+ 0 len(x) +0 Ruun(x) +i60 S/wn(m)a
Bu(2,0,0) = Bu(x) + 0 f(z) + 0fV (x) +i00b,,(x),
Bu(,0,0) = (@) + 0F) (2) + 01 (x) + 60D, (=),
O, (2,0,0) = pu(x) + 0FP) (x) + 0f (x) + 1606 (w),
.i:uy(a:, 0,0) = Cuy(z) + HB(l (x) + GB( V(@) +i600s,, () ©
Fuw(§,0,0) = Cu(x) + 0B (2) + OB (x) + 1605, (x)
Fi(2,0,0) = Cy (2) + 065" () + 068 (2) + 605, ()
Foo(§,0,0) = Cy(2) + 0682 () + 9b(2)(x) + 005, (z),
Fo(,0,0) = Ca(x) + 065" () + 06V (2) + 0052 (),
Fe(§,0,0) = Co(x) + 0082 (z) + 0052 (z) + i005,(x),

where A,,,,, is the gauge field; ¢, is the vector bosonic field; (C,,)C,,, are the
pair of fermionic antisymmetric (anti-)ghost fields; (/3,)3,, are the bosonic ghost-
for-ghost (anti-)ghost fields; (C2)Cs and (C1)C; are the Lorentz scalar fermionic
(anti-)ghost fields. The above fields are required for the proof of unitarity in
the theory. The rest of the fields, on the r.h.s. of Eq. (6), are secondary fields
that have to be determined in terms of the basic and auxiliary fields of the
D-dimensional ordinary theory by exploiting the HC.

Explicit computation of (4) and setting equal to zero all the coefficients of
the Grassmannian differentials of the super 4-form of the Lh.s., leads to

bV =0, s,=0, b2 =0, 5=0, 5 =0, s =0,
) b0 =0, b+ =0, P =9,0o [ =0,0,
b = —i0 b2, b® = —i0,b?, BY = 0.8, — 0,8, [ =0.Co,
B = 0uBy — 0By Suv = i(0ufS) — 0, F V) = =0, — 0L FP)),
Sr = HiOu S 0, JP) = —i0ufP — 0, 1P). by =005, ()
Ry = 0,Cuy + 0,Cyp + 0,Chy Rywy = 0,Copy + auc,m +0,Cu,
Sy = —i(0,BZ) + 8,B'2) + 8,BY) = +i(9,B5) + 8,B}) + 9,B),
bP 45 g,
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In addition to the above results, we obtain the following Curci—Ferrari-type re-
strictions from the HC illustrated in (4), namely:

fP 47O =0,00, U4+ fP=0,01, BY+ B2 =086, — b, 8

which ensure the consistency of the three equivalences shown in (7). At this stage,
a couple of remarks are in order. First, the above restrictions emerge from setting
the specific coefficients of the 4-form differentials (e.g., (dz* A df A df A df),
(dz* AdO NdO A dB), (dz* Adx” Adf Adf)) of the Lh.s. of the HC. Second, it is
worth pointing out that the coefficients of the differentials (dz* Adz” Adx" Adxz")
from the Lh.s. and r.h.s. of the condition dA®) = dA®) match due to the precise

form of R, Ruuy, and Sy, quoted in (7).
To make the notations cute and a bit simpler, we identify: b§2) = B,
2 =(1 = #1 2 = 3 =3 7 2
b,g):Bijé):Bv f/s):F/u f/(i):Fw f,S)Zf,“ IS):f/u B/(*V):Bum
Bfﬁj) = B,.,. As a consequence, the celebreged (_IF-type Eestrictions become
B+ By = 0,0, — 0004, fu+ Fu = 0,C1, fu+F, = 0,C:. Furhermore, the
proper off-shell nilpotent and absolutely anticommuting (anti-) BRST symmetry
transformations that emerge from HC (cf. Eq. (4)) are [7, 8]
SabApun = 8;Léyn + 8uénu + 8néul/7 Sabépu = [LBI/ - 81/B/u
SabBu = 8}L02) SabCQ =0, SabBuu =0, suCi=—DBi,
Sabcl = —DBy, SabB =0, supC2= B; Sabﬁu = EL; SabEL =0, O
Sabfu =0, Sapr = _8;LBQ7 Sabfu = _8uBl7 SabBuu = 8u.fu - 8uf.;u
SabC;w = B;wa SapB1 = 0, Sap B2 = 0, 5ab¢u = .f/u

spAun = 0,Cuy + 0,Cpy + 0yCrvy,  55Cuw = 0uBy — 00 By,
Sbﬁu = 8}1402) SbCQ = 0) SbBuV = 07 Sbcl = _B7
Sbél = Bl7 SbBl = 07 SbCQ = BQ; SbB}L = EL; SbEL = 07 (10)
Sbfu =0, SbEL = —8HB7 Sbfu = 8;LBI; SbB;w = 8ufz/ - 81/fp;
SbC}LV = Buw SbB =0, spBa =0, Sb(bu = fu-
It is elementary to check that the above (anti-)BRST symmetry transformations
are off-shell nilpotent of order two (i.e., s%a)b =0).
The above transformations have been obtained from the superfield
formalism without any knowledge of the (anti-)BRST invariant Lagrangian den-

sity. This is due to the fact that the substitution of the results of (7) into (6)
leads to the following superexpansion of the superfields in the language of the
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nilpotent (anti-) BRST symmetry transformations [7]

A (2,0,0) = Ay (@) + 050 Ay (2)) + 850 Ay (2)) + 08(5550p Ay (2)),
B0 (2, 60,0) = Bu(2) + 050 Bu(2)) + U(s6B8(2)) + 0051508, (),

B0 (2,60,0) = Bu() + 050 Bu(@)) + O(s6Bu(2)) + 00558 (1)),

B (2,0,8) = 6y (x) + O(5abb(2)) + U560 (2)) + (55000 (2)),
F(@.6.0) = Cyu (&) + 8(5uCin (@) + U (1) + 00(su5Con @), |
B (2,6,0) = Cou () + 05 (2)) + B(51Cou (2)) + 0851500 Cow (),
FM(2,0,0) = C1(z) + 0(sapC1(x)) + 0(s,C1(2)) + 00(54525C1 ()

A7 (2,6,0) = C1(2) + (5001 (2)) + (3,1 (2)) + 00(sp50C1 (),
F(@,0,0) = Oa(x) + 0(sa4Ca(x)) + O(s,Ca(x)) + 00(s505C ()

Fo (2,0,0) = Ca(x) + 0(5asC2(2)) + 0 (55C2(2)) + 00(s1500C2()),

where the proper (anti-)BRST symmetry transformations are denoted by s(q)p,
and the superscript (h), on the superfields, stands for the superexpansions of
these superfields obtained after the application of HC (cf. (4)).

Furthermore, it can be checked that the anticommutativity property (i.e.,
SpSab + Sapsp = 0) of s(4), on the following basic fields [7, 8]:

{5b7 Sab} A;wn =0, {5b7 Sab} Cpu =0, {Sb; Sab} Cpu =0, (12)

is true only when the Curci—Ferrari-type restrictions (8) are satisfied. The property
of the anticommutativity of the (anti-) BRST symmetry transformations is trivially
obeyed in the case of the rest of the fields of our present D-dimensional Abelian
3-form gauge theory. Finally, one can write down the coupled (but equivalent)
(anti-)BRST invariant Lagrangian densities for the above Abelian 3-form gauge
theory as (see, e.g., [8] for details)

1 1_ _
£B = ﬂH'uynnHuvnm + SbSab (50202 - _Clcl +

_ﬁ Bu - _¢ ¢u BlwnBuun)v (13)

1 vnKk 1A 1A 1
;CB = ﬂH“ n Hy,ynn — SabSb (502(72 - §CIC1 + 50 o

- 1 1
- ﬁuﬁu - §¢u¢u - gBuynBuuY]>' (14)
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The first Lagrangian density Lp is trivially invariant under the BRST transfor-
mations sp. On the other hand, the second Lagrangian density Lz is trivially
invariant under the anti-BRST symmetry transformations s,;. One can check
that, under s, the first Lagrangian density Lp transforms to a total derivative
plus terms that are zero on the constrained surface defined by the CF-type re-
strictions (8). Precisely, similar is the situation with the Lagrangian density Lz
under the nilpotent BRST transformations sy.

3. COMMENTS ON CF-TYPE RESTRICTIONS

It is well known that a gauge theory is always endowed with a local gauge
symmetry that is generated by the first-class constraints in the language of Dirac’s
prescription for the classification scheme. Thus, the decisive feature of a gauge
theory is the existence of the first-class constraints on the theory. When any ar-
bitrary p-form gauge theory is discussed, within the framework of the BRST for-
malism, the above local gauge symmetry is traded with the supersymmetric-type
(anti-)BRST symmetries s(4), which turn out to be nilpotent (s?a)b = 0) of or-
der two. Furthermore, the other sacrosanct feature of the latter symmetries is
the absolute anticommutativity (i.e., SpSap + SapSp = 0). The anticommutativity
property is achieved only due to the presence of CF-type restrictions. Thus, the
clinching feature of any arbitrary p-form gauge theory, within the framework of
BRST formalism, is the existence of the (anti-) BRST invariant CF-type restric-
tions. For the Abelian 1-form gauge theory, the CF-type restriction is trivial.
However, it is nontrivial for all the rest of the gauge theories. Finally, the
first-class constraints of the original gauge theory are encoded in the physicality
criteria Qp|phys) = 0, where @} is the conserved and nilpotent BRST charge.
This condition, in BRST formalism, enforces all the physical quantum states to
be annihilated by the operator form of the first-class constraints of the original
theory.

CONCLUSIONS

In this presentation, it has been emphasized that the Bonora—Tonin’s su-
perfield approach [4,5] to BRST formalism always leads to the derivation of
the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST
symmetry transformations for a given p-form gauge theory in any arbitrary
D-dimensions of spacetime. Furthermore, this geometrical superfield formal-
ism [4,5] necessarily entails upon any arbitrary D-dimensional p-form gauge
theory to be endowed with the (anti-)BRST invariant CF-type restriction(s) which,
ultimately, lead to the absolute anticommutativity of the (anti-)BRST symmetry



1302 MALIK R.P.

transformations and the derivation of the coupled (but equivalent) Lagrangian
densities. It turns out that the CF condition, for the simple case of Abelian U(1)
1-form gauge theory, is trivial. As a consequence, there is a single Lagrangian
density for this theory that respects the (anti-)BRST symmetries fogether. This
is not the case, however, for even the non-Abelian SU(N) 1-form gauge theory
and all the rest of the (non-)Abelian higher p-form (p > 2) gauge theories in any
arbitrary D-dimensions of space-time.

Acknowledgements. Travel support from DST, Government of India, is
gratefully acknowledged. Thanks are also due to the organizers of SQS’11 for
their kind and gracious invitation.

REFERENCES

1. Green M.B., Schwarz J.H., Witten E. Superstring Theory. Cambridge: Cambridge
Univ. Press, 1987.

2. Polchinski J. String Theory. Cambridge: Cambridge Univ. Press, 1998.

. Ogievetsky V. I., Polubarinov 1. V. // Sov. J. Nucl. Phys. (Yad. Fiz.). 1967. V.4. P. 156;
Yad. Fiz. 1966. V.4. P.216.

. Bonora L., Tonin M. // Phys. Lett. B. 1981. V.98. P.48.

. Bonora L., Pasti P., Tonin M. // Nuovo Cim. A. 1981. V.63. P.353.

. Curci G., Ferrari R. // Phys. Lett. B. 1976. V.63. P.91.

. Malik R. P. // Eur. Phys. J. C. 2009. V.60. P 457; hep-th/0702039.

. Bonora L., Malik R. P. // J. Phys.: Math. Theor. 2010. V.43. P.375403.

W

e N B Y



