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We discuss a D-dimensional Abelian 3-form gauge theory within the framework of BonoraÄ
Tonin's superˇeld formalism and derive the off-shell nilpotent and absolutely anticommuting BecchiÄ
RouetÄStoraÄTyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our
homage to V. I. Ogievetsky (1928Ä1996), who was one of the inventors of Abelian 2-form (anti-
symmetric tensor) gauge ˇeld, we go a step further and discuss the above D-dimensional Abelian
3-form gauge theory within the framework of BRST formalism and establish that the existence of the
(anti-)BRST invariant CurciÄFerrari (CF)-type of restrictions is the hallmark of any arbitrary p-form
gauge theory (discussed within the framework of BRST formalism).

PACS: 11.15.-q; 12.20.-m; 03.70.+k

INTRODUCTION

In recent years, the study of higher p-form (p = 2, 3, 4, . . .) gauge theories
has become quite fashionable because of its relevance in the context of (su-
per)string theories and related extended objects (see, e.g., [1, 2]). It is worthwhile
to mention, in this context, that Ogievetsky and Polubarinov [3] were the ˇrst
to study the 2-form antisymmetric tensor gauge ˇeld (way back in 1966Ä1967).
Our presentation is a tribute to V. I. Ogievetsky (1928Ä1996) because we go a
step further in the direction of the study of higher p-form (p � 2) gauge theories
and discuss the Abelian 3-form gauge theory in arbitrary D-dimensions of space-
time within the framework of superˇeld approach to BecchiÄRouetÄStoraÄTyutin
(BRST) formalism, proposed in [4, 5].

We derive the proper (i.e., off-shell nilpotent and absolutely anticommuting)
(anti-)BRST symmetry transformations for the above 3-form (A(3) = (1/3!)(dxμ∧
dxν ∧ dxη)Aμνη) totally antisymmetric tensor gauge ˇeld Aμνη which appears
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in the quantum excitations of the (super)strings. Furthermore, we also obtain
the proper (anti-)BRST transformations associated with the (anti-)ghost ˇelds of
the theory. Our main goal is to establish that the existence of the CurciÄFerrari
(CF)-type restrictions [6] is the hallmark of any arbitrary p-form (p = 1, 2, 3, . . .)
gauge theory when it is discussed within the framework of superˇeld approach to
BRST formalism. In fact, we show that the derivation of the CF-type condition(s)
is a very natural consequence of the application of the superˇeld approach [4, 5]
to BRST formalism.

Our present write-up is organized as follows. In Sec. 1, we recapitulate the
bare essentials of the horizontality condition and apply it to the Abelian 3-form
gauge theory. In the next section, we derive the proper (anti-)BRST symmetry
transformations and corresponding coupled (but equivalent) Lagrangian densities
for the present theory. Section 3 deals with the critical and crucial comments on
the CF-type restrictions. Finally, in Conclusion, we summarize our key results
and make some concluding remarks.

1. HORIZONTALITY CONDITION

Let us begin with the starting Lagrangian density of the Abelian 3-form ˇeld

L0 =
1
24

HμνηκHμνηκ, Hμνηκ = ∂μAνηκ − ∂νAηκμ + ∂ηAκμν − ∂κAμνη, (1)

where the 4-form H(4) = dA(3) ≡ (1/4!)(dxμ∧dxν∧dxη∧dxκ)Hμνηκ deˇnes the
curvature tensor Hμνηκ which is derived from the exterior derivative d = dxμ∂μ

(d2 = 0, μ, ν, η, . . . = 0, 1, 2, . . . , D − 1) and the 3-form A(3) that encodes the
totally antisymmetric tensor gauge connection Aμνη . It can be easily seen that,
under the following local gauge symmetry transformations δg (with the local
inˇnitesimal antisymmetric gauge parameter Λμν = −Λνμ):

δgAμνη = ∂μΛνη + ∂νΛημ + ∂ηΛμν , (2)

the Lagrangian density and the curvature tensor Hμνηκ remain invariant. Thus,
the gauge invariant curvature tensor Hμνηκ, derived from the 4-form H(4), is a
physical quantity (in some sense). One of the most intuitive approaches to covari-
antly quantize any arbitrary p-form gauge theory is the BRST formalism where
the local gauge symmetry transformations (e.g., (2)) are traded with the proper
(i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry
transformations.

The above (anti-)BRST symmetries can be derived by exploiting the geomet-
rical superˇeld formalism [4, 5] where any arbitrary D-dimensional gauge theory
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is generalized onto the (D, 2)-dimensional supermanifold as [7]:

d → d̃ ≡ dZM∂M = dxμ ∂μ + dθ ∂θ + dθ̄ ∂θ̄, xμ → ZM = (xμ, θ, θ̄),
(3)

A(3) → Ã(3) =
(dZM ∧ dZN ∧ dZK)

3!
ÃMNK , ∂M = (∂μ, ∂θ, ∂θ̄).

Here the superspace variables ZM = (xμ, θ, θ̄) are the generalization of the
ordinary D-dimensional coordinates xμ that incorporate a pair of Grassmannian
variables θ and θ̄, too, which satisfy θ2 = θ̄2 = 0, θθ̄+θ̄θ = 0. In the horizontality
condition (HC), we require the physical (geometrical) quantity H(4) to remain
independent of the Grassmannian variables, namely:

H̃(4) = H(4) =⇒ d̃Ã(3) = dA(3). (4)

This leads, automatically, to the derivation of the off-shell nilpotent (s2
(a)b =

0) and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST symmetry
transformations (s(a)b) for the gauge ˇeld and corresponding (anti-)ghost ˇelds
of the theory which we discuss, in detail, in the following section.

2. PROPER (ANTI-)BRST SYMMETRIES

It is clear from equation (4) that the r.h.s. of it contains only the space-time
differentials (i.e., dA(3) = (1/4!)(dxμ ∧ dxν ∧ dxη ∧ dxκ)Hμνηκ). However,
the l.h.s. contains the space-time differentials together with the Grassmann dif-
ferentials. Thus, it is evident that the HC amounts to setting equal to zero the
coefˇcient of all the differentials that contain Grassmannian variables. To check
the above statement, it is imperative to compute the l.h.s. explicitly. Towards
this goal, it can be seen that equation (3) implies [7]

Ã(3) =
1
3!

(dxμ ∧ dxν ∧ dxη)Ãμνη +
1
2
(dxμ ∧ dxν ∧ dθ)Ãμνθ+

+
1
2
(dxμ ∧ dxν ∧ dθ̄)Ãμνθ̄ +

1
3!

(dθ ∧ dθ ∧ dθ)Ãθθθ +
1
3!

(dθ̄ ∧ dθ̄ ∧ dθ̄)Ãθ̄θ̄θ̄+

+ (dxμ ∧ dθ ∧ dθ̄)Ãμθθ̄ +
1
2
(dxμ ∧ dθ ∧ dθ)Ãμθθ +

1
2
(dθ ∧ dθ ∧ dθ̄)Ãθθθ̄+

+
1
2
(dxμ ∧ dθ̄ ∧ dθ̄)Ãμθ̄θ̄ +

1
2
(dθ ∧ dθ̄ ∧ dθ̄)Ãθθ̄θ̄. (5)

Keeping in mind the nature of the superˇelds, we make the suitable identiˇca-

tions: Ãμνη = Ãμνη(x, θ, θ̄), Ãμνθ = ˜̄Fμν(§, θ, θ̄), Ãμνθ̄ = F̃μν(x, θ, θ̄), Ãμθθ̄ =

Φ̃μ(x, θ, θ̄), (1/3!)Ãθθθ = ˜̄F2(x, θ, θ̄), (1/3!)Aθ̄θ̄θ̄ = F̃2(x, θ, θ̄), (1/2)Ãθθ̄θ̄ =
F̃1(x, θ, θ̄), (1/2)Ãθθθ̄ = ˜̄F1(x, θ, θ̄), (1/2)Ãμθ̄θ̄ = β̃μ(x, θ, θ̄) and (1/2)Ãμθθ =
˜̄βμ(x, θ, θ̄) as the generalization of the D-dimensional local ˇelds Aμνη , C̄μν ,
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Cμν , φμ, C̄2, C2, C1, C̄1, βμ, β̄μ of the (anti-)BRST invariant local D-dimensional
ordinary theory onto the (D, 2)-dimensional supermanifold (within our superˇeld
formalism).

The super-expansions of the above superˇelds, along the Grassmannian di-
rections of the (D, 2)-dimensional supermanifold are as follows [7]:

Ãμνη(x, θ, θ̄) = Aμνη(x) + θ R̄μνη(x) + θ̄ Rμνη(x) + i θ θ̄ Sμνη(x),

β̃μ(x, θ, θ̄) = βμ(x) + θ f̄ (1)
μ (x) + θ̄f (1)

μ (x) + iθθ̄bμ(x),
˜̄βμ(x, θ, θ̄) = β̄μ(x) + θf̄ (2)

μ (x) + θ̄f (2)
μ (x) + iθθ̄b̄μ(x),

Φ̃μ(x, θ, θ̄) = φμ(x) + θf̄ (3)
μ (x) + θ̄f (3)

μ (x) + iθθ̄b(3)
μ (x),

F̃μν(x, θ, θ̄) = Cμν(x) + θB̄(1)
μν (x) + θ̄B(1)

μν (x) + iθθ̄sμν(x),
(6)˜̄Fμν(§, θ, θ̄) = C̄μν(x) + θB̄(2)

μν (x) + θ̄B(2)
μν (x) + iθθ̄s̄μν(x),

F̃1(x, θ, θ̄) = C1(x) + θb̄
(1)
1 (x) + θ̄b

(1)
1 (x) + iθθ̄s1(x),

˜̄F∞(§, θ, θ̄) = C̄1(x) + θb̄
(2)
1 (x) + θ̄b

(2)
1 (x) + iθθ̄s̄1(x),

F̃2(x, θ, θ̄) = C2(x) + θb̄
(1)
2 (x) + θ̄b

(1)
2 (x) + iθθ̄s2(x),

˜̄F∈(§, θ, θ̄) = C̄2(x) + θb̄
(2)
2 (x) + θ̄b

(2)
2 (x) + iθθ̄s̄2(x),

where Aμνη is the gauge ˇeld; φμ is the vector bosonic ˇeld; (C̄μν)Cμν are the
pair of fermionic antisymmetric (anti-)ghost ˇelds; (β̄μ)βμ are the bosonic ghost-
for-ghost (anti-)ghost ˇelds; (C̄2)C2 and (C̄1)C1 are the Lorentz scalar fermionic
(anti-)ghost ˇelds. The above ˇelds are required for the proof of unitarity in
the theory. The rest of the ˇelds, on the r.h.s. of Eq. (6), are secondary ˇelds
that have to be determined in terms of the basic and auxiliary ˇelds of the
D-dimensional ordinary theory by exploiting the HC.

Explicit computation of (4) and setting equal to zero all the coefˇcients of
the Grassmannian differentials of the super 4-form of the l.h.s., leads to

b
(1)
2 = 0, s2 = 0, b̄

(2)
2 = 0, s̄2 = 0, s̄1 = 0, s1 = 0,

b̄
(1)
2 + b

(1)
1 = 0, b

(2)
1 + b̄

(1)
1 = 0, f̄ (2)

μ = ∂μC̄2, f (1)
μ = ∂μC2,

b̄μ = −i∂μb
(2)
2 , b(3)

μ = −i∂μb
(2)
1 , B(1)

μν = ∂μβν − ∂νβμ, f̄ (2)
μ = ∂μC̄2,

B̄(2)
μν = ∂μβ̄ν − ∂ν β̄μ, sμν = i(∂μf̄ (1)

ν − ∂ν f̄ (1)
μ ) ≡ −i(∂μf (3)

ν − ∂νf (3)
μ ),

s̄μν = +i(∂μf̄ (3)
ν − ∂ν f̄ (3)

μ ) ≡ −i(∂μf (2)
ν − ∂νf (2)

μ ), bμ = i∂μb̄
(1)
2 , (7)

Rμνη = ∂μCνη + ∂νCημ + ∂ηCμν , R̄μνη = ∂μC̄νη + ∂νC̄ημ + ∂ηC̄μν ,

Sμνη = −i(∂μB(2)
νη + ∂νB(2)

ημ + ∂ηB(2)
μν ) ≡ +i(∂μB̄(1)

νη + ∂νB̄(1)
ημ + ∂ηB̄(1)

μν ),

b
(2)
2 + b̄

(2)
1 = 0.
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In addition to the above results, we obtain the following CurciÄFerrari-type re-
strictions from the HC illustrated in (4), namely:

f (2)
μ + f̄ (3)

μ = ∂μC̄1, f̄ (1)
μ + f (3)

μ = ∂μC1, B̄(1)
μν + B(2)

μν = ∂μφν − ∂νφμ, (8)

which ensure the consistency of the three equivalences shown in (7). At this stage,
a couple of remarks are in order. First, the above restrictions emerge from setting
the speciˇc coefˇcients of the 4-form differentials (e.g., (dxμ ∧ dθ ∧ dθ ∧ dθ̄),
(dxμ ∧dθ∧dθ̄∧dθ̄), (dxμ ∧dxν ∧dθ∧dθ̄)) of the l.h.s. of the HC. Second, it is
worth pointing out that the coefˇcients of the differentials (dxμ∧dxν ∧dxη∧dxκ)
from the l.h.s. and r.h.s. of the condition d̃Ã(3) = dA(3) match due to the precise
form of Rμνη, R̄μνη , and Sμνη , quoted in (7).

To make the notations cute and a bit simpler, we identify: b
(2)
1 = B1,

b
(2)
2 = B2, b̄

(1)
2 = B̄, f̄

(1)
μ = Fμ, f

(2)
μ = F̄μ, f

(3)
μ = fμ, f̄

(3)
μ = f̄μ, B

(2)
μν = Bμν ,

B̄
(1)
μν = B̄μν . As a consequence, the celebrated CF-type restrictions become

Bμν + B̄μν = ∂μφν − ∂νφμ, fμ +Fμ = ∂μC1, f̄μ + F̄μ = ∂μC̄1. Furhermore, the
proper off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry
transformations that emerge from HC (cf. Eq. (4)) are [7, 8]

sabAμνη = ∂μC̄νη + ∂νC̄ημ + ∂ηC̄μν , sabC̄μν = ∂μβ̄ν − ∂ν β̄μ,

sabβ̄μ = ∂μC̄2, sabC̄2 = 0, sabB̄μν = 0, sabC1 = −B1,

sabC̄1 = −B2, sabB̄ = 0, sabC2 = B̄, sabβμ = F̄μ, sabF̄μ = 0, (9)

sabf̄μ = 0, sabFμ = −∂μB2, sabfμ = −∂μB1, sabBμν = ∂μf̄ν − ∂ν f̄μ,

sabCμν = B̄μν , sabB1 = 0, sabB2 = 0, sabφμ = f̄μ,

sbAμνη = ∂μCνη + ∂νCημ + ∂ηCμν , sbCμν = ∂μβν − ∂νβμ,

sbβμ = ∂μC2, sbC2 = 0, sbBμν = 0, sbC1 = −B̄,

sbC̄1 = B1, sbB1 = 0, sbC̄2 = B2, sbβ̄μ = Fμ, sbFμ = 0, (10)

sbfμ = 0, sbF̄μ = −∂μB̄, sbf̄μ = ∂μB1, sbB̄μν = ∂μfν − ∂νfμ,

sbC̄μν = Bμν , sbB̄ = 0, sbB2 = 0, sbφμ = fμ.

It is elementary to check that the above (anti-)BRST symmetry transformations
are off-shell nilpotent of order two (i.e., s2

(a)b = 0).
The above transformations have been obtained from the superˇeld

formalism without any knowledge of the (anti-)BRST invariant Lagrangian den-
sity. This is due to the fact that the substitution of the results of (7) into (6)
leads to the following superexpansion of the superˇelds in the language of the
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nilpotent (anti-)BRST symmetry transformations [7]

Ã(h)
μνη(x, θ, θ̄) = Aμνη(x) + θ(sabAμνη(x)) + θ̄(sbAμνη(x)) + θθ̄(sbsabAμνη(x)),

β̃(h)
μ (x, θ, θ̄) = βμ(x) + θ(sabβμ(x)) + θ̄(sbβμ(x)) + θθ̄(sbsabβμ(x)),

˜̄β(h)
μ (x, θ, θ̄) = β̄μ(x) + θ(sabβ̄μ(x)) + θ̄(sbβ̄μ(x)) + θθ̄(sbsabβ̄μ(x)),

Φ̃(h)
μ (x, θ, θ̄) = φμ(x) + θ(sabφμ(x)) + θ̄(sbφμ(x)) + θθ̄(sbsabφμ(x)),

F̃ (h)
μν (x, θ, θ̄) = Cμν(x) + θ(sabCμν(x)) + θ̄(sbCμν(x)) + θθ̄(sbsabCμν(x)),

(11)
˜̄F

(h)

μν (x, θ, θ̄) = C̄μν(x) + θ(sabC̄μν(x)) + θ̄(sbC̄μν(x)) + θθ̄(sbsabC̄μν(x)),

F̃ (h)
1 (x, θ, θ̄) = C1(x) + θ(sabC1(x)) + θ̄(sbC1(x)) + θθ̄(sbsabC1(x)),

˜̄F
(h)

1 (x, θ, θ̄) = C̄1(x) + θ(sabC̄1(x)) + θ̄(sbC̄1(x)) + θθ̄(sbsabC̄1(x)),

F̃ (h)
2 (x, θ, θ̄) = C2(x) + θ(sabC2(x)) + θ̄(sbC2(x)) + θθ̄(sbsabC2(x)),

˜̄F
(h)

2 (x, θ, θ̄) = C̄2(x) + θ(sabC̄2(x)) + θ̄; (sbC̄2(x)) + θθ̄(sbsabC̄2(x)),

where the proper (anti-)BRST symmetry transformations are denoted by s(a)b,
and the superscript (h), on the superˇelds, stands for the superexpansions of
these superˇelds obtained after the application of HC (cf. (4)).

Furthermore, it can be checked that the anticommutativity property (i.e.,
sbsab + sabsb = 0) of s(a)b on the following basic ˇelds [7, 8]:

{sb, sab} Aμνη = 0, {sb, sab} Cμν = 0, {sb, sab} C̄μν = 0, (12)

is true only when the CurciÄFerrari-type restrictions (8) are satisˇed. The property
of the anticommutativity of the (anti-)BRST symmetry transformations is trivially
obeyed in the case of the rest of the ˇelds of our present D-dimensional Abelian
3-form gauge theory. Finally, one can write down the coupled (but equivalent)
(anti-)BRST invariant Lagrangian densities for the above Abelian 3-form gauge
theory as (see, e.g., [8] for details)

LB =
1
24

HμνηκHμνηκ + sbsab

(
1
2
C̄2C2 −

1
2
C̄1C1 +

1
2
C̄μνCμν−

− β̄μβμ − 1
2
φμφμ − 1

6
BμνηBμνη

)
, (13)

LB̄ =
1
24

HμνηκHμνηκ − sabsb

(
1
2
C̄2C2 −

1
2
C̄1C1 +

1
2
C̄μνCμν−

− β̄μβμ − 1
2
φμφμ − 1

6
BμνηBμνη

)
. (14)



ABELIAN 3-FORM GAUGE THEORY: SUPERFIELD APPROACH 1301

The ˇrst Lagrangian density LB is trivially invariant under the BRST transfor-
mations sb. On the other hand, the second Lagrangian density LB̄ is trivially
invariant under the anti-BRST symmetry transformations sab. One can check
that, under sab, the ˇrst Lagrangian density LB transforms to a total derivative
plus terms that are zero on the constrained surface deˇned by the CF-type re-
strictions (8). Precisely, similar is the situation with the Lagrangian density LB̄

under the nilpotent BRST transformations sb.

3. COMMENTS ON CF-TYPE RESTRICTIONS

It is well known that a gauge theory is always endowed with a local gauge
symmetry that is generated by the ˇrst-class constraints in the language of Dirac's
prescription for the classiˇcation scheme. Thus, the decisive feature of a gauge
theory is the existence of the ˇrst-class constraints on the theory. When any ar-
bitrary p-form gauge theory is discussed, within the framework of the BRST for-
malism, the above local gauge symmetry is traded with the supersymmetric-type
(anti-)BRST symmetries s(a)b which turn out to be nilpotent (s2

(a)b = 0) of or-
der two. Furthermore, the other sacrosanct feature of the latter symmetries is
the absolute anticommutativity (i.e., sbsab + sabsb = 0). The anticommutativity
property is achieved only due to the presence of CF-type restrictions. Thus, the
clinching feature of any arbitrary p-form gauge theory, within the framework of
BRST formalism, is the existence of the (anti-)BRST invariant CF-type restric-
tions. For the Abelian 1-form gauge theory, the CF-type restriction is trivial.
However, it is nontrivial for all the rest of the gauge theories. Finally, the
ˇrst-class constraints of the original gauge theory are encoded in the physicality
criteria Qb|phys〉 = 0, where Qb is the conserved and nilpotent BRST charge.
This condition, in BRST formalism, enforces all the physical quantum states to
be annihilated by the operator form of the ˇrst-class constraints of the original
theory.

CONCLUSIONS

In this presentation, it has been emphasized that the BonoraÄTonin's su-
perˇeld approach [4, 5] to BRST formalism always leads to the derivation of
the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST
symmetry transformations for a given p-form gauge theory in any arbitrary
D-dimensions of spacetime. Furthermore, this geometrical superˇeld formal-
ism [4, 5] necessarily entails upon any arbitrary D-dimensional p-form gauge
theory to be endowed with the (anti-)BRST invariant CF-type restriction(s) which,
ultimately, lead to the absolute anticommutativity of the (anti-)BRST symmetry
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transformations and the derivation of the coupled (but equivalent) Lagrangian
densities. It turns out that the CF condition, for the simple case of Abelian U(1)
1-form gauge theory, is trivial. As a consequence, there is a single Lagrangian
density for this theory that respects the (anti-)BRST symmetries together. This
is not the case, however, for even the non-Abelian SU(N) 1-form gauge theory
and all the rest of the (non-)Abelian higher p-form (p � 2) gauge theories in any
arbitrary D-dimensions of space-time.
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