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RELATIVISTIC KINETIC MOMENTUM OPERATORS,
HALF-RAPIDITIES AND NONCOMMUTATIVE

DIFFERENTIAL CALCULUS
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It is shown that the generating function for the matrix elements of irreps of the Lorentz group is
the common eigenfunction of the interior derivatives of the noncommutative differential calculus over
the commutative algebra generated by the coordinate functions in the Relativistic Conˇguration Space
(RCS). These derivatives commute and can be interpreted as the quantum mechanical operators of the
relativistic momentum corresponding to the half of the non-Euclidean distance in the Lobachevsky
momentum space (the mass shell).
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Referring the reader to the original paper [1] and more recent articles [2Ä5],
where the notion of the RCS was introduced and developed, we stress here
only that the concept of RCS is based on the Fourier expansion on the Lorentz
group [6]. In this paper we consider the case with two spatial dimensions cor-
responding to the signature (1, 2) in the Minkovsky space so that the transitivity
surface of the Lorentz group SO(2, 1) is the mass shall of the particle

pμpμ = p02 − p̃2 = m2c2, p0 = mc cosh χ > 0, p̃ = sinh
χ

2
ñp, ñ2

p = 1,

(1)
μ = 0, 1, 2. RCS is dual in the sense of the above-mentioned Fourier transforma-
tion to the Lobachevsky momentum space, realized on the surface (1)

Let us introduce the new momenta k̂μ, corresponding to the ®half distance¯
χ/2 (or half rapidity in different terminology) in the Lobachevsky momentum
space (1) as follows. In the momentum space k̂-operators are given by

k0 = 2 cosh
χ

2
, k̃ = 2 sinh

χ

2
ñp. (2)
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The ®half distance¯ Å or kinetic k-momenta possess the remarkable properties.
In terms of ®old¯ p-momentum the relativistic energy E in the nonrelativistic
limit ‖p̃‖ � mc can be presented approximately as E = p0c =

√
m2c4 + p̃2c2 �

mc2 + p̃2/2m. In terms of the ®new¯ k-momentum, the inner energy mc2 and
kinetic energy are explicitly separated without any approximation:

E − mc2 = mc2 sinh2 χ

2
=

k̃2

2m
. (3)

Our goal is to show that the corresponding operators of kinetic momentum do exist
in RCS and belong to the noncommutative differential calculus [5Ä7]. To derive
the corresponding momentum operators in RCS, we must deˇne the relativistic
plane wave as the generating function for the matrix elements of the unitary
irreps of the Lorentz group which are expressed in terms of the generalized
Jacobi functions [6]:

〈ρ̃, n|k̃〉 =
(
cosh

χ

2
− sinh

χ

2
ei(ψ−φ)

)−iρ−1/2+n

×

×
(
cosh

χ

2
− sinh

χ

2
e−i(ψ−φ)

)−iρ−1/2−n

, (4)

〈ρ̃, 0| k̃〉 = 〈ρ̃| p̃〉, (5)

〈ρ̃, n| k̃〉 =
∞∑

m=−∞
P−1/2−iρ

mn (cosh χ) ei(n−m)(ψ−φ), (6)

where m, n are simultaneously integer or semi-integer numbers. The desired oper-

ators ˆ̃k = (k̂1, k̂2) in RCS or ρ, ψ, n-representation are obtained using formulae
(7)Ä(9) of Subsubsec. 6.7.3 in [6]:

k̂± = 2 e±iψ

{
−iρ− 1/2 ± n

iρ
sinh

i

2
∂ρ ± 1

2ρ
∂ψ ei/2∂ρ

}
e∓1/2 ∂n , (7)

[k̂1, k̂2] =
i

2
[k̂+, k̂−] = 0, k̂± =

k̂1 ± i k̂2

2
. (8)

The generalized plane waves (4) are the common eigenfunctions for k̂±:

k̂± 〈ρ̃, n| k̃〉 = k± 〈ρ̃, n| k̃〉 = 2 sinh
χ

2
e±iφ 〈ρ̃, n| k̃〉 . (9)

Also the operators exist corresponding to the eigenvalue cosh χ/2:

c̃± = − 1
2iρ

e∓ 1/2 ∂n{(−iρ ∓ n) ei/2 ∂ρ + (−iρ ± n) e−i/2 ∂ρ ± i∂ψ ei/2 ∂ρ} =

=
(

1
2

e−iψ k̂± + ei/2∂ρ e∓1/2∂n

)
, ĉ± 〈ρ̃, n| k̃〉 = cosh

χ

2
〈ρ̃, n| k̃〉 . (10)
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Now we deˇne the differential calculus in RCS. The differential calculus over
the associative algebra A is a Z graded associative algebra over C:

Ω(A) =
∑
r=0

⊕Ωr(A). (11)

In our case, A is the commutative algebra generated by the coordinate func-
tions f(x), xi = (ρ, ψ, n). The elements of Ωr(A) are called r-forms. There
exists an exterior derivative d̂ which satisˇes the following conditions:

d̂2 = 0, d̂(ωω′) = (d̂ω)ω′ + (−1)rωd̂ω′, (12)

where ω and ω′ are r and r′ forms, respectively. We deˇne d̂ as an operator
valued 1-form which satisˇes the relation

d̂ω = [ d̂, ω]∧ = d̂ ω − (−1)rω d̂. (13)

Important difference exists between the standard differential calculus and the
relativistic one. In the ˇrst one, the differential and the coordinate function com-
mute [dxk, xi] = 0, because in the standard case xi and dxk are the independent
numerical variables. But the relativistic differential calculus is noncommutative:
[dxk, xi] �= 0.

To determine d̂, we recall ˇrst the simple connection existing between the
nonrelativistic d̂ and momentum operators: d̂ = dx1∂x1 + dx2∂x2 = i(dx+k̂− +
dx−k̂+) = dρ ∂ρ + dψ ∂ψ, where dx± = dx1 ± dx2 = e±iψ(dρ ± iρ dψ). In the
relativistic case, the differentials dx± are modiˇed and gain the operator valued
form:

d̂x± = e±iψ
(
dρ ± e−i/2 ∂ρ(iρ ∓ n)dψ

)
e−1/2 ∂n . (14)

The identity is satisˇed

i

2
(d̂x+ k̂− + d̂x− k̂+) = dρ

(
−2i sinh

i

2
∂ρ

)
+ dψ ∂ψ −→ dρ ∂ρ + dψ ∂ψ. (15)

It is easily seen that this expression is incomplete. It must be extended to involve
the ®cosh χ/2¯ terms or operators ĉ± in order to satisfy the generalized Leibnitz
rule of the noncommutative derivation:

d̂ =
i

2
(d̂x+k̂− + d̂x−k̂+ + dρ+(e1/2 ∂n ĉ+ + e−1/2 ∂n ĉ− − 2)+

+ dρ−(e1/2 ∂n ĉ+ − e−1/2 ∂n ĉ−)). (16)

We omit the intermediate calculations and deliver here in an explicit form only
the operators of the left and right interior derivatives

−→
∂ =

ei/2 ∂ρ − 1
i/2

and
←−
∂ =

e−i(i/2)∂ρ − 1
−i/2

, (17)
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which can be easily derived in the framework of the noncommutative differential

calculus above. It is sufˇcient to keep only one of the
−→←−
∂ derivatives and we put

dρ← = 0 (and omit the subscript →: dρ→ = dρ)

d̂ = dρ
−→
∂ + dψ∂ψ . (18)

In the relativistic differential calculus the differential dρ does not commute
with the coordinate: [dρ, ρ] �= 0. We recall that in the standard calculus ρ and
dρ, of course, commute . In the relativistic calculus

d̂ρ = [d̂, ρ] = [d̂ρ ∂ρ, ρ] = dρ
ei/2 ∂ρ − 1

i/2
ρ − ρ dρ

ei/2 ∂ρ − 1
i/2

= dρ ei/2 ∂ρ , (19)

and we obtain

[d̂ρ, ρ] =
i

2
d̂ρ. (20)

It follows directly from (20)

[d̂ρ, f(ρ)] =
i

2
(
−→
∂ f(ρ)) d̂ρ =

i

2
d̂ρ (

←−
∂ f(ρ)). (21)

Free Hamiltonian has a form (cf. (3))

Ĥ0 − mc2 =
2 k̂+k̂−

2m
. (22)

Potential V (ρ) is introduced (see [1Ä5]) as addition to the free Hamiltonian and
we come to the relativistic Schréodinger equation which does not differ by form
from the nonrelativistic one

(Ĥ0 + V (ρ))ψ(ρ̃) = Eψ(ρ̃). (23)

At last, we write down the k-momentum operators corresponding to the half of
the distance in the Lobachevsky momentum space in terms of the relativistic
noncommutative differential calculus

k̂± = e±iψ

(
−iρ − 1/2 ± n

2ρ
(−→∗ + ←−∗ ) d̂ρ − 1

ρ

(
1 +

i

2
−→∗ d̂ρ

)
∗ d̂ψ

)
, (24)

where −→∗ and ←−∗ are left and right noncommutative Hodge symbols introduced
in [5], ∗ is the standard Hodge symbol corresponding to the commutative differ-
entiation in ψ.
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