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1. MOTIVATION

Superconductivity is one of the most fascinating phenomena in condensed
matter physics, which gave a great impact on the development of science and
technology. Discovered 100 years ago, it has a rich history of events, when the
ˇrst half of the ®Superconductivity century¯ was devoted to extending the number
of what we are presently calling conventional superconductors, and to establishing
their theory. Nonconventional, high-temperature, superconductors (HTSCs) are
known since 1986, but the solid theoretical ground to describe them still remains
uncovered.

Recall, conventional superconductors are described by BCSB [1] theory. The
main ingredients of BCSB are: 1. (second order) phase transition (described by
the LandauÄGinsburg phenomenological theory); 2. the electron Cooper pairs
condensate formation; 3. forming an energy gap. The effective coupling of BCSB
is the electron-phonon coupling, so BCSB is one of the best examples of a weak
coupling constant theory. In contrast, the description of HTSCs can be achieved
within a theory in the strong coupling constant regime [2]. So the question is:
how to formulate such a theory? Below we will exploit the prescription, which
comes from String theory: to describe Holographic Superconductivity [4] in the
frameworks of the AdS/CFT correspondence.
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2. AdS/CFT ON A NUTSHELL AND BASIC INGREDIENTS
FOR A HOLOGRAPHIC SUPERCONDUCTOR

The main principle of the AdS/CFT correspondence [3] is formulated as fol-
lows: Gauge theory on the AdSd+1 boundary, and at a strong coupling constant,
is dual to the bulk gravity with matter, and at a weak coupling. A local CFT
may be deˇned by the asymptotic expansion of a bulk ˇeld near the boundary
of AdSd+1

Θ(z) = AzΔ− (1 + . . . ) + BzΔ+ (1 + . . . ) , (1)

where Δ is the scaling dimension, depending on the spin and on the mass of
the bulk ˇeld, A is the source to the dual boundary CFT operator O, and B is
its expectation value 〈O〉. For a massless vector ˇeld with just one temporal
component, At(z → 0) = Az(d−2)(1 + . . . ) + B(1 + . . . ), z-dependent part has
a fast falloff, hence it is not a background ˇeld in the dual theory. Therefore,
A ˇxes the electric charge density of the state [4]. The ˇnite part of At(z → 0)
is a chemical potential for the electric charge density ρ. For d = 2, one has to
use [5] zε = 1+ ε ln z + . . . with ε = (d−2), subsequently rescaling the chemical
potential μ → −μ/ε as well.

Let's focus on AdS3/CFT2. This case is technically more simple, less stud-
ied, and includes main ingredients of holographic superconductors (HSCs). It has
a relation to real systems like superconducting nanowires, and exhibits the rich
symmetry structure (pure 2d CFT with inˇnitely dimensional conf. symmetry, en-
tropy relation to the algebra central charge, etc.). Though gravity is not dynamical
in the bulk, there are AdS3 Black Holes (BHs) [6]. In the probe limit, without
backreaction on the metric, the studied system is described by the action [4,5]

S = −
∫

d3x
√
−g

(
1
4
FmnFmn + (∂m − iAm)Ψ(∂m + iAm)Ψ∗ + m2ΨΨ∗

)
(2)

in the background of neutral AdS BH [6]

ds2 = [L2/z2]
(
−f(z)dt2 + dx2 +

dz2

f(z)

)
, f(z) = 1 − z2

z2
H

. (3)

Here L is a length of AdS, the boundary is located at z = 0, the BH horizon is at
z = zH . Metric (3) solves the Einstein equation 2Rmn = gmn

(
R + 2/L2

)
, and

the BH temperature is T = 1/(2πzH).
The dynamics of ˇelds in the bulk is described by

Dm(
√
−gDmΨ) −

√
−gm2Ψ = 0,

(4)
∂n(

√
−g Fnm) +

√
−g i(ΨDmΨ∗ − Ψ∗DmΨ) = 0,
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with DΨ ≡ (∂m − iAm)Ψ, DmΨ∗ = (DΨ)∗, Fmn = 2∂[mAn]. Following [4],
we are going to solve (4) with the ansatz Ψ = ψ(z), A = φ(z)dt. On account of
the latter and of the BH metric (3), equations (4) become

ψ′′ +
(

f ′

f
− 1

z

)
ψ′ +

(
φ2

f2
− m2L2

z2f

)
ψ = 0,

(5)

φ′′ +
(

φ′

z
− 2ψ2φL2

z2f

)
= 0.

To solve (5), as analytically (see, e.g., [7]) as well as numerically [5,8], boundary
conditions (BCs) should be speciˇed. At z = zH and at the AdS boundary the
BCs are

φ(zH) = 0, ψ′(zH) =
ψ(zH)
2zH

, φ = μ ln z − ρ,

(6)
ψ = ψ(2)z → 〈O〉ψ = ψ(2).

3. PHASE TRANSITIONS IN BTZ BACKGROUNDS

With the setup in above, solving (4) analytically involves several steps [7]:
expand the ˇelds Φ = (φ, ψ), Φ(z) = Φ(Z)+Φ′(Z)(z−Z)+Φ′′(Z)(z−Z)2/2+
. . . near the horizon (Z = zH ) and at the boundary (Z = 0); take the BCs into
account; evaluate a few ˇrst coefˇcients in the ˇelds series expansions near the
boundary and near the horizon by the use of the BCs and equations of motion;
and sew the so-obtained ˇelds' series expansions, and their ˇrst derivatives, at an
intermediate point z, that will lead to the result. Following the prescription, and
setting the sew point at z = 1/2zH , we get [9]

Tc = 2
μ

π
√

123
≈ 0.057μ (7)

for the critical temperature of the phase transition, and (L = 1)

〈O〉ψ ≈ 12.7
√

TTc

(
1 − T

Tc

)1/2
T→Tc−→ 〈O〉ψ ≈ 12.7 Tc

(
1 − T

Tc

)1/2

. (8)

The critical exponent and the temperature dependence of the scalar dual operator
expectation value is typical for the second-order phase transitions occurred in
superconductors. The numerical coefˇcient is in a good agreement with that
obtained in the numerical studies [5, 8]. There one gets 〈O〉ψ ≈ 12.2 Tc(1 −
T/Tc)1/2, Tc/μ ≈ 0.136. The discrepancy in Tc is expected for this type of
analytical calculations, and may be slightly improved by choosing the appropriate
sewing point.
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Let's try to extend the standard setup modifying ˇelds in the bulk, or the
background in which they propagate. A natural modiˇcation for AdS3 Maxwell
ˇeld consists in adding the ChernÄSimons topological term, and to make the
gauge ˇeld massive, i.e.,

S = S0(A, Ψ, ∂A, DΨ) + θ/2
∫

A ∧ dA, (9)

However, such a modiˇcation is nontrivial once new magnetic degrees of freedom
(DOF) appear in the ansatz for A, A = φ(z)dt + B(z)dz (Ψ = ψ(z)). It is
possible in the probe limit, but it cannot be realized in the complete setup with
the backreaction on the metric. The reason is all the magnetic BTZ-type solutions
in EMS(CS) systems are horizonless [10].

But inclusion of external magnetic ˇeld can be realized in another way [11],
with taking into account the BarnettÄLondon effect of magnetization of uncharged,
but rotated body, and the LenseÄThirring dragging force effect which guarantees
the AdS boundary rotation in the background of rotating BTZ BH. Hence, we
have to put our Maxwell-Scalar interacting system in the background of a rotating
BTZ BH (with f(z) = 1 − Mz2/L2 + J2z4/(4L6))

ds2 = [
L2

z2
]

[
−f(z) dt2 +

dz2

f(z)
+ L2

(
dϕ − Jz2

(2L4)
dt

)2
]

. (10)

Now Eqs. (4) have to be solved with the following ansatz Ψ = Ψ(z, ϕ̃),
A = φ(z) dt + ξ(z)dϕ̃, ϕ̃ = Lϕ, and in the background (10). The system
looks complicated, so we need a simpliˇcation. The small angular momentum
approximation, in which Ψ = Ψ(z, ϕ̃), A = φ(z) dt + ξ(z) dϕ̃, J 	 1, ξ(z) 	
φ(z), makes the problem more tractable (see [9] for details). The system of
equations of motion transforms in the limit to [9]

ψ′′ +
(

f ′

f
− 1

z

)
ψ′ +

(
φ2

f2
− m2L2

z2f
− z

Lf
λ

)
ψ ≈ 0, (11)

φ′′ +
1
z

(
1 +

Jz3

L3

)
φ′ − L2

z2

2ψ2e2iαϕ̃

f
φ ≈ 0 (12)

with the separation constant λ, coming from the solution to the angular part of
the scalar equation of motion: λ ≈ Lα2/z + αJzφ(z)/(2L2f(z)).

Doing the same machinery of analytical calculations as in the nonrotating
case, we get the following T dependence of the CFT scalar operator expecta-
tion value

〈O〉ψ ≈ 16.68 T

(
1 −

√
123
4μ

[
2πT +

17α2

164πT
− αJR

8π2T 2L3

])1/2

. (13)
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Here JR is the renormalized angular momentum (see [9] for details), and we are
within the approximation αJR 	 1, α 	 1.

What are we expecting to get when the BH becomes rotating? In the
background of the rotating BTZ BH the radial part of the scalar equation is
∂m(

√−ggmn∂nΨ) + f(A, ∂)Ψ − V (Ψ) = 0, with some operator f(A, ∂) and
the effective potential V (Ψ) =

√−g[m2 + Atg
ttAt + Aϕ̃gϕ̃ϕ̃Aϕ̃]. If there are

magnetic DOF in A, the condensation becomes hard in comparison with the pure
electric case Aϕ̃ = 0, when gtt < 0, and the effective mass decreases. In the
electro-magnetic case, due to gϕ̃ϕ̃, the effective mass gets decreased smaller,
making the condensation hard. Though we have not magnetic DOF in the ansatz,
external magnetic ˇeld is modeled by the rotation. Hence we expect the critical
temperature of the phase transition will become lower in comparison with the
nonrotating case, see Fig. 1 in [9]. However, one may encounter the situation
when the critical temperature of the phase transitions becomes higher than in the
nonrotating HSC, see Fig. 2 in [9].

4. CONCLUSIONS

To summarize, we have applied the analytical methods to a 2D holographic
superconductor in the probe limit. It was found a good agreement between the
boundary scalar operator expectation value in analytical and numerical approaches,
but the value of the critical temperature, estimated analytically, is about twice less
than that reproduced in the numerical calculations. This discrepancy is typical
within the approach we followed, as it comes from Table 1 in [12]. It can be
slightly improved by the appropriate choice of the sewing point, however the
coefˇcient in the scalar CFT operator will be changed. It turns out that, in
dependence on the choice of free parameters of the model (α, JR), one may
encounter as ®normal¯ the lowering of the critical temperature due to the BH
rotating, as well as ®abnormal¯ the Tc increasing. It would be interesting to
reproduce this effect in numerical simulations of the complete problem with
backreaction, and out of the small angular momentum approximation.
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