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General Relativity rewritten in conformal units identiˇes conformal intervals with the real obser-
vational distances. This identiˇcation provides the basis for the explanation of all the epochs of the
Universe evolution including Ia supernova luminosity long distanceÄredshift relation by the dominance
of the Casimir vacuum energy of all physical ˇelds. A set of arguments is discussed in favor of the
fact that the SNe Ia data in the conformal units can be an evidence of the conformal twistor structure
of the space-time as a nonlinear realization of the afˇne group, just like the nonlinear realization of
chiral symmetry and phenomenological Lagrangian is an evidence of the quark structure of hadrons.

PACS: 95.30.Sf; 98.80.-k; 98.80.Es

INTRODUCTION

The conformal symmetry as a basis for the construction of the General Rela-
tivity (GR) was independently introduced by Deser and Dirac [1,2]. In particular,
Dirac formulated the conformal-invariant approach to the GR [2] as a new vari-
ational principle for the Hilbert action introducing a dilaton (scalar) ˇeld, in
addition to the metric components gμν .

The conformal treatment of gravity is supported by the Ogievetsky theo-
rem [3] according to which the GR-diffeomorphism group Diff R(1,3) can be
obtained as the closure of two ˇnite-dimensional groups: the 15-parameter con-
formal group and the 20-parameter afˇne group having the Poincar�e group as a
common subgroup. Further it was shown [4] that in the case of the dynamical
afˇne symmetries the method of nonlinear realization of symmetry groups [5]
leads to the Hilbert action of Einstein's gravitational theory expressed in terms
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of the Fock simplex components [6]. The conformal invariance not only picks
out the Einstein GR among several appropriated invariants of the nonlinearly
realized afˇne symmetry, but it also establishes the conformal units which have
been introduced before by several researchers including Dirac [2].

In the present paper, we discuss a set of observational data and facts that
follow from the conformal units [1, 2] in comparison with the Einstein ones.
In our conformal version of the GR (CGR), the conformal symmetry breaking
happens due to the presence of the Casimir vacuum energy [7] in a ˇnite volume
of the Universe. In our approach, the Casimir vacuum energy substitutes the dark
energy. It provides a good description of SNe Ia data [8] within the conformal
cosmology [9,10]. We found that the Universe horizon and the Planck least action
postulate lead to the Planck scale hierarchy and the instance of the primordial
particle creation from vacuum, with the Casimir vacuum energy being the source
of the creation.

1. CONFORMAL GENERAL RELATIVITY

The Conformal General Relativity (CGR) is a nonlinear realization of the
joint conformal and the afˇne A(4) symmetries in the factor space A(4)/L with
the Lorentz subgroup L of the stable vacuum (here we use the concepts of the
theory [5]). Recall that the afˇne group A(4) is the group of all linear transforma-
tions of the four-dimensional manifold xμ → x̃μ = xμ +yμ +L[μν]x

ν +R{μν}x
ν ,

where yμ is a shift of coordinate and L[μν] and R{μν} are antisymmetric and sym-
metric matrices, respectively. A nonlinear realization of A(4) is based on ˇnite
transformations G = eiP ·x eiR·h deˇned by means of the shift operator P , the
proper afˇne transformation R, and the following Goldstone modes: four coordi-
nates xμ and ten gravitational ˇelds h. Further it was shown [4] that in the case of
the dynamical afˇne symmetries the method of nonlinear realization of symmetry
groups [5] leads to the Hilbert action of Einstein's gravitational theory expressed
in terms of the Fock simplex components as WE = −(M2

Pl/16)
∫

d4x
√−gR(4),

where R(4) is the curvature. Taking into account the hidden conformal sym-
metry associated with a dilaton (scalar) ˇeld D and, consequently, transfor-
ming gμν [2]

gμν = g̃μν e2D, (1)

we obtain the conformal-invariant action:

WC ≡ −M2
C

3
8π

∫
d4x

[√
−g̃

6
R(4)(g̃) e−2D−e−D ∂μ

(√
−g̃ g̃μν∂ν e−D

)]
, (2)
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where MC is a scale unit. It is deˇned in the Riemannian space-time where the
conformal interval

ds2
C = g̃μν dxμ dyν = ω̃(0) ⊗ ω̃(0) − ω̃(b) ⊗ ω̃(b) ≡ η(α)(β)ω̃(α) ⊗ ω̃(β) (3)

is identiˇed with the measurable one, instead of the Einstein interval

ds2
E = gμν dxμ dyν . (4)

If D = 0, one obtains WC ≡ WE and dsC ≡ dsE . Thus, the GR model based
on the conformal and afˇne symmetry principles (described by the action (2))
differs from the original EinsteinÄHilbert action WE by the following elements
and treatments. Namely:

1. Action (2) deals with the conformal geometrical interval (3) ds2
C instead

of the Einstein one (4) ds2
E = gμν dxμ dxν < ds2

C .
2. The cosmological evolution in the CGR can be provided by the mean

ˇeld dynamics of the dilaton zeroth mode instead of the homogeneous approxi-
mation [11] (see below).

3. The CGR contains the Newton coupling constant (GN = M−2
C e2D =

M−2
Pl ) as the present-day value of the dilaton ˇeld D. We recall that the standard

GR contains the effective Newtonian coupling constant as the absolute fundamen-
tal parameter of the equations of motion. In the CGR, the relation of the coupling
constant to the Early Universe is clariˇed below.

In order to establish a relation between physical scales relevant for the Early
Universe, we assume that there is a common source of the conformal symmetry
breaking. We suppose that the Casimir vacuum energy of the Empty Universe
could be naturally associated with this source (see below).

Hereafter, we use the natural units:

MPl

√
3/(8π) = c = � = 1. (5)

Taking into account Eqs. (3) and (4), the simplex components [ω̃(0), ω̃(b)] can
be written as

ω̃(0) = e−2DN dx0, (6)

ω̃(b) = e(b)i dxi + N(b) dx0, (7)

where N(b) = N jej(b) are the shift vector components, and N(x0, xj) is the lapse
function. Here ω̃(b) are the linear forms deˇned via the triads e(b)i with a unit

spatial metric determinant |g̃(3)
ij | = 1 known as the Lichnerowicz gauge [12]. This

gauge ˇxes the scalar dilaton ˇeld D as the logarithm of the conformal factor:

D = −(1/6) ln |g(3)
ij |. (8)
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2. THE DILATON SCALAR FIELD

The group of invariance of the GR for the DiracÄADM foliation is known as
the kinemetric subgroup of the general coordinate transformation [13]:

x0 → x̃0 = x̃0(x0), (9)

xk → x̃k = x̃k(x0, x1, x2, x3). (10)

This group admits the decomposition of the dilaton into the sum of the zeroth
and nonzeroth harmonics:

D(x0, x1, x2, x3) = 〈D〉(x0) + D(x0, x1, x2, x3). (11)

The introduction of the zeroth mode 〈D〉(x0) is consistent with the Einstein
cosmological principle of averaging of all scalar ˇelds of the theory over a ˇnite
volume V0 =

∫
V0

d3x [14] so that

〈D〉(x0) = V −1
0

∫
V0

d3xD(x0, x1, x2, x3). (12)

Note that the zeroth dilaton harmonics coincides by construction with the cosmo-
logical scale factor logarithm [11]

〈D〉 = − lna = ln(1 + z). (13)

Thus, in the ˇnite volume V0 (taking into account Eqs. (11) and (13)), we
have the following action:

WC = WUniverse︸ ︷︷ ︸
=0 for V0=∞

+Wgraviton + Wpotential, (14)

WUniverse[〈D〉, N0] = −V0

τ0∫
τI

dx0N0︸ ︷︷ ︸
=dτ

[(
d 〈D〉
N0 dx0

)2

+ ρCas(〈D〉)
]

, (15)

Wgraviton =
∫

d4x
N

6

[
v(a)(b)v(a)(b) − e−4DR(3)(e)

]
, (16)

Wpotential =
∫

d4xN

⎡⎢⎢⎣−v2
D
− 4

3
e−7D/2�(3) e−D/2︸ ︷︷ ︸

Newtonian potentials

⎤⎥⎥⎦ , (17)
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where

vD =
1
N

[
(∂0 − N l∂l)D + ∂lN

l/3
]
, (18)

v(a)(b) =
1
N

[
ωR

(a)(b)(∂0 − N l∂l) + ∂(a)N
⊥
(b) + ∂(b)N

⊥
(b)

]
(19)

are the velocities of the metric components and ˇelds, � = ∂i[ei
(a)e

j
(a)∂j ] is the

BeltramiÄLaplace operator, and R(3)(e) is the three-dimensional spatial curvature
expressed in terms of the triads e(a)i. Here we have introduced in action (15) the
additional term ρCas(〈D〉). The introduction of the ˇnite volume V0 =

∫
V0

d3x <

∞ creates a dimensional parameter; therefore, it breaks the conformal symmetry.
According to the general wisdom [5], this breaking leads to the appearance of a
Goldstone mode [15,16]. It is just the zeroth harmonic 〈D〉 that cannot be deˇned
in the inˇnite volume. Note, however, that the Hamiltonian dynamics governed
by the equations of motion must obey the conformal symmetry (see below). We
will show that this source could be associated with the Casimir energy of the
Universe giving a nonzero density contribution ρCas(〈D〉) 
= 0.

The choice of the zeroth dilaton mode 〈D〉 as an evolution parameter has
two consequences in the Hamiltonian approach. First, the zeroth dilaton mode
canonical momentum density

P〈D〉 =
2
V0

∫
V0

d3x
√
−gg00 d

dx0
〈D〉 ≡ 2

d

dτ
〈D〉 = 2v〈D〉 = const 
= 0 (20)

can be treated as a generator of the Hamiltonian evolution in the ˇeld space of
events [17, 18]. We stress that the scale-invariance (D → D + Ω) admits only
a constant P〈D〉. In virtue of Eqs. (11) and (12), the Dirac Hamiltonian theory
provides the orthogonality condition∫

V0

d3xD(x0, x1, x2, x3) ≡ 0. (21)

This condition enables us to consider the zeroth and nonzeroth components as
independent ones.

The second consequence of the orthogonality condition (21) is that the
nonzeroth harmonics D(x0, x1, x2, x3) do not depend on the evolution parame-
ter. Therefore, one can consider these components as the gravitational Newton-
type potentials due to the condition for the canonical momentum of the dilaton
nonzeroth modes

PD/2 = vD =
[
(∂0 − N l∂l)D + ∂lN

l/3
]
/N = 0. (22)
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This result ˇxes the longitudinal shift vector component.
As a result, we have ∫

d3x v〈D〉 · vD = 0 (23)

that follows from Eqs. (11), (12), and (21). The orthogonality conditions (21) and
(23) preserve the deˇnite metrics in the Hilbert space of states [16].

3. CONFORMAL CASIMIR ENERGY AND UNIVERSE HORIZON

Let us consider the Early Universe. We assume that at the instance of
creation the world was empty and ˇnite in size. Therefore its energy can be
associated only with the quantum Casimir energy of all physical ˇelds in the given

space. We will treat all those ˇelds as massless since m(a) a→0−→ 0 in the Early
Universe epoch.

The Casimir energy of a massless ˇeld f

H(f)
Cas =

∑
k

√
k

2

2
=

γ̃(f)

dCas(a)
(24)

depends on the geometry, size dCas, topology, boundary conditions, and spin (in
particular, for a sphere of diameter dCas, the number of γ̃ ∼ 0.1−0.03) [16].
For simplicity, we assume that the Universe has a spherical volume limited
by the horizon.

It is natural to suggest that the energy of a massless ˇeld is proportional to
the inverse visual size of the Universe dCas(a). Assuming the same dependence
for all ˇelds, we deˇne the total Casimir energy density of the Universe summing
over all ˇelds

ρt =
∑

f

H(f)
Cas

V0
=

C0

dCas(a)
. (25)

The key assumption of our model is that the Casimir dimension dCas(a) is equal
to the Universe visual size (its horizon)

dCas(a) ≡ dhor(a) = 2C0
−1/2

a∫
aI→0

da d
1/2
Cas. (26)

Equation (26) has the solution

d
1/2
Cas(a) = [C0]−1/2a → dCas(a) =

a2

C0
. (27)



THE GENERAL RELATIVITY WITH CONFORMAL UNITS 1325

Comparing Eq. (27) with the horizon

dhor(a) =
a2

H0
, (28)

one obtains

C0 = H0. (29)

Thus, in our approach, parameter C0 is equal to the Hubble parameter H0, which
can be determined from the observations.

4. HIERARCHY OF COSMOLOGICAL SCALES

Let us consider the Early Universe at the rigid state horizon (28). A hypothet-
ical observer measures the conformal horizon dhor = 2rhor(z) as the distance that
a photon covers within its light cone. The latter is determined by the zero interval
equation dη2 − dr2 = 0 during the photon lifetime in the homogeneous Universe,
which is the subject of the condition ηhor = rhor(z) = 1/[2H0(1 + z)2], in ac-
cordance with Eq. (27). This means that the four-dimensional space-time volume
restricted by the horizon is equal to

V
(4)
hor =

4π

3
r3
hor(z)ηhor(z) =

4π

3 · 16H4
0 (1 + z)8

. (30)

It is natural to assume that at the instance of the Universe origin the world was
essentially quantum. Therefore, we claim that action (15) is the subject of the
Planck's least action postulate so that

WUniverse = ρcrV
(4)
hor (aPl) =

M2
Pl

H2
0

(1 + zPl)−8

32
= 2π. (31)

Using the present-day (τ = τ0) observational data for the Planck mass and the
Hubble parameter at h � 0.7

MC e〈D〉(τ0) = MPl = 1.2211 · 1019 GeV, 〈D〉(τ0) = 0,

d

dτ
〈D〉(τ0) = H0 = 2.1332 · 10−42 GeV · h = 1.4332 · 10−42 GeV,

(32)

we obtain from (31) the primordial redshift value

a−1
Pl = (1 + zPl) ≈

[
MPl

H0

]1/4 [
4
π

]1/8

/2 � 0.85 · 1015. (33)
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In other words, the Planck mass and the present-day Hubble parameter value (the
main cosmological scales) are related to each other by the age of the Universe
expressed in terms of the cosmological scale factor.

In ˇeld theories, characteristic scales associated with physical states are clas-
siˇed according to the Poincar�e group representation [19]. In our approach, the
Poincar�e classiˇcation of energies arises from the decomposition of the mean par-
ticle energy ωτ = a2

√
k2 + a2M2

0 conjugated to the dilaton time interval. We
express this decomposition in the form

〈ω〉(n)(a) =
(

a

aPl

)(n)

H0, (34)

based on the primordial redshift value (33). This equation enables one to in-
troduce the conformal weights n = 0, 2, 3, 4 which correspond to: the dilaton
velocity vD = H0, the massless energy a2

√
k2, the massive one M0a

3, and the
Newtonian coupling constant MPla

4 (31), respectively. One can also include in
these classiˇcations the scale of the nonrelativistic particle H0 = a1

Pl ·10−13 cm−1

with the unit conformal weight of its energy ωnonrel
τ = a1k2/M0. As a result, the

redshift leads to a hierarchy law of the present-day (a = 1) cosmological scales

ω
(n)
0 ≡ 〈ω〉(n)(a)

∣∣∣
(a=1)

=
(

1
aPl

)(n)

H0, (35)

shown in the Table.

The hierarchy law of the cosmological scales in GeV (M∗
Pl =

√
3/(8π)MPl)

n = 0 n = 1 n = 2 n = 3 n = 4

H0�1.4 ·10−42 R−1
Cel.S�1.2 ·10−27 k0CMB�10−12 φ0�3 · 102 M∗

Pl�4 · 1018

The Table contains the scales corresponding to the Hubble parameter (n = 0),
the celestial system size (n = 1), the cosmic microwave background mean wave-
momentum (n = 2), the electroweak scale of the SM (n = 3), and the Planck
mass (n = 4). We conclude that the observational data testify that the cosmic
evolution (34) of all these mean energies with conformal weights (n = 0, 1, 2, 3, 4)
has a common origin, which could be assosiated with the Casimir vacuum energy
(see [22]).

5. SNE IA DATA AS THE EVIDENCES OF LONG CONFORMAL UNITS

A particular conformal cosmological model, based on the ideas discussed
above, has been developed in [9,10,20,21]. It was shown that the model leads to
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a viable cosmology being in agreement with observations. For example, a good
description of the modern supernovae type Ia (SNe Ia) data was constructed [9,10].
In the present paper, we show that the Casimir vacuum effect in a ˇnite-size
Universe could provide both the scale invariance breaking and the rigid state
dominance, required in our model to describe the SNe Ia data.

Since the end of the last century, distant supernovae data is a widespread
test for all the theoretical cosmological models in spite of the fact that the cor-
rectness of the hypothesis about SNe Ia as the perfect standard candles is still
not proven [23]. Conformal cosmological models [24Ä26], where all observ-
ables are identiˇed with the scale-invariant quantities of the GR introduced by
Lichnerowicz [12], are also discussed among other possibilities [27].

Assuming that the supernovae type Ia are standard candles, one could use
them to test cosmological theories. The Hubble Space Telescope team analyzed
186 SNe Ia [28] to test the Standard Cosmological model (SC) associated with
expanded lengths in the Universe and evaluated its parameters (see the ˇgure).
We use the same sample to determine parameters of the Conformal Cosmological
model (CC) with relative reference units of intervals, so that conformal quantities

μ(z)-dependence for cosmological models in SC and CC. The data points include 186
SNe Ia (the ®gold¯ and ®silver¯ samples) used by the cosmological supernova HST team.

For a reference, we use the best ˇt for the 	at standard cosmology model with Ωm =

0.27, ΩΛ = 0.73 (the thick dashed line); the best ˇt for CC is shown with the thick solid
line. For this CC model, we do not put any constraints on Ωm
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of the General Relativity are interpreted as observables. We concluded that the
test is extremely useful and allows one to evaluate parameters of the model. From
a formal statistical point of view, the best ˇt of the CC model is almost the same
quality approximation as the best ˇt of the SC model with ΩΛ = 0.72, Ωm = 0.28.
As it was noted earlier, for CC models, a rigid matter component could substitute
the Λ-term (or quintessence) existing in the SC model. We note that a free
massless scalar ˇeld can generate such a rigid matter. We describe the results of
our analysis for more recent ®gold¯ data (for 192 SNe Ia).

6. SUMMARY

Any science is based on information. The units of information are a bit (1,0).
The units of the quantum information are a 2-dimensional twistor (cos θ, sin θ eiδ)
as a fundamental representation of the conformal (C) group in the Penrose twistor
program [29]. In accordance with this twistor program, the four-parametric ma-
trix of the space-time coordinates x̂AȦ = x0ÎAȦ −xjσ

j

AȦ
is constructed from the

2-dimensional twistor fundamental representations, like mesons (as a joint repre-
sentation of SU(2)) are constructed from the two-dimensional quark fundamental
representation of SU(2).

The next step in this analogy with the hadron physics (that is beyond the
Penrose twistor program) is a nonlinear realization of the afˇne and conformal
symmetries A(4) ⊗ C in the factor-space K = A(4)/L in conformal units. This
step is just like nonlinear realizations of the ˇnite-parameter SU(2) × SU(2)
group over the vacuum stability subgroup SU(2). Recall that this step leads to
the effective chiral hadron Lagrangians constructed via the MaurerÄCartan linear
forms without any reference to the underlying QCD theory. In this analogy, the
Planck mass MPl plays the role of the weak decay constant parameter Fπ �
93 MeV as a speciˇc scale of hadron low-energy physics. One can see that the
twistor dissociation (like QCD parton-type deep-inelastic scattering processes)
can happen in the quantum theory of space-time when energy is greater than the
Planck mass MPl. The question is what is the QCD analogy of such a twistor
dissociation?

This hadron-like chain of the quantum theory of space-time proves that the
supersymmetric uniˇcation can be based on the ˇnite-parameter geometrization
of all interactions via nonlinear realization of this super-afˇne group A[(2b+2f)×
×x(2b + 2f)] = A[8b + 8f ], where the role of twistors as the fundamental rep-
resentation of the conformal group can be played by the supertwistors proposed
in [30], together with the commutation-relation algebra of operators ®superspace¯
conformal transformations associated with these supertwistors. This algebra forms
a super-afˇne group and its nonlinear realization as the 8b + 8f space-time. Ac-
cording to the hadron analogy, one can obtain the nonlinear realization, where
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supercurvature R8b+8f is a basis of the uniˇed supersymmetric theory. These pro-
grams are supported by the last results in paper [31], where the gravi-electroweak
and strong interactions were obtained by the uniˇcation of an 8-dimensional the-
ory by compactiˇcation of four extra space dimensions in the theory with the
curvature R(8).

Acknowledgements. The authors would like to thank M.Bordag, S. Deser,
D. Ebert, A. Efremov, V.Gershun, Yu. Ignatev, E. Lukierski, and A. Zheltukhin for
the useful discussions. VNP and AB were supported in part by the BogoliubovÄ
Infeld program. AFZ is grateful to the JINR Directorate for support.

REFERENCES

1. Deser S. Scale Invariance and Gravitational Coupling // Ann. Phys. 1970. V. 59. P. 248.

2. Dirac P. A.M. Long Range Forces and Broken Symmetries // Proc. Roy. Soc. London
A. 1973. V. 333. P. 403.

3. Ogievetsky V. I. Inˇnite-Dimensional Algebra of General Covariance Group as the
Closure of Finite-Dimensional Algebras of Conformal and Linear Groups // Lett.
Nuovo Cim. 1973. V. 8. P. 988.

4. Borisov A. B., Ogievetsky V. I. Theory of Dynamical Afˇne and Conformal Symmetries
as Gravity Theory // Theor. Math. Phys. 1975. V. 21. P. 1179 (Teor. Mat. Fiz. 1974.
V. 21. P. 329).

5. Coleman S. R., Wess J., Zumino B. Structure of Phenomenological Lagrangians. 1 //
Phys. Rev. 1969. V. 177. P. 2239;
Volkov D. V. Phenomenological Lagrangians // Part. Nucl. 1973. V. 4. P. 3; Preprint
ITF-69-73. Kiev, 1969.

6. Fock V. Geometrization of Dirac's Theory of the Electron // Z. Phys. 1929. V. 57.
P. 261 (in German).

7. Actor A. A. Scalar Quantum Fields Conˇned by Rectangular Boundaries // Fortsch.
Phys. 1995. V. 43. P. 141;
Bordag M. et al. Advances in the Casimir Effect. N.Y.: Oxford Univ. Press Inc.,
2009.

8. Riess A.G. et al. (Supernova Search Team Collab.). Observational Evidence from
Supernovae for an Accelerating Universe and a Cosmological Constant // Astron. J.
1998. V. 116. P. 1009;
Astier P. et al. (The SNLS Collab.). The Supernova Legacy Survey: Measurement of
Omega(m), Omega(lambda) and W from the First Year Data Set // Astron. Astrophys.
2006. V. 447. P. 31.

9. Behnke D. et al. Description of Supernova Data in Conformal Cosmology without
Cosmological Constant // Phys. Lett. B. 2002. V. 530. P. 20.

10. Zakharov A. F., Pervushin V. N. Conformal Cosmological Model Parameters with Dis-
tant SNe Ia Data: ®Gold¯ and ®Silver¯ // Intern. J. Mod. Phys. D. 2010. V. 19.
P. 1875.



1330 PERVUSHIN V.N. ET AL.

11. Friedmann A. éUber die Kréummung des Raumes // Z. Phys. 1922. V. 10. P. 377 (Gen.
Rel. Grav. 1999. V. 31. P. 1991) (in German);
éUber die Méoglichkeit einer Welt mit konstanter negativer Kréummung des Raumes //
Z. Phys. 1924. V. 21. P. 306 (in German).

12. Lichnerowicz A. L'integration des equations de la gravitation relativiste et le probleme
des n corps // J. Math. Pures and Appl. B. 1944. V. 37. P. 23 (in French);
York J. W. Gravitational Degrees of Freedom and the Initial-Value Problem // Phys.
Rev. Lett. 1971. V. 26. P. 1656;
Kuchar K. A Bubble-Time Canonical Formalism for Geometrodynamics // J. Math.
Phys. 1972. V. 13. P. 768.

13. Zelmanov A. L. Chronometric Invariants and Accompanying Coordinates in General
Relativity // Dokl. AN USSR. 1956. V. 107. P. 315 (in Russian);
Kinemetric Invariants and Their Relation to the Chronometric Invariants of Einstein's
Theory of Gravity // Dokl. AN USSR. 1973. V. 209. P. 822 (in Russian).

14. Einstein A. Cosmological Considerations in the General Theory of Relativity //
Sitzungsber. Preuss. Akad. Wiss. Berlin, 1917. P. 142.

15. Goldstone J. Field Theories with Superconductor Solutions // Nuovo Cim. 1961. V. 19.
P. 154.

16. Grib A. A., Mamaev S.G., Mostepanenko V. M. Quantum Effects in Strong External
Fields. St. Petersburg: Friedmann Lab. Publ., 1994.

17. DeWitt B. S. Quantum Theory of Gravity. 1: The Canonical Theory // Phys. Rev.
1967. V. 160. P. 1113.

18. Wheeler J. A. Lectures in Mathematics and Physics // Batelle Rencontres: 1967 /
Ed. by C. DeWitt and J. A. Wheeler. N. Y., 1968.

19. Wigner E. P. On Unitary Representations of the Inhomogeneous Lorentz Group // Ann.
Math. 1939. V. 40. P. 149.

20. Barbashov B. M. et al. Hamiltonian Cosmological Perturbation Theory // Phys. Lett.
B. 2006. V. 633. P. 458.

21. Arbuzov A. B. et al. Conformal Hamiltonian Dynamics of General Relativity // Phys.
Lett. B. 2010. V. 691. P. 230.

22. Pervushin V. N. et al. Conformal and Afˇne Hamiltonian Dynamics of General Rela-
tivity. arXiv:1109.2789 [gr-qc].

23. Panagia N. High Redshift Supernovae: Cosmological Implications // Nuovo Cim. B.
2005. V. 120. P. 667.

24. Behnke D. et al. Description of Supernova Data in Conformal Cosmology without
Cosmological Constant // Phys. Lett. B. 2002. V. 530. P. 20.

25. Behnke D. Conformal Cosmology Approach to the Problem of Dark Matter. PhD
Thesis. Rostock Report MPG-VT-UR 248/04. 2004.

26. Blaschke D. B. et al. Cosmological Production of Vector Bosons and Cosmic Mi-
crowave Background Radiation // Phys. At. Nucl. 2004. V. 67. P. 1050;



THE GENERAL RELATIVITY WITH CONFORMAL UNITS 1331

Barbashov B.M. et al. Hamiltonian General Relativity in Finite Space and Cosmolog-
ical Potential Perturbations // Intern. J. Mod. Phys. A. 2006. V. 12. P. 5957;
Barbashov B. M. et al. The Hamiltonian Approach to General Relativity and CMB
Primordial Spectrum // Intern. J. Geom. Meth. Mod. Phys. 2007. V. 4. P. 171.

27. Riess A. G. et al. (Supernova Search Team Collab.). The Farthest Known Supernova:
Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration //
Astrophys. J. 2001. V. 560. P. 49;
Tegmark M. Measuring the Metric: A Parametrized Post-Friedmanian Approach to the
Cosmic Dark Energy Problem // Phys. Rev. D. 2002. V. 66. P. 103507.

28. Riess A.G. et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Tele-
scope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution //
Astrophys. J. 2004. V. 607. P. 665.

29. Penrose R. Relativity, Groups and Topology. London: Gordon and Breach, 1964;
Chernikov N., Tagirov T. Quantum Theory of Scalar Fields in de Sitter Space-Time //
Ann. Inst. Henri Poincar
e. 1968. V. 9. P. 109.

30. Litov L. B., Pervushin V. N. Quantum Supertwistors and Fundamental Superspaces //
Phys. Lett. B. 1984. V. 147. P. 76.

31. Vladimirov Yu. S., Gubanov A. N. Uniˇcation of Gravi-Electroweak and Strong Inter-
actions in the 8-Dimensional Theory // Grav. Cosm. 1999. V. 5. P. 277.


