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A nonlocal gravity model with a function f(�−1R), where � is the d'Alembert operator, is
considered. The algorithm, allowing one to reconstruct f(�−1R), corresponding to the given Hubble
parameter and the state parameter of the matter, is proposed. Using this algorithm, we ˇnd the
functions f(�−1R), corresponding to de Sitter solutions.
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1. NONLOCAL GRAVITATIONAL MODELS

In this paper we consider nonlocal gravity models, which are described by
the action

S =
∫

d4x
√
−g

{
1

2κ2

[
R

(
1 + f

(
�−1R

))
− 2Λ

]
+ Lmatter

}
, (1)

where κ2 ≡ 8π/MPl
2, the Planck mass being MPl = 1.2 · 1019 GeV. We use

the signature (−, +, +, +), g is the determinant of the metric tensor gμν , Λ
is the cosmological constant, f is a differentiable function, and Lmatter is the
matter Lagrangian. Note that the modiˇed gravity action (1) does not include
a new dimensional parameter. This nonlocal model has a local scalar-tensor
formulation. Introducing two scalar ˇelds, η and ξ, we can rewrite action (1) in
the following local form:

S =
∫

d4x
√
−g

{
1

2κ2
[R (1 + f(η) − ξ) + ξ�η − 2Λ] + Lmatter

}
. (2)

By varying the action (2) over ξ, we get �η = R. Substituting η = �−1R into
action (2), one reobtains action (1). Varying action (2) with respect to the metric
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tensor gμν , one gets

1
2
gμν [R(1 + f(η) − ξ) − ∂ρξ∂

ρη − 2Λ] − Rμν(1 + f(η) − ξ)+

+
1
2

(∂μξ∂νη + ∂μη∂νξ) − (gμν� −∇μ∂ν) (f(η) − ξ) + κ2Tmatterμν = 0, (3)

where ∇μ is the covariant derivative and Tmatterμν the energy-momentum tensor
of matter.

Variation of action (2) with respect to η yields �ξ + f ′(η)R = 0, where the
prime denotes derivative with respect to η. If the scalar ˇelds η and ξ depend
on time only, then in the spatially �at FriedmannÄLemaå	treÄRobertsonÄWalker
metric with the interval

ds2 = −dt2 + a2(t)(dx2
1 + dx2

2 + dx2
3), (4)

Eq. (3) are equivalent to the following ones:

−3H2(1 + Ψ) +
1
2
ξ̇η̇ − 3HΨ̇ + Λ + κ2ρm = 0, (5)

(2Ḣ + 3H2)(1 + Ψ) +
1
2
ξ̇η̇ + Ψ̈ + 2HΨ̇ − Λ + κ2Pm = 0, (6)

where Ψ(t) = f(η(t)) − ξ(t), H = ȧ/a is the Hubble parameter, differen-
tiation with respect to time t is denoted by a dot. For a perfect matter �uid,
we have Tmatter00 = ρm(t) and Tmatter ij = Pm(t)gij . The equation of state
(EoS) is

ρ̇m = −3H(Pm + ρm). (7)

The equations of motion for the scalar ˇelds η and ξ are as follows:

η̈ + 3Hη̇ = −6(Ḣ + 2H2), (8)

ξ̈ + 3Hξ̇ = 6(Ḣ + 2H2)f ′(η). (9)

Note that the considered system of equations does not include the function
η, but only f(η), f ′(η) and time derivatives of η. Also, one can add a constant
to f(η) and the same constant to ξ, without changing equations. So, f(η) can be
determined up to a constant.

Our goal is to demonstrate how one can reconstruct f(η) and get a model with
the exact solution for the given Hubble parameter H(t) and the state parameter
wm(t) = Pm(t)/ρm(t). We show that to do this it is enough to solve only linear
equations.
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The algorithm is as follows:
• Assume the explicit form of H(t) and wm(t).
• Solve (7) and get ρm(t).
• Solve (8) and get η(t).
• Subtracting equation (5) from equation (6), get a linear differential equation

Ψ̈ + 5HΨ̇ + (2Ḣ + 6H2)(1 + Ψ) − 2Λ + κ2(wm − 1)ρm = 0, (10)

• Using the known H(t), wm(t), and ρm(t), solve (10) and get Ψ(t).
• Substituting ξ(t) = f(η(t))−Ψ(t) into Eq. (9), we get a linear differential

equation for f(η)

f ′′(η)η̇2 − 12(Ḣ + 2H2)f ′(η) = Ψ̈ + 3HΨ̇. (11)

To get (11) we also use the inverse function t(η). Note that Eq. (11) is a necessary
condition that the model has the solutions in the given form.

• Solve (11) and get the sought-for function f(η).
• Substitute the obtained function f(η) to Eq. (5) and Eq. (6) to check the

existence of the solutions in the given form.

2. NONLOCAL MODELS WITH DE SITTER SOLUTIONS

To demonstrate how the algorithm works we seek such f(η) that the model
has a de Sitter solution, in other words, the Hubble parameter is a nonzero
constant: H = H0. In this case, Eq. (8) has the following general solution:

η(t) = −4H0(t − t0) − η0 e−3H0(t−t0), (12)

with integration constants t0 and η0. All equations are homogeneous. If a solution
exists at t0 = 0, then it exists at an arbitrary t0. So, without loss of generality
we can set t0 = 0.

Note that Eq. (11) has been obtained without any restrictions on solutions
and the perfect matter �uid. To demonstrate how one can get f(η), which admits
the existence of de Sitter solutions, in the explicit form, we restrict ourselves to
the case η0 = 0. In this case, Eq. (11) has the following form:

16H2
0f ′′(η) − 24H2

0f ′(η) = Φ(η), (13)

where Φ(η) = Φ(−4H0t) ≡ Ψ̈ + 3H0Ψ̇. We get the following solution

f(η) =
1

16H2
0

η∫ ⎧⎨
⎩

ζ∫
Φ(ζ̃) e−3ζ̃/2 dζ̃ + 16C3H

2
0

⎫⎬
⎭ e3ζ/2dζ + C4, (14)

where C3 and C4 are arbitrary constants. We can ˇx C4 without loss of generality.
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Following [1], we consider the matter with the state parameter wm ≡ Pm/ρm

to be a constant, not equal to −1. Thus, equation (7) has the following general
solution

ρm = ρ0 e−3(1+wm)H0t, (15)

where ρ0 is an arbitrary constant. Equation (10) has the following general solu-
tion:

• At wm �= 0 and wm �= −1/3,

Ψ1(t) = C1 e−3H0t + C2 e−2H0t − 1 +
Λ

3H2
0

− κ2ρ0(wm−1)
3H2

0wm(1+3wm)
e−3H0(wm+1)t,

• At wm = −1/3,

Ψ2(t) = C1 e−3H0t + C2 e−2H0t − 1 +
Λ

3H2
0

+
4κ2ρ0

3H0
e−2H0tt,

• At wm = 0,

Ψ3(t) = C1 e−3H0t + C2 e−2H0t − 1 +
Λ

3H2
0

− κ2ρ0

H0
e−3H0tt,

where C1 and C2 are arbitrary constants.
Substituting the explicit form of Ψ(t), we get

f1(η) =
C2

4
eη/2+C3 e3η/2 + C4 −

κ2ρ0

3(1+3wm)H2
0

e3(wm+1)η/4 at wm �= −1
3
,

(16)

f̃1(η) =
C2

4
eη/2 + C3 e3η/2 + C4 +

κ2ρ0

4H2
0

(
1 − 1

3
η

)
eη/2, at wm = − 1

3
,

(17)

where C3 and C4 are arbitrary constants. Note that C2 is an arbitrary constant as
well.

One can see that the key ingredient of all functions fi(η) is an exponent
function. For the models with f(η) equal to an exponential function or a sum
of exponential functions, particular de Sitter solutions have been found in [1, 2].
de Sitter solutions in the case of the exponential function f have been generalized
and their stability has been analysed in [3].

CONCLUSION

Exact solutions play an important role in modern cosmological models, in
particular, in nonlocal cosmological models [1Ä6]. The main result of this paper
is the algorithm, using which one can reconstruct f(�−1R), corresponding to the
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given Hubble parameter and the state parameter of the matter. We have found
that the function f corresponding to de Sitter solution is an exponential function
or a sum of exponential functions∗. In the case of the exponential function f ,
expanding universe solutions a ∼ tn have been found in [2, 6]. We plan to
analyse possible forms of the corresponding function f in future investigations.
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∗If the model includes the perfect �uid with wm = −1/3, the form of f is more complicated
(formula (17)).


