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A new representation is found for the action of the recently suggested ghost-free nonlocal
gravity models generating the de Sitter or anti-de Sitter background with an arbitrary value of the
effective cosmological constant. This representation allows one to extend applications of these models
from maximally symmetric to generic Einstein spaces and black hole solutions, but clearly indicates
violation of the general relativistic limit in this class of theories, induced by their infrared behavior.
It is shown that this limit can be recovered in a special conformal frame of these theories, and their
relation to critical gravity models is also brie�y discussed.
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1. INTRODUCTION

A new approach to the dark energy problem, that has recently been suggested
in [1], is inspired by the necessity to avoid the ˇne tuning problem. This approach
suggests the theory in which the de Sitter or anti-de Sitter evolution can occur at
any value of the effective cosmological constant Λ Å the antithesis to the dark
energy scale encoded in the action of the model and ˇne tuned to the observational
data. A concrete observable value of Λ in this theory is supposed to be selected by
the mechanism analogous to symmetry breaking [1]. Interestingly, the realization
of this approach quite unexpectedly has also led to the analogue of the dark matter
phenomenon characterized at large distances by gravitational attraction stronger
than in general relativity or the Newton theory.

The action of this theory was shown to generate vacuum equations of motion
which have as a solution the de Sitter or anti-de Sitter background. This back-
ground bears only transverse-traceless gravitons as propagating physical modes
and is free from ghost instabilities. The stability property was proven in [1]
by very extensive calculations for a maximally symmetric background and then
extended in [2] to the generic Einstein spaces Rμν = Λgμν with a vanishing
traceless part of the Ricci tensor

Eμν ≡ Rμν − 1
4

gμνR = 0. (1.1)
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Thus, this model could be regarded as one of the ˇrst modiˇcations of the Einstein
theory made by Einstein himself, who, for reasons of uniˇcation with electromag-
netism, suggested to replace the Einstein tensor Gμν = Rμν − (1/2)gμνR in the
left-hand side of the Einstein equations by Eμν [3].

The action with these properties is the following nonlocal functional of the
space-time metric gμν

∗:

S =
M2

2

∫
dx g1/2

{
−R + α Rμν 1

� + P̂
Gμν

}
, (1.2)

P̂ ≡ Pμν
αβ = aR

(μν)
(αβ) + b(gαβRμν + gμνRαβ) + cR

(μ
(αδ

ν)
β) + dR gαβgμν + eRδμν

αβ,

(1.3)

where the hat denotes matrices acting on symmetric tensors, and we use the
condensed notation for the Green function of the covariant operator

� + P̂ ≡ � δμν
αβ + Pμν

αβ , � = gλσ∇λ∇σ, (1.4)

acting on any symmetric tensor ˇeld Φμν as

1
� + P̂

Φμν(x) ≡
[

1
� + P̂

]αβ

μν

Φαβ(x) =
∫

dy Gαβ
μν (x, y)Φαβ(y), (1.5)

with Gαβ
μν (x, y) Å the two-point kernel of this Green function.

The action (1.2) has one dimensional parameter M and six dimensionless
parameters α, a, b, c, d, and e, the ˇrst one, α, determining the overall magnitude
of the nonlocal correction to the Einstein term. For a small value of |α| � 1 and
the value of M related to the Planck mass MP ,

M2 =
M2

P

1 − α
, (1.6)

the theory (1.2) has a GR limit on a �at-space background ∗∗, whereas the rest
of the parameters are restricted by the requirement of a stable (A)dS solution

∗We use the Euclidean signature space-time and curvature tensor conventions, R = gμνRμν =
gμνRα

μαν = gμν∂αΓα
νμ − . . .

∗∗Note that the nonlocal part contributes to the quadratic part of the action in metric perturbations
and renormalizes the value of the Newton constant [4]. The structure of nonlocal corrections in (1.2)
is motivated by the nonlocal covariant expansion in powers of the curvature for the Einstein action
including the GibbonsÄHawking surface term [4].
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existing in this theory. These restrictions read

α = −A − 4B, (1.7)

C =
2
3
, (1.8)

M2
eff =

A2 − α2

α
M2 > 0, (1.9)

where the new quantities A, B, and C equal in terms of original parameters

A = a + 4 b + c, B = b + 4 d + e, (1.10)

C =
a

3
− c − 4e, (1.11)

and Meff is the effective Planck mass which determines the cutoff scale of pertur-
bation theory in the (A)dS phase and the strength of the gravitational interaction
of matter sources.

The condition (1.7) guarantees the existence of the (A)dS solution, while
Eqs. (1.8), (1.9) are responsible for its stability. The calculation of the gauge
ˇxed quadratic part of the action on the (A)dS background shows that longitudi-
nal and trace modes, which formally have a ghost nature, are unphysical and can
be eliminated by residual gauge transformations preserving the gauge [1]. This
well-known mechanism leaves only two transverse-traceless physical modes prop-
agating on the (A)dS background, similar to GR theory. Finally, the additional
condition,

a = 2, (1.12)

allows one to extend the ghost stability arguments to the generic Einstein back-
grounds with nonvanishing Weyl tensor [2].

What is critically different from the GR phase of the theory Å its effective
gravitational constant Geff ≡ 1/8πM2

eff , which can be much larger than the
Newton constant GN = 1/8πM2

P , because in view of (1.7) a natural range of
the parameter A is A ∼ α, and Geff ∼ GN/|α| � GN . This property can be
interpreted as a simulation of DM mechanism, because it implies strengthening
of the gravitational attraction in the (A)dS phase of the theory and its possible
effect on rotation curves at relevant distance scales.

The main goal of this paper is a simple derivation of the above results,
which is based on the new representation of the action (1.2) with a critical
value (1.7) of α

S = −M2
eff

2

∫
dx g1/2 Eμν 1

� + P̂
Eμν . (1.13)

As we show below, it holds for closed compact space-times with the Euclidean
signature. This Euclidean setting underlies the problems of black hole thermo-
dynamics and the SchwingerÄKeldysh technique for quantum expectation values
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in a special class of quantum states like the Euclidean (quasi-de Sitter invariant)
vacuum. The advantage of this representation is obvious Å quadratic in Eμν

form of (1.13) directly indicates the existence of the Einstein space solutions
satisfying (1.1) and also very easily gives the inverse propagator of the theory
on their background. Single-pole nature of the propagator with a positive residue
yields the ghost-free criteria (1.8), (1.9), and (1.12). All this is presented in the
next two sections.

The concluding section is devoted to the discussion of a serious difˇculty
of our model, which clearly manifests itself in its new representation (1.13).
In contrast to anticipations of [1], the theory has the GR limit neither in the short
wavelengths regime ∇∇ � R nor in the limit of α → 0. This is explained by
the presence of the constant zero mode of the scalar � operator on a compact
space-time without a boundary. This leads to a nonanalytic behavior of the theory
at α → 0 and the absence of a crossover between its dark energy phase and the
GR phase, the latter existing only in the asymptotically �at space-time. Then we
discuss the possibility to recover the GR phase in a special conformal frame of
the space-time metric.

Though a direct application of the model (1.2) in realistic cosmology seems
questionable, it might be interesting in the context of currently popular critical
gravity theories [5]. In particular, it looks like a nonlocal version of these
theories quadratic in curvature, because for a critical value of α (1.7) and a
generic C (1.11), its propagator has double poles and, therefore, has the so-called
logarithmic modes [5].

2. EUCLIDEAN FIELD THEORY
vs. SCHWINGERÄKELDYSH TECHNIQUE
AND COMPACTNESS OF SPACE-TIME

The action (1.2) above requires speciˇcation of boundary conditions for the
Green function. Any choice, however, will violate causality in the initial value
problem for a dynamically evolving ˇelds. Their nonlocal equations of motion
break causality because the behavior of the ˇeld at any space-time point is not
independent of the ˇeld values in the future light cone of this point [1]. Therefore,
applicability of this action is restricted to the class of problems alternative to
those of the evolution from the initial state. One such class is represented by
gravitational thermodynamics implemented by the Euclidean quantum gravity
(EQG) Å quantum gravity in the Euclidean signature space-time.

Another class in the Lorentzian signature space-time is mediated by a spe-
cial technique adapting nonlocal equations of motion to causality. This is the
SchwingerÄKeldysh technique [6] for quantum expectation values 〈in |Ô(x)| in〉
of local physical observables Ô in the initial quantum state |in〉. Though the
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equations for 〈in |Ô(x)| in〉 are nonlocal, this quantity depends only on the past
of the point x. This property is again not manifest and turns out to be the conse-
quence of locality and unitarity of the original fundamental ˇeld theory (achieved
via a complicated set of cancelations between nonlocal terms with chronological
and antichronological boundary conditions). In contrast to the Wick rotation in
the S-matrix theory this technique is not related to the Euclidean quantum ˇeld
theory and to EQG, in particular.

However, there exists a class of problems for which a retarded nature of ef-
fective equations explicitly follows from their quantum effective action calculated
in the Euclidean space-time [8]. This is a statement based on the SchwingerÄ
Keldysh technique [6,7] that for an appropriately deˇned initial quantum state |in〉
the effective equations for the mean ˇeld

gμν = 〈in |ĝμν | in〉 (2.1)

originate from the Euclidean quantum effective action S = SEuclid[gμν ] by the
following procedure [8]∗. Calculate nonlocal SEuclid[gμν ] and its variational
derivative. In the Euclidean signature space-time nonlocal quantities, relevant
Green's functions, and their variations are generally uniquely determined by their
trivial (zero) boundary conditions at inˇnity, so that this variational derivative is
unambiguous in the Euclidean theory. Then make a transition to the Lorentzian
signature and impose the retarded boundary conditions on the resulting nonlocal
operators,

δSEuclid

δgμν(x)

∣∣∣∣
retarded

++++⇒−+++

= 0. (2.2)

These equations are causal (gμν(x) depending only on the ˇeld behavior in the
past of the point x) and satisfy all local gauge and diffeomorphism symmetries
encoded in the original SEuclid[gμν ].

In [1], it was assumed that the model with the action (1.2) falls into the range
of validity of this procedure, and the action itself coincides with the nonlocal
effective action of the Euclidean QFT calculated within certain approximation
of the curvature expansion [9, 10]. This assumption implies a particular vacuum
state |in〉 and the one-loop approximation (in which it was proven to the ˇrst
order of perturbation theory in [11] and to all orders of the curvature expansion
in [8]). The extension of this range is likely to include multiloop orders and
is likely to be generalized to the (A)dS background considered below, with the
state |in〉 apparently coinciding with the Euclidean BunchÄDavies vacuum.

∗We formulate this statement directly for the case of gravity theory with the expectation value
of the metric ˇeld operator ĝμν(x), though it is valid in a much wider context of a generic local ˇeld
theory [8].
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The EuclideanÄde Sitter hemisphere denoted by dashed lines is used as a tool for con-

structing the EuclideanÄde Sitter invariant vacuum by the path integral over regular ˇelds
on the resulting compact space-time

At the heuristical level, the justiˇcation for this extension follows from the
ˇgure depicting the compact Euclidean space-time used as a tool for construct-
ing the Euclidean vacuum within the well-known no-boundary prescription [12].
Attaching the Euclidean space hemisphere to the LorentzianÄde Sitter space-time
makes it compact instead of the original asymptotic de Sitter inˇnity. Thus it
simulates by the path integral over regular ˇeld conˇgurations on this space-time
the effect of the EuclideanÄde Sitter invariant vacuum. The role of space-time
compactness is very important here because it allows one to disregard possible
surface terms originating from integrations by parts or using cyclic permutations
under the functional traces in the Feynman diagrammatic technique for the effec-
tive action.

In what follows, this property will be very important. In particular, the
Green function will be uniquely deˇned by the condition of regularity on such a
compact space-time without a boundary. This information is sufˇcient to specify
the Green function, for which we require the following symmetric variational law
(with respect to local metric variations in � and P̂ ):

δ
1

� + P̂
= − 1

� + P̂
δ (� + P̂ )

1
� + P̂

, (2.3)

characteristic of the Euclidean signature d'Alembertian deˇned on the space of
regular ˇelds on a compact space-time without a boundary.

A similar treatment of a nonlocal action in [13] was very reservedly called
the ®integration by parts trick¯ needing justiˇcation from the SchwingerÄKeldysh
technique. However, this trick only provides the causality of effective equations,
but does not guarantee the EuclideanÄLorentzian relation (2.2). The latter is
based, among other things, on the choice of the |in〉 state.
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3. THE NEW REPRESENTATION OF THE ACTION
AND STABILITY OF EINSTEIN SPACE BACKGROUNDS

The action (1.2) can be essentially simpliˇed by using the compactness of
the Euclidean space-time discussed above. Its new representation is based on the
following local identity which is valid for an arbitrary pure trace tensor function
Φμν = gμνΦ,

(� + P̂ ) gμνΦ = gμν

(
� − α

4
R

)
Φ + AEμνΦ, (3.1)

where Eμν is a traceless part of the Ricci tensor deˇned by (1.1). The nonlocal
identity for the Green function of the operator (1.4) arises if we take the scalar Φ
in the form of the nonlocal functional of another arbitrary scalar function ϕ

Φ =
1

� − α

4
R

ϕ (3.2)

and act on (3.1) by (� + P̂ )−1 from the left, so that

1
� + P̂

gμνϕ = gμν
1

� − α

4
R

ϕ − A

� + P̂
Eμν

1

� − α

4
R

ϕ. (3.3)

For a compact space-time, an important simpliˇcation occurs if we identify ϕ
with R and take into account that

1
� − α

4 R
R = − 4

α
. (3.4)

This equation holds for a compact space-time without a boundary or under bound-
ary conditions which do not generate surface terms under integration by parts in
the following chain of relations:

1

� − α

4
R

R = − 4
α

1

� − α

4
R

(−→
� − α

4
R

)
1 =

= − 4
α

1

� − α

4
R

(←−
� − α

4
R

)
1 = − 4

α
. (3.5)

Therefore we have the basic identity

1
� + P̂

gμν
R

4
= − 1

α
gμν +

A

α

1
� + P̂

Eμν (3.6)



NEW REPRESENTATION OF THE NONLOCAL GHOST-FREE GRAVITY THEORY 423

and two its straightforward corollaries

α

� + P̂
Gμν = gμν +

α − A

� + P̂
Eμν , (3.7)

α

� + P̂
Rμν = −gμν +

α + A

� + P̂
Eμν . (3.8)

Systematically using these identities in the integrand of (1.2) we see that
the Einstein term (linear in curvature) gets canceled and the result becomes
quadratic in Eμν

S =
M2

2

∫
dx g1/2

{
−R + Rμν

(
α

� + P̂
Gμν

)}
=

= −M2

2
A2 − α2

α

∫
dx g1/2 Eμν 1

� + P̂
Eμν . (3.9)

This is a new representation of the action (1.13) which is exact and explicitly
contains the effective Planck mass (1.9) suggested in [1].

It immediately allows one to prove the existence of the generic Einstein
space solutions (including the maximally symmetric ones derived in [1]) and the
absence of ghost modes on the top of them. Since (1.13) is quadratic in Eμν ,
its ˇrst-order derivative is at least linear in Eμν with some complicated nonlocal
operator coefˇcient,

δS

δgμν
=

M2
eff

2
g1/2 Ωμν

αβ(∇)
1

� + P̂
Eαβ , (3.10)

Ωμν
αβ(∇) = � δμν

αβ + gμν∇α∇β − 2∇(α∇(μδ
ν)
β) +

1
2

R δμν
αβ + O[E], (3.11)

where O[E] denotes terms vanishing in the limit Eμν → 0. This guarantees the
existence of vacuum solutions with Eμν = 0. Perturbative stability of these solu-
tions follows from the quadratic part of the action, which is easily calculable now.

In view of the quadratic nature of (1.13), the quadratic part of the action on
the Einstein space background requires variation of only two explicit Eμν -factors.
For the metric variations δgμν ≡ hμν satisfying the De Witt gauge

χμ ≡ ∇νhμν − 1
2
∇μh = 0, (3.12)

the variation of Eμν reads

δEμν

∣∣∣∣
Eαβ=0

= −1
2

�hμν − W
(αβ)
(μν) hαβ +

1
12

Rhμν+

+
1
8

gμν

(
� − 1

6
R

)
h = −1

2
D̂ h̄μν , (3.13)
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where the operator D̂,

D̂ ≡ � + 2Ŵ − 1
6

R 1̂, (3.14)

acts on a traceless part of hμν , the hat labels matrices acting on symmetric tensors,

h̄μν ≡ Π̂hμν = hμν − 1
4

gμνh, Π̂ ≡ Παβ
μν = δαβ

μν − 1
4

gμνgαβ, (3.15)

Ŵhμν ≡ W
(αβ)
(μν) hαβ , (3.16)

and W α β
μ ν denotes the Weyl tensor. Note that the operator D̂ commutes with

the projector Π̂, [Π̂, D̂] = 0, because of the traceless nature of the Weyl tensor,
Π̂Ŵ = Ŵ Π̂ = Ŵ , so that the variation (3.13) of the traceless Eμν is also
traceless as it should be.

In matrix notations, the operator � + P̂ on the Einstein background reads

(� + P̂ )
∣∣∣∣
Eμν=0

= � + a Ŵ − C

4
RΠ̂ − α

4
R (1̂ − Π̂). (3.17)

Therefore, in view of (3.13), the property [Π̂, D̂] = 0, and the obvious relation

Π̂
1

� + P̂
Π̂ = Π̂

1

� + a Ŵ − C

4
R 1̂

Π̂, (3.18)

we ˇnally have the quadratic part of the action in terms of the traceless part h̄μν

of the metric perturbations hμν satisfying the DeWitt gauge

S(2)

∣∣∣∣
Eμν=0

= −M2
eff

2

∫
d4x g1/2(D̂h̄μν)

1

� + a Ŵ − C

4
R 1̂

(D̂h̄μν). (3.19)

For generic values of the parameters a and C, the propagator of the theory
features double poles corresponding to the zero modes of the operator D̂. This
is a nonlocal generalization of the situation characteristic of the critical grav-
ity theories with a local action containing higher-order derivatives [5]. Local
theories with double poles have a distinguished status different from unstable
higher-derivative models with massive ghosts Å their stability is determined also
by special logarithmic modes which might or might not violate unitarity [5].
Interestingly, �exibility in the values of the parameters a and C allows us to
avoid perturbative instability of the Einstein space background. The quadratic
form (3.19) can be made local and thus guarantee the existence of the propagator
with a single positive-residue pole. This is easily achieved by demanding equality
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of the operator (3.14) and the operator in the denominator of (3.19) along with
the positivity of M2

eff ,

D̂ = � + a Ŵ − C

4
R 1̂. (3.20)

This yields the value C = 2/3 derived in [1] by very extensive calculations and,
in addition, leads to a unique value of another parameter a = 2, which allows us
to extend stability arguments to the generic Einstein space backgrounds [2].

4. DISCUSSION AND CONCLUSIONS

Thus, we have derived the equivalent representation (1.13) of the action (1.2)
with the critical value (1.7) of the parameter α. Using (3.11) in the equation of
motion (3.10) one can see that in the UV limit ∇∇ � R the variational derivative
of the action

δS

δgμν
� M2

eff

2
g1/2

(
Rμν − 1

2
∇μ∇ν

1
�

R

)
+ O[E2] (4.1)

remains nonlocal and differs from the general relativistic expression even for
α → 0. In particular, in the approximation linear in the curvatures matter sources
are coupled to gravity according to

Rμν − 1
2
∇μ∇ν

1
�

R + O[R2] =
1

M2
eff

Tμν , (4.2)

where nonlinear in the curvature terms O[R2] include nonlinearity in Eμν . The
local Ricci scalar term of the Einstein tensor is replaced here with the nonlocal
expression which guarantees in this approximation the stress tensor conservation,
but in contrast to anticipations of [1] does not provide the GR phase of the theory.

The absence of the GR phase might seem paradoxical because the original
action (1.2) obviously reduces to the Einstein one in the limit α → 0. The expla-
nation of this paradox consists in the observation that the transition from (1.2) to
the new representation (1.13) is based on the identity (3.4) which is not analytic
both in α and in the curvature. The source of this property is the constant zero
mode of the scalar operator � on the compact Euclidean space-times without a
boundary. On such manifolds, the left-hand side of (3.4) is not well deˇned
for α = 0. The equivalence of the actions (1.2) and (1.13) was obtained only on
this class of Euclidean manifolds. The latter, in turn, were motivated in Sec. 2 by
extending the duality between the SchwingerÄKeldysh technique and Euclidean
QFT [8] to the cosmological (quasi-de Sitter) context.

In contrast to this class of manifolds, the representations (1.2) and (1.13) are
not equivalent in asymptotically �at (AF) space-time because equations (3.4)Ä(3.8)
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do not apply there. First, with zero boundary conditions at inˇnity, the scalar �

does not have zero modes. Second, due to the natural AF falloff conditions,
R(x) ∼ 1/|x|4 and (1/�)δ(x− y) ∼ 1/|x− y|2, integration by parts in the chain
of transformations (3.5) gives a ˇnite surface term at inˇnity |x − y| → ∞. This
leads to an alternative equation

1

� − α

4
R

R

∣∣∣∣
AF

= O[R] (4.3)

with a nontrivial right-hand side analytic in α and tending to zero for a vanishing
curvature. This explains why the model (1.2) on AF background has a good GR
limit with nonlinear curvature corrections controlled by a small α [1, 4].

This undermines the utility of the model (1.2) as a possible solution of the
dark energy problem and simulation of dark matter phenomenon advocated in [1].
Absence of the GR limit for α → 0 and for short distance regime ∇∇ � R
becomes a critical drawback of this model∗ caused by its infrared behavior Å
presence of a constant zero mode on a compact space-time. Possible solution of
this problem could be a reformulation of the nonlocal action by projecting out
this zero mode from the deˇnition of the Green function in (1.2) (see [14] for the
technique of such a truncation).

Another possible way to circumvent this difˇculty can be based on the con-
formal transformation to a new metric

g̃μν [g] = e2σ[g] gμν , (4.4)

which is assumed to be physical (that is directly coupled to matter) in contrast
to the original metric gμν playing the auxiliary role. With the conformal factor
function

σ[g] � 1
4

1
�

R, (4.5)

which is small in the UV limit, σ � 1, but has large second order derivatives∗∗,
∇∇σ ∼ R, one can express the covariant Einstein tensor of the new metric G̃μν

in terms of the original metric as

G̃μν = Gμν + 2(gμν�σ −∇μ∇νσ) + gμνσ2
α + 2σμσν =

= Rμν − 1
2
∇μ∇ν

1
�

R + O

[(
∇ 1

�
R

)2
]

. (4.6)

∗In [2], this was interpreted as the phase transition between the R = 4Λ > 0 and R = 0
phases Å the absence of crossover between these phases. We see that in fact this transition has a
topological nature.

∗∗Note that this expression is assumed to hold only in the formal UV limit of ∇∇ � R, so
that the zero mode of � should not invalidate it.
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We see that G̃μν in this limit in fact reproduces the left-hand side of (4.2).
Therefore, if we couple matter to the new metric g̃μν in the total action as

Stotal[φ] = S[g] + Smatter[φ, g̃[g]], (4.7)

then for g̃μν in the short-distance limit we will recover the usual Einstein equations

R̃μν − 1
2

g̃μνR̃ =
1

M2
eff

T̃μν , T̃μν =
2

g̃1/2
g̃μαg̃νβ

δSmatter

δg̃αβ
, (4.8)

where T̃μν is a matter stress tensor in the frame of the g̃μν -metric. When deriving
this equation, we took into account smallness of σ and δσ/δgμν = O(σ) in the
short-distance limit ∇∇ � R. Thus, we get a GR phase in the conformally
related frame of the theory. Unfortunately, however, the magnitude of corrections
to the GR behavior is no longer controlled by a small parameter α, which makes
application of this idea to realistic cosmology somewhat questionable.

Thus, direct cosmological implications of the model (1.2) are not likely to be
available. However, it might be interesting as a nonlocal generalization of critical
gravity theories [5] which recently became popular as holographic duals of the
logarithmic conformal models [15]. In fact, the relation (1.7) can be regarded
as the analogue of the criticality condition in the local quadratic in curvature
models. It eliminates massive gravitons and gives rise to logarithmic modes [5]
corresponding to the double pole in the propagator. Zero energy of massless
gravitons and positive energy of log modes [5] give a hope for unitarity of these
critical models (see, however, the work [16] stating the loss of unitarity due to
lack of orthogonality between the logarithmic and Einstein states). Analogous
reasoning might imply that our model is also stable even without imposing the
conditions (1.8) and (1.12). In fact, the theory (1.13) bears a number of properties
in common with critical gravity models of [5]. In particular, as advocated in [2], it
has the SchwarzschildÄde Sitter black hole solutions with zero entropy in parallel
with zero entropy and energy black holes of [5]. All this makes the class of
nonlocal gravity models open for interesting future implications.
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