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All-loop Finite Uniˇed Theories (FUTs) are very interesting N = 1 supersymmetric Grand
Uniˇed Theories (GUTs) realizing an old ˇeld theory dream, and moreover have a remarkable
predictive power due to the required reduction of couplings. The reduction of the dimensionless
couplings in N = 1 GUTs is achieved by searching for renormalization group invariant (RGI) relations
among them holding beyond the uniˇcation scale. Finiteness results from the fact that there exist RGI
relations among dimensional couplings that guarantee the vanishing of all beta functions in certain
N = 1 GUTs even to all orders. Additional developments in the soft supersymmetry breaking sector
of N = 1 GUTs and FUTs lead to exact RGI relations, i.e., reduction of couplings, in this dimensionful
sector of the theory, too. Based on the above theoretical framework, phenomenologically consistent
FUTs have been constructed. Here we review two FUT models based on the SU(5) gauge group.
Confronting their predictions with the top and bottom quark masses and other experimental constraints,
a light Higgs-boson mass in the range MH ∼ 121−126 GeV has been predicted, in striking agreement
with the recent experimental results from ATLAS and CMS. Furthermore, naturally a relatively heavy
s-spectrum emerged with colored supersymmetric particles above ∼ 1.5 TeV in agreement with
the nonobservation of those particles at the LHC. Restricting further the parameter space of the best
version of the SU(5) FUT according to the reported accuracy of the Higgs-boson mass and B-physics
observables, we ˇnd predictions for the rest of the Higgs masses and the s-spectrum.

PACS: 04.50.-h; 12.10.-g

INTRODUCTION

A large and sustained effort has been made in recent years aiming to achieve
a uniˇed description of all interactions. Out of this endeavor two main directions
have emerged as the most promising to attack the problem, namely, the super-
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string theories and noncommutative geometry. The two approaches, although
at a different stage of development, have common uniˇcation targets and share
similar hopes for exhibiting improved renormalization properties in the ultraviolet
(UV) as compared to ordinary ˇeld theories. Moreover, the two frameworks
came closer by the observation that a natural realization of noncommutativity
of space appears in the string theory context of D-branes in the presence of a
constant background antisymmetric ˇeld [1]. Among the numerous important
developments in both frameworks, it is worth noting two conjectures of utmost
importance that signal the developments in certain directions in string theory and
not only, related to the main theme of the present review. The conjectures refer
to (i) the duality among the 4-dimensional N = 4 supersymmetric YangÄMills
theory and the type IIB string theory on AdS5 × S5 [2]; the former being the
maximal N = 4 supersymmetric YangÄMills theory is known to be UV all-loop
ˇnite theory [3,4], (ii) the possibility of ®miraculous¯ UV divergence cancellations
in 4-dimensional maximal N = 8 supergravity leading to a ˇnite theory, as has
recently been conˇrmed in a remarkable 4-loop calculation [5Ä9]. However,
despite the importance of having frameworks to discuss quantum gravity in a
self-consistent way and possibly to construct there ˇnite theories, it is also very
interesting to search for the minimal realistic framework in which ˇniteness can
take place. After all, the history of our ˇeld teaches us that if a new idea works, it
does that in its simplest form. In addition, the main goal expected from a uniˇed
description of interactions by the particle physics community is to understand the
present-day large number of free parameters of the Standard Model (SM) in terms
of a few fundamental ones. In other words, to achieve reduction of couplings at
a more fundamental level.

To reduce the number of free parameters of a theory and thus render it more
predictive, one is usually led to introduce a symmetry. Grand Uniˇed Theories
(GUTs) are very good examples of such a procedure [10Ä14]. For instance, in
the case of minimal SU(5), because of (approximate) gauge coupling uniˇcation,
it was possible to reduce the gauge couplings by one and give a prediction for
one of them. In fact, LEP data [15] seem to suggest that a further symmetry,
namely N = 1 global supersymmetry (SUSY) [16,17] should also be required to
make the prediction viable. GUTs can also relate the Yukawa couplings among
themselves, again SU(5) provided an example of this by predicting the ratio
Mτ/Mb [18] in the SM. Unfortunately, requiring more gauge symmetry does not
seem to help, since additional complications are introduced due to new degrees
of freedom, in the ways and channels of breaking the symmetry, and so on.

A natural extension of the GUT idea is to ˇnd a way to relate the gauge
and Yukawa sectors of a theory, that is to achieve GaugeÄYukawa Uniˇcation
(GYU) [19Ä21]. A symmetry which naturally relates the two sectors is super-
symmetry, in particular N = 2 SUSY [22]. It turns out, however, that N = 2
supersymmetric theories have serious phenomenological problems due to light
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mirror fermions. Also in superstring theories and in composite models there exist
relations among the gauge and Yukawa couplings, but both kinds of theories have
phenomenological problems, which we are not going to address here.

In our studies [19Ä21,23Ä28], we have developed a complementary strategy
in searching for a more fundamental theory possibly at the Planck scale, whose
basic ingredients are GUTs and supersymmetry, but its consequences certainly
go beyond the known ones. Our method consists of hunting for renormalization
group invariant (RGI) relations holding below the Planck scale, which in turn
are preserved down to the GUT scale. This programme, called GaugeÄYukawa
uniˇcation scheme, applied in the dimensionless couplings of supersymmetric
GUTs, such as gauge and Yukawa couplings, had already noticeable successes
by predicting correctly, among others, the top quark mass in the ˇnite and in the
minimal N = 1 supersymmetric SU(5) GUTs [23Ä25]. An impressive aspect of
the RGI relations is that one can guarantee their validity to all orders in perturba-
tion theory by studying the uniqueness of the resulting relations at one loop, as
was proven in the early days of the programme of reduction of couplings [29Ä32].
Even more remarkable is the fact that it is possible to ˇnd RGI relations among
couplings that guarantee ˇniteness to all orders in perturbation theory [33Ä37].

It is worth noting that the above principles have only been applied in super-
symmetric GUTs for reasons that will be transparent in the following sections.
We should also stress that our conjecture for GYU is by no means in con	ict
with the interesting proposals mentioned before (see also [38Ä40]), but it rather
uses all of them, hopefully in a more successful perspective. For instance, the
use of SUSY GUTs comprises the demand of the cancellation of quadratic diver-
gences in the SM. Similarly, the very interesting conjectures about the infrared
ˇxed points are generalized in our proposal, since searching for RGI relations
among various couplings corresponds to searching for ˇxed points of the coupled
differential equations obeyed by the various couplings of a theory.

Although SUSY seems to be an essential feature for a successful realization
of the above programme, its breaking has to be understood too, since it has the
ambition to supply the SM with predictions for several of its free parameters.
Indeed, the search for RGI relations has been extended to the soft SUSY breaking
sector (SSB) of these theories [28, 41], which involves parameters of dimension
one and two. Then a very interesting progress has been made [42Ä48] concerning
the renormalization properties of the SSB parameters based conceptually and
technically on the work of [49]: the powerful supergraph method [50Ä53] for
studying supersymmetric theories has been applied to the softly broken ones by
using the ®spurion¯ external space-time independent superˇelds [54]. In the
latter method, a softly broken supersymmetric gauge theory is considered as a
supersymmetric one in which the various parameters such as couplings and masses
have been promoted to external superˇelds that acquire ®vacuum expectation
values¯. Based on this method, the relations among the soft term renormalization



580 HEINEMEYER S., MONDRAG�ON M., ZOUPANOS G.

and that of an unbroken supersymmetric theory have been derived. In particular,
the β functions of the parameters of the softly broken theory are expressed in
terms of partial differential operators involving the dimensionless parameters of
the unbroken theory. The key point in the strategy of [45Ä48] in solving the
set of coupled differential equations so as to be able to express all parameters in
an RGI way, was to transform the partial differential operators involved to total
derivative operators. This is indeed possible to be done on the RGI surface which
is deˇned by the solution of the reduction equations.

On the phenomenological side there exist some serious developments, too.
Previously an appealing ®universal¯ set of soft scalar masses was assumed in
the SSB sector of supersymmetric theories, given that apart from economy and
simplicity (1) they are part of the constraints that preserve ˇniteness up to two
loops [55,56], (2) they are RGI up to two loops in more general supersymmetric
gauge theories, subject to the condition known as P = 1/3Q [41], and (3) they
appear in the attractive dilaton dominated SUSY breaking superstring scenar-
ios [57Ä59]. However, further studies have exhibited a number of problems, all
due to the restrictive nature of the ®universality¯ assumption for the soft scalar
masses. For instance, (a) in ˇnite uniˇed theories the universality predicts that
the lightest supersymmetric particle is a charged particle, namely the superpart-
ner of the τ lepton τ̃ , (b) the Minimal Supersymmetric Standard Model (MSSM)
with universal soft scalar masses is inconsistent with the attractive radiative elec-
troweak symmetry breaking [59], and (c) which is the worst of all, the universal
soft scalar masses lead to charge and/or color breaking minima deeper than the
standard vacuum [60]. Therefore, there have been attempts to relax this constraint
without loosing its attractive features. First, an interesting observation was made
that in N = 1 GaugeÄYukawa uniˇed theories there exists an RGI sum rule for
the soft scalar masses at lower orders; at one loop for the nonˇnite case [61] and
at two loops for the ˇnite case [62]. The sum rule manages to overcome the above
unpleasant phenomenological consequences. Moreover, it was proven [48] that
the sum rule for the soft scalar massses is RGI to all orders for both the general
and the ˇnite case. Finally, the exact β function for the soft scalar masses in
the NovikovÄShifmanÄVainsteinÄZakharov (NSVZ) scheme [63Ä65] for the softly
broken supersymmetric QCD has been obtained [48]. Armed with the above tools
and results, we are in a position to study and predict the spectrum of the full
ˇnite models in terms of few input parameters. In particular, a prediction for the
lightest MSSM Higgs boson can be obtained. It turned out that the prediction
is naturally in very good agreement with the discovery of a Higgs-like particle
at the LHC [66, 67] at around ∼ 126 GeV. Identifying the lightest Higgs boson
with the newly discovered state, one can restrict the allowed parameter space of
the model. We review how this reduction of parameter space impacts the pre-
diction of the SUSY spectrum and the discovery potential of the LHC and future
e+e− colliders.
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1. UNIFICATION OF COUPLINGS BY THE RGI METHOD

Let us next brie	y outline the idea of reduction of couplings. Any RGI
relation among couplings (which does not depend on the renormalization scale μ
explicitly) can be expressed, in the implicit form Φ(g1, . . . , gA) = const, which
has to satisfy the partial differential equation (PDE)

μ
dΦ
dμ

= ∇ · β =
A∑

a=1

βa
∂Φ
∂ga

= 0, (1)

where βa is the β function of ga. This PDE is equivalent to a set of ordinary
differential equations, the so-called reduction equations (REs) [29,30,68],

βg
dga

dg
= βa, a = 1, . . . , A, (2)

where g and βg are the primary coupling and its β function, and the counting on a
does not include g. Since maximally (A − 1) independent RGI ®constraints¯ in
the A-dimensional space of couplings can be imposed by the Φa's, one could in
principle express all the couplings in terms of a single coupling g. The strongest
requirement is to demand power series solutions to the REs,

ga =
∑

n

ρ(n)
a g2n+1, (3)

which formally preserve perturbative renormalizability. Remarkably, the unique-
ness of such power series solutions can be decided already at the one-loop
level [29, 30, 68]. To illustrate this, let us assume that the β functions have
the form

βa =
1

16π2

⎡
⎣ ∑

b,c,d �=g

β(1) bcd
a gbgcgd +

∑
b�=g

β(1) b
a gbg

2

⎤
⎦ + . . . ,

βg =
1

16π2
β(1)

g g3 + . . . ,

(4)

where . . . stands for higher order terms, and β
(1) bcd
a 's are symmetric in b, c, d.

We then assume that the ρ
(n)
a 's with n � r have been uniquely determined. To

obtain ρ
(r+1)
a 's, we insert the power series (3) into the REs (2) and collect terms

of O(g2r+3) and ˇnd∑
d �=g

M(r)d
aρ

(r+1)
d = lower order quantities,
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where the r.h.s. is known by assumption, and

M(r)d
a = 3

∑
b,c �=g

β(1) bcd
a ρ

(1)
b ρ(1)

c + β(1) d
a − (2r + 1)β(1)

g δd
a, (5)

0 =
∑

b,c,d �=g

β(1) bcd
a ρ

(1)
b ρ(1)

c ρ
(1)
d +

∑
d �=g

β(1) d
a ρ

(1)
d − β(1)

g ρ(1)
a , (6)

Therefore, the ρ
(n)
a 's for all n > 1 for a given set of ρ

(1)
a 's can be uniquely

determined if detM(n)d
a �= 0 for all n � 0.

As will be clear later by examining speciˇc examples, the various couplings
in supersymmetric theories have easily the same asymptotic behavior. Therefore,
searching for a power series solution of the form (3) to the REs (2) is justiˇed.
This is not the case in nonsupersymmetric theories, although the deeper reason
for this fact is not fully understood.

The possibility of coupling uniˇcation described in this section is without
any doubt attractive because the ®completely reduced¯ theory contains only one
independent coupling, but it can be unrealistic. Therefore, one often would like
to impose fewer RGI constraints, and this is the idea of partial reduction [69,70].

2. REDUCTION OF DIMENSIONFUL PARAMETERS

The reduction of couplings was originally formulated for massless theories
on the basis of the CallanÄSymanzik equation [29, 30, 68]. The extension to
theories with massive parameters is not straightforward if one wants to keep the
generality and the rigor on the same level as for the massless case; one has to
fulˇll a set of requirements coming from the renormalization group equations,
the CallanÄSymanzik equations, etc., along with the normalization conditions
imposed on irreducible Green's functions [71]. See [72] for interesting results
in this direction. Here, to simplify the situation, we would like to assume that a
mass-independent renormalization scheme has been employed so that all the RG
functions have only trivial dependencies of dimensional parameters.

To be general, we consider a renormalizable theory which contains a set of
(N + 1) dimension-zero couplings, {ĝ0, ĝ1, . . . , ĝN}, a set of L parameters with
dimension one, {ĥ1, . . . , ĥL}, and a set of M parameters with dimension two,
{m̂2

1, . . . , m̂
2
M}. The renormalized irreducible vertex function satisˇes the RG

equation

0 = DΓ[Φ′s; ĝ0, ĝ1, . . . , ĝN ; ĥ1, . . . , ĥL; m̂2
1, . . . , m̂

2
M ; μ],

(7)

D = μ
∂

∂μ
+

N∑
i=0

βi
∂

∂ĝi
+

L∑
a=1

γh
a

∂

∂ĥa

+
M∑

α=1

γm2

α

∂

∂m̂2
α

+
∑

J

ΦIγ
φI
J

δ

δΦJ
.
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Since we assume a mass-independent renormalization scheme, the γ's have
the form

γh
a =

L∑
b=1

γh,b
a (g0, . . . , gN)ĥb,

γm2

α =
M∑

β=1

γm2,β
α (g0, . . . , gN)m̂2

β +
L∑

a,b=1

γm2,ab
α (g0, . . . , gN)ĥaĥb,

(8)

where γh,b
a , γm2,β

α and γm2,ab
a are power series of the dimension-zero couplings g's

in perturbation theory.
As in the massless case, we then look for conditions under which the reduction

of parameters,

ĝi = ĝi(g) (i = 1, . . . , N), (9)

ĥa =
P∑

b=1

f b
a(g)hb (a = P + 1, . . . , L), (10)

m̂2
α =

Q∑
β=1

eβ
α(g)m2

β +
P∑

a,b=1

kab
α (g)hahb (α = Q + 1, . . . , M), (11)

is consistent with the RG equation (1), where we assume that g ≡ g0, ha ≡ ĥa

(1 � a � P ) and m2
α ≡ m̂2

α (1 � α � Q) are independent parameters of the
reduced theory. We ˇnd that the following set of equations has to be satisˇed:

βg
∂ĝi

∂g
= βi (i = 1, . . . , N), (12)

βg
∂ĥa

∂g
+

P∑
b=1

γh
b

∂ĥa

∂hb
= γh

a (a = P + 1, . . . , L), (13)

βg
∂m̂2

α

∂g
+

P∑
a=1

γh
a

∂m̂2
α

∂ha
+

Q∑
β=1

γm2

β

∂m̂2
α

∂m2
β

= γm2

α (α = Q + 1, . . . , M). (14)

Using Eq. (7) for γ's, one ˇnds that Eqs. (12)Ä(14) reduce to

βg
df b

a

dg
+

P∑
c=1

f c
a

[
γh,b

c +
L∑

d=P+1

γh,d
c f b

d

]
− γh,b

a −
L∑

d=P+1

γh,d
a f b

d = 0

(15)
(a = P + 1, . . . , L; b = 1, . . . , P ),
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βg
deβ

α

dg
+

Q∑
γ=1

eγ
α

⎡
⎣γm2,β

γ +
M∑

δ=Q+1

γm2,δ
γ eβ

δ

⎤
⎦ − γm2,β

α −
M∑

δ=Q+1

γm2,δ
α eβ

δ = 0

(16)
(α = Q + 1, . . . , M ; β = 1, . . . , Q),

βg
dkab

α

dg
+ 2

P∑
c=1

(
γh,a

c +
L∑

d=P+1

γh,d
c fa

d

)
kcb

α +

+
Q∑

β=1

eβ
α

⎡
⎣γm2,ab

β +
L∑

c,d=P+1

γm2,cd
β fa

c f b
d +

+ 2
L∑

c=P+1

γm2,cb
β fa

c +
M∑

δ=Q+1

γm2,δ
β kab

δ

⎤
⎦ −

⎡
⎣γm2,ab

α +
L∑

c,d=P+1

γm2,cd
α fa

c f b
d +

+ 2
L∑

c=P+1

γm2,cb
α fa

c +
M∑

δ=Q+1

γm2,δ
α kab

δ

⎤
⎦ = 0

(17)

(α = Q + 1, . . . , M ; a, b = 1, . . . , P ).

If these equations are satisˇed, the irreducible vertex function of the reduced
theory

ΓR[Φ′s; g; h1, . . . , hP ; m2
1, . . . , m̂

2
Q; μ] ≡

≡ Γ[Φ′s; g, ĝ1(g), . . . , ĝN (g); h1, . . . , hP , ĥP+1(g, h), . . . , ĥL(g, h);

m2
1, . . . , m̂

2
Q, m̂2

Q+1(g, h, m2), . . . , m̂2
M (g, h, m2); μ] (18)

has the same renormalization group 	ow as the original one.
The requirement for the reduced theory to be perturbative renormalizable

means that the functions ĝi, f
b
a, eβ

α and kab
α , deˇned in Eqs. (9)Ä(11), should have

a power series expansion in the primary coupling g:

ĝi = g

∞∑
n=0

ρ
(n)
i gn, f b

a = g

∞∑
n=0

ηb (n)
a gn,

eβ
α =

∞∑
n=0

ξβ(n)
α gn, kab

α =
∞∑

n=0

χab(n)
α gn.

(19)

To obtain the expansion coefˇcients, we insert the power series ansatz above
into Eqs. (12), (15)Ä(17) and require that the equations are satisˇed at each order
in g. Note that the existence of a unique power series solution is a nontrivial
matter: It depends on the theory as well as on the choice of the set of independent
parameters.
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3. FINITENESS IN N = 1 SUPERSYMMETRIC GAUGE THEORIES

Let us consider a chiral, anomaly-free, N = 1 globally supersymmetric gauge
theory based on a group G with gauge coupling constant g. The superpotential
of the theory is given by

W =
1
2
mijφiφj +

1
6
Cijkφiφjφk, (20)

where mij and Cijk are gauge-invariant tensors and the matter ˇeld φi trans-
forms according to the irreducible representation Ri of the gauge group G. The
renormalization constants associated with the superpotential (20), assuming that
SUSY is preserved, are

φ0
i = (Zj

i )(1/2)φj , (21)

m0
ij = Zi′j′

ij mi′j′ , (22)

C0
ijk = Zi′j′k′

ijk Ci′j′k′ . (23)

The N = 1 nonrenormalization theorem [52,73,74] ensures that there are no mass
and cubic-interaction-term inˇnities and therefore

Zi′j′k′

ijk Z
1/2i′′

i′ Z
1/2j′′

j′ Z
1/2 k′′

k′ = δi′′

(i δj′′

j δk′′

k) ,

Zi′j′

ij Z
1/2i′′

i′ Z
1/2j′′

j′ = δi′′

(i δj′′

j) .
(24)

As a result, the only surviving possible inˇnities are the wave-function renormal-
ization constants Zj

i , i.e., one inˇnity for each ˇeld. The one-loop β function of
the gauge coupling g is given by [75]

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

l(Ri) − 3C2(G)

]
, (25)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir of
the adjoint representation of the gauge group G. The β functions of Cijk , by
virtue of the nonrenormalization theorem, are related to the anomalous dimension
matrix γij of the matter ˇelds φi as

βijk =
dCijk

dt
= Cijlγ

l
k + Ciklγ

l
j + Cjklγ

l
i. (26)

At one-loop level, γij is [75]

γ
i(1)
j =

1
32π2

[CiklCjkl − 2g2C2(Ri)δ1
j ], (27)
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where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗
ijk .

Since dimensional coupling parameters such as masses and couplings of cubic
scalar ˇeld terms do not in	uence the asymptotic properties of a theory in which
we are interested here, it is sufˇcient to take into account only the dimensionless
supersymmetric couplings such as g and Cijk . So we neglect the existence of
dimensional parameters and assume furthermore that Cijk are real so that C2

ijk

always are positive numbers.
As one can see from Eqs. (25) and (27), all the one-loop β functions of the

theory vanish if β
(1)
g and γ

(1)
ij vanish, i.e.,∑

i

�(Ri) = 3C2(G), (28)

CiklCjkl = 2δi
jg

2C2(Ri). (29)

The conditions for ˇniteness for N = 1 ˇeld theories with SU(N) gauge sym-
metry are discussed in [76], and the analysis of the anomaly-free and no-charge
renormalization requirements for these theories can be found in [77]. A very
interesting result is that the conditions (28), (29) are necessary and sufˇcient for
ˇniteness at the two-loop level [75,78Ä81].

In case SUSY is broken by soft terms, the requirement of ˇniteness in the
one-loop soft breaking terms imposes further constraints among themselves [55].
In addition, the same set of conditions that are sufˇcient for one-loop ˇniteness
of the soft breaking terms render the soft sector of the theory two-loop ˇnite [55].

The one- and two-loop ˇniteness conditions (28), (29) restrict considerably
the possible choices of the irreps. Ri for a given group G as well as the Yukawa
couplings in the superpotential (20). Note in particular that the ˇniteness condi-
tions cannot be applied to the minimal supersymmetric standard model (MSSM),
since the presence of a U(1) gauge group is incompatible with the condition (28),
due to C2[U(1)] = 0. This naturally leads to the expectation that ˇniteness
should be attained at the grand uniˇed level only, the MSSM being just the
corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop ˇniteness is that SUSY
(most probably) can only be broken due to the soft breaking terms. Indeed, due to
the unacceptability of gauge singlets, F-type spontaneous symmetry breaking [82]
terms are incompatible with ˇniteness, as well as D-type [83] spontaneous break-
ing which requires the existence of a U(1) gauge group.

A natural question to ask is what happens at higher loop orders. The an-
swer is contained in a theorem [33, 34] which states the necessary and sufˇcient
conditions to achieve ˇniteness at all orders. Before we discuss the theorem, let
us make some introductory remarks. The ˇniteness conditions impose relations
between gauge and Yukawa couplings. To require such relations which render
the couplings mutually dependent at a given renormalization point is trivial. What
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is not trivial is to guarantee that relations leading to a reduction of the couplings
hold at any renormalization point. As we have seen, the necessary, and also suf-
ˇcient, condition for this to happen is to require that such relations are solutions
to the REs

βg
dCijk

dg
= βijk (30)

and hold at all orders. Remarkably, the existence of all-order power series
solutions to (30) can be decided at one-loop level, as already mentioned.

Let us now turn to the all-order ˇniteness theorem [33, 34], which states
that if an N = 1 supersymmetric gauge theory can become ˇnite to all orders
in the sense of vanishing β functions, that is of physical scale invariance. It is
based on (a) the structure of the supercurrent in N = 1 supersymmetric gauge
theory [84Ä86], and on (b) the nonrenormalization properties of N = 1 chiral
anomalies [33, 34, 87Ä89]. Details on the proof can be found in [33, 34] and
further discussion in [35, 87Ä90]. Here, following mostly [90], we present a
comprehensible sketch of the proof.

Consider an N = 1 supersymmetric gauge theory, with simple Lie group G.
The content of this theory is given at the classical level by the matter supermul-
tiplets Si, which contain a scalar ˇeld φi and a Weyl spinor ψia, and the vector
supermultiplet Va, which contains a gauge vector ˇeld Aa

μ and a gaugino Weyl
spinor λa

α.
Let us ˇrst recall certain facts about the theory:
(1) A massless N = 1 supersymmetric theory is invariant under a U(1) chiral

transformation R under which the various ˇelds transform as follows:

A′
μ = Aμ, λ′

α = exp (−iθ)λα,

φ′ = exp
(
−i

2
3
θ

)
φ, ψ′

α = exp
(
−i

1
3
θ

)
ψα, . . .

(31)

The corresponding axial Noether current Jμ
R(x),

Jμ
R(x) = λ̄γμγ5λ + . . . , (32)

is conserved classically, while in the quantum case is violated by the axial anomaly

∂μJμ
R = r(εμνσρFμνFσρ + . . .). (33)

From its known topological origin in ordinary gauge theories [91Ä93], one
would expect that the axial vector current Jμ

R satisˇes the AdlerÄBardeen theorem
and receives corrections only at the one-loop level. Indeed, it has been shown
that the same nonrenormalization theorem holds also in supersymmetric theo-
ries [87Ä89]. Therefore,

r = �β(1)
g . (34)
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(2) The massless theory we consider is scale-invariant at the classical level
and, in general, there is a scale anomaly due to radiative corrections. The scale
anomaly appears in the trace of the energy-momentum tensor Tμν , which is
traceless classically. It has the form

T μ
μ = βgF

μνFμν + . . . (35)

(3) Massless, N = 1 supersymmetric gauge theories are classically invariant
under the supersymmetric extension of the conformal group Å the superconformal
group. By examining the superconformal algebra, it can be seen that the subset of
superconformal transformations consisting of translations, SUSY transformations,
and axial R transformations is closed under SUSY; i.e., these transformations form
a representation of SUSY. It follows that the conserved currents corresponding
to these transformations make up a supermultiplet represented by an axial vector
superˇeld called supercurrent J ,

J ≡ {J ′μ
R , Qμ

α, T μ
ν , . . .}, (36)

where J ′μ
R is the current associated to R invariance, Qμ

α is the one associated to
SUSY invariance, and T μ

ν the one associated to translational invariance (energy-
momentum tensor).

The anomalies of the R current J ′μ
R , the trace anomalies of the SUSY current,

and the energy-momentum tensor, form also a second supermultiplet, called the
supertrace anomaly

S = {ReS, Im S, Sα} = {T μ
μ , ∂μJ ′μ

R , σμ

αβ̇
Q̄β̇

μ + . . .}, (37)

where T μ
μ was given in Eq. (35) and

∂μJ ′μ
R = βgε

μνσρFμνFσρ + . . . , (38)

σμ

αβ̇
Q̄β̇

μ = βgλ
βσμν

αβFμν + . . . (39)

(4) It is very important to note that the Noether current deˇned in (32)
is not the same as the current associated to R invariance that appears in the
supercurrent J in (36), but they coincide in the tree approximation. So, starting
from a unique classical Noether current Jμ

R(class), the Noether current Jμ
R is

deˇned as the quantum extension of Jμ
R(class), which allows for the validity of the

nonrenormalization theorem. On the other hand, J ′μ
R is deˇned to belong to the

supercurrent J , together with the energy-momentum tensor. The two requirements
cannot be fulˇlled by a single-current operator at the same time.

Although the Noether current Jμ
R which obeys (33) and the current J ′μ

R

belonging to the supercurrent multiplet J are not the same, there is a rela-
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tion [33,34] between the quantities associated with them

r = βg(1 + xg) + βijkxijk − γArA, (40)

where r was given in Eq. (34). The rA are the nonrenormalized coefˇcients of
the anomalies of the Noether currents associated to the chiral invariances of the
superpotential, and, like r, are strictly one-loop quantities. The γA's are linear
combinations of the anomalous dimensions of the matter ˇelds, and xg and xijk

are radiative correction quantities. The structure of equality (40) is independent
of the renormalization scheme.

One-loop ˇniteness, i.e., vanishing of the β functions at one loop, implies
that the Yukawa couplings λijk must be functions of the gauge coupling g. To
ˇnd a similar condition to all orders, it is necessary and sufˇcient for the Yukawa
couplings to be a formal power series in g, which is solution of the REs (30).

We can now state the theorem for all-order vanishing β functions.

Theorem: Consider an N = 1 supersymmetric YangÄMills theory, with
simple gauge group. If the following conditions are satisˇed:

1. There is no gauge anomaly;
2. The gauge β function vanishes at one loop

β(1)
g = 0 =

∑
i

l(Ri) − 3C2(G); (41)

3. There exist solutions of the form

Cijk = ρijkg, ρijk ∈ IC (42)

to the conditions of vanishing one-loop matter ˇelds anomalous dimensions

γ
i(1)
j = 0

=
1

32π2
[CiklCjkl − 2 g2 C2(Ri)δij ];

(43)

4. These solutions are isolated and nondegenerate when considered as solu-
tions of vanishing one-loop Yukawa β functions:

βijk = 0, (44)

then each of the solutions (42) can be uniquely extended to a formal power series
in g, and the associated super YangÄMills models depend on the single coupling
constant g with a β function which vanishes at all orders.

It is important to note a few things: The requirement of isolated and non-
degenerate solutions guarantees the existence of a unique formal power series
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solution to the reduction equations. The vanishing of the gauge β function at

one loop, β
(1)
g , is equivalent to the vanishing of the R current anomaly (33).

The vanishing of the anomalous dimensions at one loop implies the vanishing of
the Yukawa couplings β functions at that order. It also implies the vanishing of
the chiral anomaly coefˇcients rA. This last property is a necessary condition for
having β functions vanishing at all orders∗.

Proof: Insert βijk as given by the REs into the relationship (40) between
the axial anomalies coefˇcients and the β functions. Since these chiral anomalies
vanish, we get for βg a homogeneous equation of the form

0 = βg(1 + O(�)). (45)

The solution of this equation in the sense of a formal power series in � is βg = 0,
order by order. Therefore, due to the REs (30), βijk = 0, too.

Thus, we see that ˇniteness and reduction of couplings are intimately related.
Since an equation like Eq. (40) is lacking in nonsupersymmetric theories, one
cannot extend the validity of a similar theorem in such theories.

4. SUM RULE FOR SB TERMS IN N = 1 SUPERSYMMETRIC
AND FINITE THEORIES: ALL-LOOP RESULTS

The method of reducing the dimensionless couplings has been extended [28],
to the soft SUSY breaking (SSB) dimensionful parameters of N = 1 supersym-
metric theories. In addition, it was found [61] that RGI SSB scalar masses in
GaugeÄYukawa uniˇed models satisfy a universal sum rule. Here we will describe
ˇrst how the use of the available two-loop RG functions and the requirement of
ˇniteness of the SSB parameters up to this order leads to the soft scalar-mass
sum rule [62].

Consider the superpotential given by (20) along with the Lagrangian for
SSB terms:

−LSB =
1
6
hijkφiφjφk +

1
2
bijφiφj +

1
2
(m2)j

iφ
∗ iφj +

1
2
Mλλ + h.c., (46)

where the φi are the scalar parts of the chiral superˇelds Φi, λ are the gauginos
and M their uniˇed mass. Since we would like to consider only ˇnite theo-
ries here, we assume that the gauge group is a simple group and the one-loop
β function of the gauge coupling g vanishes. We also assume that the reduction
equations admit power series solutions of the form

Cijk = g
∑

n

ρijk
(n)g

2n. (47)

∗There is an alternative way to ˇnd ˇnite theories [94].
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According to the ˇniteness theorem of [33,34], the theory is then ˇnite to all orders
in perturbation theory, if, among others, the one-loop anomalous dimensions

γ
j(1)
i vanish. The one- and two-loop ˇniteness for hijk can be achieved by [56]

hijk = −MCijk + . . . = −Mρijk
(0)g + O(g5), (48)

where . . . stand for higher-order terms.
Now, to obtain the two-loop sum rule for soft scalar masses, we assume that

the lowest-order coefˇcients ρijk
(0) and also (m2)i

j satisfy the diagonality relations

ρipq(0)ρ
jpq
(0) ∝ δj

i for all p and q and (m2)i
j = m2

jδ
i
j, (49)

respectively. Then we ˇnd the following soft scalar-mass sum rule [21,62,95]:

m2
i + m2

j + m2
k

MM † = 1 +
g2

16π2
Δ(2) + O(g4) (50)

for i, j, k with ρijk
(0) �= 0, where Δ(2) is the two-loop correction

Δ(2) = −2
∑

l

[
m2

l

MM † − 1
3

]
T (Rl), (51)

which vanishes for the universal choice in accordance with the previous ˇnd-
ings of [56].

If we know higher-loop β functions explicitly, we can follow the same
procedure and ˇnd higher-loop RGI relations among SSB terms. However, the
β functions of the soft scalar masses are explicitly known only up to two loops.
In order to obtain higher-loop results, some relations among β functions are
needed.

Making use of the spurion technique [50Ä54], it is possible to ˇnd the fol-
lowing all-loop relations among SSB β functions [42Ä47]:

βM = 2O
(

βg

g

)
, (52)

βijk
h = γi

lh
ljk + γj

lh
ilk + γk

lh
ijl − 2γi

1lC
ljk − 2γj

1lC
ilk − 2γk

1 lC
ijl, (53)

(βm2)i
j =

[
Δ + X

∂

∂g

]
γi

j , (54)

O =
(

Mg2 ∂

∂g2
− hlmn ∂

∂Clmn

)
, (55)

Δ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃lmn ∂

∂Clmn
, (56)
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where (γ1)i
j = Oγi

j , Clmn = (Clmn)∗, and

C̃ijk = (m2)i
lC

ljk + (m2)j
lC

ilk + (m2)k
lC

ijl. (57)

It was also found [43] that the relation

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
(58)

among couplings is all-loop RGI. Furthermore, using the all-loop gauge β function
of Novikov et al. [63Ä65] given by

βNSVZ
g =

g3

16π2

⎡
⎣

∑
l

T (Rl)(1 − γl/2) − 3C(G)

1 − g2C(G)/8π2

⎤
⎦ , (59)

the all-loop RGI sum rule [48] was found:

m2
i + m2

j + m2
k = |M |2

[
1

1 − g2C(G)/(8π2)
d ln Cijk

d ln g
+

1
2

d2 ln Cijk

d(ln g)2

]
+

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d ln Cijk

d ln g
. (60)

In addition, the exact β function for m2 in the NSVZ scheme has been ob-
tained [48] for the ˇrst time and it is given by

βNSVZ
m2

i
=

{
|M |2

[
1

1 − g2C(G)/(8π2)
d

d ln g
+

1
2

d2

d(ln g)2

]
+

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d

d ln g

}
γNSVZ

i . (61)

Surprisingly enough, the all-loop result (60) coincides with the superstring result
for the ˇnite case in a certain class of orbifold models [62] if d ln Cijk/d ln g = 1.

5. FINITE SU(5) UNIFIED THEORIES

Finite Uniˇed Theories (FUTs) have always attracted interest for their in-
triguing mathematical properties and their predictive power. One very important
result is that the one-loop ˇniteness conditions (26), (27) are sufˇcient to guaran-
tee two-loop ˇniteness [75]. A classiˇcation of possible one-loop ˇnite models
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was done by two groups [96Ä98]. The ˇrst one- and two-loop ˇnite SU(5) model
was presented in [99], and shortly afterwards the conditions for ˇniteness in the
soft SUSY-breaking sector at one loop [80] were given. In [100], a one- and
two-loop ˇnite SU(5) model was presented where the rotation of the Higgs sector
was proposed as a way of making it realistic. The ˇrst all-loop ˇnite theory was
studied in [23,24], without taking into account the soft breaking terms. Finite soft
breaking terms and the proof that one-loop ˇniteness in the soft terms also implies
two-loop ˇniteness was done in [56]. The inclusion of soft breaking terms in a
realistic model was done in [101] and their ˇniteness to all loops studied in [46],
although the universality of the soft breaking terms leads to a charged LSP. This
fact was also noticed in [102], where the inclusion of an extra parameter in the
boundary condition of the Higgs mixing mass parameter was introduced to alle-
viate it. The derivation of the sum rule in the soft SUSY-breaking sector and the
proof that it can be made all-loop ˇnite were done in [62] and [48] respectively,
thus allowing for the construction of all-loop ˇnite realistic models.

From the classiˇcation of theories with vanishing one-loop gauge β func-
tion [96], one can easily see that there exist only two candidate possibilities
to construct SU(5) GUTs with three generations. These possibilities require that
the theory should contain as matter ˇelds the chiral supermultiplets 5,5,10,5,24
with the multiplicities (6, 9, 4, 1, 0) or (4, 7, 3, 0, 1), respectively. Only the second
one contains a 24-plet which can be used to provide the spontaneous symmetry
breaking (SB) of SU(5) down to SU(3) × SU(2) × U(1). For the ˇrst model,
one has to incorporate another way, such as the Wilson 	ux breaking mechanism
to achieve the desired SB of SU(5) [23,24]. Therefore, for a self-consistent ˇeld
theory discussion, we would like to concentrate only on the second possibility.

The particle content of the models we will study consists of the following
supermultiplets: three (5+10), needed for each of the three generations of quarks
and leptons, four (5 + 5) and one 24 considered as Higgs supermultiplets. When
the gauge group of the ˇnite GUT is broken, the theory is no longer ˇnite, and
we will assume that we are left with the MSSM.

Therefore, a predictive GaugeÄYukawa uniˇed SU(5) model which is ˇnite
to all orders, in addition to the requirements already mentioned, should also have
the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δj

i .

2. The three fermion generations, in the irreducible representations 5i,10i

(i = 1, 2, 3), should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a
pair of Higgs quintet and antiquintet, which couple to the third generation.

In the following we discuss two versions of the all-order ˇnite model: the
model of [23, 24], which will be labeled A, and a slight variation of this model
(labeled B), which can also be obtained from the class of the models sug-
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gested in [44,45] with a modiˇcation to suppress nondiagonal anomalous dimen-
sions [62].

The superpotential which describes the two models before the reduction of
couplings takes places is of the form [23,24,62,99,100]

W =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5iHi

]
+ gu

23102103H4+

+ gd
2310253H4 + gd

3210352H4 +
4∑

a=1

gf
aHa24Ha +

gλ

3
(24)3, (62)

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and antiquintets.
The main difference between model A and model B is that two pairs of

Higgs quintets and antiquintets couple to the 24 in B, so that it is not necessary
to mix them with H4 and H4 in order to achieve the tripletÄdoublet splitting after
the symmetry breaking of SU(5) [62]. Thus, although the particle content is the
same, the solutions to Eqs. (26), (27) and the sum rules are different, which will
re	ect in the phenomenology, as we will see.

5.1. FUTA. After the reduction of couplings the symmetry of the superpoten-
tial W (62) is enhanced. For model A, one ˇnds that the superpotential has the
Z7×Z3×Z2 discrete symmetry with the charge assignment as shown in Table 1,
and with the following superpotential:

WA =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5iHi

]
+ gf

4 H4 24H4 +
gλ

3
(24)3. (63)

Table 1. Charges of the Z7 × Z3 × Z2 symmetry for model FUTA

51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z7 4 1 2 1 2 4 5 3 6 Ä5 Ä3 Ä6 0 0 0

Z3 0 0 0 1 2 0 1 2 0 Ä1 Ä2 0 0 0 0

Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

The nondegenerate and isolated solutions to γ
(1)
i = 0 for model FUTA, which

are the boundary conditions for the Yukawa couplings at the GUT scale, are

(gu
1 )2 =

8
5
g2, (gd

1)2 =
6
5
g2, (gu

2 )2 = (gu
3 )2 =

8
5
g2,

(gλ)2 =
15
7

g2, (gd
2)2 = (gd

3)2 =
6
5
g2, (gf

4 )2 = g2, (64)

(gu
23)

2 = (gd
23)

2 = (gd
32)

2 = (gf
2 )2 = (gf

3 )2 = (gf
1 )2 = 0.
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In the dimensionful sector, the sum rule gives us the following boundary condi-
tions at the GUT scale for this model [62]:

m2
Hu

+ 2m2
10 = m2

Hd
+ m2

5
+ m2

10 = M2, (65)

and thus we are left with only three free parameters, namely, m5 ≡ m53
,

m10 ≡ m103 and M .
5.2. FUTB. Also in the case of FUTB the symmetry is enhanced after the

reduction of couplings. The superpotential has now a Z4 × Z4 × Z4 symmetry
with charges as shown in Table 2 and with the following superpotential:

WB =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5iHi

]
+ gu

23102103H4 +

+ gd
2310253H4 + gd

3210352H4 + gf
2H224H2 + gf

3H324H3 +
gλ

3
(24)3. (66)

Table 2. Charges of the Z4 × Z4 × Z4 symmetry for model FUTB

51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z4 1 0 0 1 0 0 2 0 0 0 Ä2 0 0 0 0

Z4 0 1 0 0 1 0 0 2 0 3 0 Ä2 0 Ä3 0

Z4 0 0 1 0 0 1 0 0 2 3 0 0 Ä2 Ä3 0

For this model the nondegenerate and isolated solutions to γ
(1)
i = 0 give us

(gu
1 )2 =

8
5
g2, (gd

1)2 =
6
5

g2, (gu
2 )2 = (gu

3 )2 = (gu
23)

2 =
4
5
g2,

(gd
2)2 = (gd

3)2 = (gd
23)

2 = (gd
32)

2 =
3
5
g2, (67)

(gλ)2 =
15
7

g2, (gf
2 )2 = (gf

3 )2 =
1
2
g2, (gf

1 )2 = (gf
4 )2 = 0,

and from the sum rule we obtain [62]

m2
Hu

+ 2m2
10 = M2, m2

Hd
− 2m2

10 = −M2

3
,

(68)

m2
5

+ 3m2
10 =

4M2

3
,

i.e., in this case we have only two free parameters m10 ≡ m103 and M for the
dimensionful sector.
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As already mentioned, after the SU(5) gauge symmetry breaking we assume
we have the MSSM, i.e., only two Higgs doublets. This can be achieved by
introducing appropriate mass terms that allow one to perform a rotation of the
Higgs sector [23, 24, 99, 100, 103], in such a way that only one pair of Higgs
doublets, coupled mostly to the third family, remains light and acquires vacuum
expectation values. To avoid fast proton decay, the usual ˇne tuning to achieve
doubletÄtriplet splitting is performed. Notice that, although similar, the mecha-
nism is not identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken, we are left
with the MSSM, with the boundary conditions for the third family given by the
ˇniteness conditions, while the other two families are basically decoupled.

We will now examine the phenomenology of such all-loop Finite Uniˇed
Theories with SU(5) gauge group and, for the reasons expressed above, we will
concentrate only on the third generation of quarks and leptons. An extension to
three families, and the generation of quark mixing angles and masses in Finite
Uniˇed Theories has been addressed in [104], where several examples are given.
These extensions are not considered here.

5.3. Restrictions from Low-Energy Observables. Since the gauge symmetry
is spontaneously broken below MGUT, the ˇniteness conditions do not restrict
the renormalization properties at low energies, and all it remains are boundary
conditions on the gauge and Yukawa couplings (64) or (67), the h = −MC
relation (48), and the soft scalar-mass sum rule (50) at MGUT, as applied in the
two models. Thus, we examine the evolution of these parameters according to
their RGEs up to two loops for dimensionless parameters and at one loop for
dimensionful ones with the relevant boundary conditions. Below MGUT their
evolution is assumed to be governed by the MSSM. We further assume a unique
SUSY-breaking scale MSUSY (which we deˇne as the geometrical average of the
stop masses) and therefore below that scale the effective theory is just the SM.
This allows one to evaluate observables at or below the electroweak scale.

In the following, we brie	y describe the low-energy observables used in our
analysis. We discuss the current precision of the experimental results and the
theoretical predictions. We also give relevant details of the higher-order pertur-
bative corrections that we include. We do not discuss theoretical uncertainties
from the RG running between the high-scale parameters and the weak scale. At
present, these uncertainties are expected to be less important than the experimental
and theoretical uncertainties of the precision observables.

As precision observables we ˇrst discuss the 3rd generation quark masses
that are leading to the strongest constraints on the models under investigation.
Next we apply B physics and Higgs-boson mass constraints. We also brie	y
discuss the anomalous magnetic moment of the muon.

5.4. Predictions. We now present the comparison of the predictions of the
four models with the experimental data, see [105] for more details, starting with
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Fig. 1. (Color online) The bottom-quark mass at the Z boson scale (a) and top-quark pole
mass (b) are shown as a function of M for both models

the heavy quark masses. In Fig. 1, we show the FUTA and FUTB predictions
for the top pole mass, Mtop, and the running bottom mass at the scale MZ ,
mbot(MZ), as a function of the uniˇed gaugino mass M , for the two cases
μ < 0 and μ > 0. The running bottom mass is used to avoid the large QCD
uncertainties inherent for the pole mass. In the evaluation of the bottom mass
mbot, we have included the corrections coming from bottom squarkÄgluino loops
and top squarkÄchargino loops [106]. We compare the predictions for the running



598 HEINEMEYER S., MONDRAG�ON M., ZOUPANOS G.

bottom-quark mass with the experimental value [107]

mb(MZ) = (2.83 ± 0.10) GeV. (69)

One can see that the value of mb depends strongly on the sign of μ due to
the above-mentioned radiative corrections involving SUSY particles. For both
models, A and B, the values for μ > 0 are above the central experimental value,
with mb(MZ) ∼ 4.0−5.0 GeV. For μ < 0, on the other hand, model B shows
overlap with the experimentally measured values, mb(MZ) ∼ 2.5−2.8 GeV.
For model A we ˇnd mb(MZ) ∼ 1.5−2.6 GeV, and there is only a small
region of allowed parameter space at large M where we ˇnd agreement with the
experimental value at the two σ level. Therefore, the experimental determination
of mb(MZ) clearly selects the negative sign of μ.

Now we turn to the top-quark mass. The predictions for the top-quark
mass mt are ∼ 183 and ∼ 172 GeV in the models A and B, respectively,
as shown in the lower plot of Fig. 1. Comparing these predictions with the
experimental value [108]

mexp
t = (173.2 ± 0.9) GeV (70)

and recalling that the theoretical values for mt may suffer from a correction of
∼ 4% [20, 95, 109], we see that clearly model B is singled out. In addition,
the value of tan β is found to be tan β ∼ 54 and ∼ 48 for models A and B,
respectively. Thus, from the comparison of the predictions of the two models
with experimental data, only FUTB with μ < 0 survives.

We now analyze the impact of further low-energy observables on the model
FUTB with μ < 0. As additional constraints we consider the following observ-
ables: the rare b decays BR(b → sγ) and BR (Bs → μ+μ−). More details and
a complete set of references can be found in [105].

For the branching ratio BR (b → sγ), we take the experimental value esti-
mated by the Heavy Flavor Averaging Group (HFAG) [110Ä112]:

BR (b → sγ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03) · 10−4, (71)

where the ˇrst error is the combined statistical and uncorrelated systematic un-
certainty, the latter two errors are correlated systematic theoretical uncertainties
and corrections, respectively. For the branching ratio BR (Bs → μ+μ−), the SM
prediction is at the level of 3 · 10−9, while the present experimental upper limit
from the Tevatron is

BR(Bs → μ+μ−) = 4.5 · 10−9 (72)

at the 95% C.L. [113].
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Fig. 2. (Color online) The lightest Higgs mass, Mh, as a function of M for the model
FUTB with μ < 0, see text

The prediction of the lightest Higgs boson mass, as obtained with
FeynHiggs [114Ä117], as a function of M is shown in Fig. 2, where the
B-physics constraints are already taken into account. One can see that the lightest
Higgs boson mass range is

Mh ∼ 121−126 GeV, (73)

where the uncertainty comes from variations of the soft scalar masses, and from
ˇnite (i.e., not logarithmically divergent) corrections in changing renormaliza-
tion scheme. To this value one has to add ±2 GeV coming from unknown
higher-order corrections [116]. We have also included a small variation, due to
threshold corrections at the GUT scale, of up to 5% of the FUT boundary condi-
tions. Interpreting the light Higgs boson as the Higgs-like state discovered at the
LHC [66,67], we can impose a constraint on our results to the Higgs mass of

Mh ∼ (126.0 ± 1 ± 2) GeV, (74)

where ±1 comes from the experimental error and ±2 corresponds to the the-
oretical error, and see how this affects the SUSY spectrum. Constraining the
allowed values of the Higgs mass this way puts a limit on the allowed values of
the uniˇed gaugino mass, as can be seen from Fig. 2. The red lines correspond
to the pure experimental uncertainty and restrict 2 � M � 5 TeV. The blue line
includes the additional theory uncertainty of ±2 GeV. Taking this uncertainty
into account, no bound on M can be placed. However, a substantial part of the
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Fig. 3. (Color online) The LOSP in model FUTB with μ < 0, see text

formerly allowed parameter points are now excluded. This in turn restricts the
lightest observable SUSY particle (LOSP), which turns out to be the light scalar
tau. In Fig. 3, the effects on the mass of the LOSP are demonstrated. Without any
Higgs mass constraint all colored points are allowed. Imposing Mh (126±1) GeV
only the green (light shaded) points are allowed, restricting the mass to be between

Table 3. A representative spectrum of a light
FUTB, μ < 0 spectrum, compliant with the
B-physics constraints

Mbot(MZ) 2.72 Mtop 172.3

Mh 123.2 MA 1179

MH 1177 MH± 1181

Stop1 2126 Stop2 2414

Sbot1 2015 Sbot2 2387

Mstau1 723 Mstau2 899

Char1 1218 Char2 1828

Neu1 660 Neu2 1219

Neu3 1824 Neu4 1828

M1 661 M2 1222

Mgluino 3092

about 700 and 2500 GeV. The lower
values might be experimentally ac-
cessible at the ILC with 1000 GeV
center-of-mass energy or at CLIC
with an energy up to ∼ 3 TeV. Tak-
ing into account the theory uncer-
tainty on Mh also the blue (dark
shaded) points are allowed, permit-
ting the LOSP mass up to ∼ 4 TeV.
If the upper end of the parameter
space were realized, the light scalar
tau would remain unobservable even
at CLIC.

In the same way the whole SUSY
particle spectrum can be derived. The
resulting SUSY masses for FUTB
with μ < 0 are rather large. The
lightest SUSY particle starts around
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Fig. 4. (Color online) The particle spectrum of model FUTB with μ < 0, where the points
shown are in agreement with the quark mass constraints and the B-physics observables.
The light (green) points on the left are the various Higgs boson masses. The dark (blue)
points following are the two scalar top and bottom masses, followed by the lighter (gray)
gluino mass. Next come the lighter (orange) scalar tau masses. The darker (red) points
to the right are the two chargino masses followed by the lighter shaded (pink) points
indicating the neutralino masses

600 GeV, with the rest of the spectrum being very heavy. A numerical example
of the lighter part of the spectrum is shown in Table 3.

The full particle spectrum of model FUTB with μ < 0, again compliant
with quark mass constraints and the B-physics observables, is shown in Fig. 4.
Including the Higgs mass constraint favors the lower parts of the parameter
space. However, even neglecting the theory uncertainty on Mh (Fig. 4, a) permits
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SUSY masses which would remain unobservable at the LHC, the ILC or CLIC.
Including the theory uncertainties, even higher masses are permitted, further
weakening the discovery potential of the LHC and future e+e− colliders. The
colored supersymmetric particles are above ∼ 1.8 TeV in agreement with the
nonobservation of those particles at the LHC [118Ä120].

We note that with such a heavy SUSY spectrum the anomalous magnetic
moment of the muon, (g − 2)μ (with aμ ≡ (g − 2)μ/2), gives only a negligible
correction to the SM prediction. The comparison of the experimental result and
the SM value (based on the latest combination using e+e− data) [121]

aexp
μ − ath

μ = (28.7 ± 8.0) · 10−10 (75)

would disfavor FUTB with μ < 0 [122, 123]. However, since the results would
be very close to the SM result, we cannot exclude the model on this fact alone.

CONCLUSIONS

A number of proposals and ideas have matured with time and have survived
after careful theoretical studies and confrontation with experimental data. These
include part of the original GUTs ideas, mainly the uniˇcation of gauge couplings
and, separately, the uniˇcation of the Yukawa couplings, a version of ˇxed point
behavior of couplings, and certainly the necessity of SUSY as a way to take care
of the technical part of the hierarchy problem. On the other hand, a very serious
theoretical problem, namely, the presence of divergencies in Quantum Field The-
ories (QFT), although challenged by the founders of QFT [124Ä126], was mostly
forgotten in the course of developments of the ˇeld partly due to the spectacular
successes of renormalizable ˇeld theories, in particular of the SM. However, as
was already mentioned in the Introduction, fundamental developments in Theoret-
ical Particle Physics are based on reconsiderations of the problem of divergencies
and serious attempts to solve it. These include the motivation and construction
of string and noncommutative theories, as well as N = 4 supersymmetric ˇeld
theories [3, 4], N = 8 supergravity [5Ä9] and the AdS/CFT correspondence [2].
It is a thoroughly fascinating fact that many interesting ideas that have survived
various theoretical and phenomenological tests, as well as the solution to the UV
divergencies problem, ˇnd a common ground in the framework of N = 1 Finite
Uniˇed Theories, which we have described in the previous sections. From the
theoretical side, they solve the problem of UV divergencies in a minimal way.
On the phenomenological side, since they are based on the principle of reduction
of couplings (expressed via RGI relations among couplings and masses), they
provide strict selection rules in choosing realistic models which lead to testable
predictions. The celebrated success of predicting the top-quark mass [23Ä28]
is now extented to the predictions of the Higgs masses and the supersymmetric
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spectrum of the MSSM [105, 127]. The predicted mass of the lightest Higgs
boson turns out to be naturally in agreement with the discovery of a Higgs-like
state at the LHC. Identifying the lightest Higgs boson with the newly discovered
state, we restrict the allowed parameter space of the surviving model (FUTB with
μ < 0) by the other low-energy constraints. We reviewed how this reduction of
parameter space impacts the prediction of the SUSY spectrum.
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