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ADVECTION OF PASSIVE MAGNETIC FIELD
BY THE GAUSSIAN VELOCITY FIELD

WITH FINITE CORRELATIONS IN TIME
AND SPATIAL PARITY VIOLATION

E. Jur�ci�sinov�a ∗, M. Jur�ci�sin ∗∗

Institute of Experimental Physics, Slovak Academy of Sciences, Ko�sice, Slovakia

By using the ˇeld-theoretic renormalization group technique, the model of weak magnetic ˇeld
passively advected by an incompressible isotropic helical turbulent �ow is investigated up to the second
order of the perturbation theory (two-loop approximation) in the framework of an extended KazantsevÄ
Kraichnan model of kinematic magnetohydrodynamics. Statistical �uctuations of the velocity ˇeld are
taken in the form of a Gaussian distribution with zero mean and deˇned noise with ˇnite correlations
in time. The two-loop analysis of all possible scaling regimes is done, and the in�uence of helicity
on the stability of scaling regimes is discussed and shown in the plane of exponents ε − η, where ε
characterizes the energy spectrum of the velocity ˇeld in the inertial range E ∝ k1−2ε and η is related
to the correlation time at the wave number k which is scaled as k−2+η. It is shown that in nonhelical
case the scaling regimes of the present vector model are completely identical and have also the same
properties as those obtained in the corresponding model of passively advected scalar ˇeld. Besides, it
is also shown that when the turbulent environment under consideration is helical, then the properties of
the scaling regimes in models of passively advected scalar and vector (magnetic) ˇelds are essentially
different. The results demonstrate the importance of the presence of a symmetry breaking in a given
turbulent environment for investigation of the in�uence of an internal tensor structure of the advected
ˇeld on the inertial range scaling properties of the model under consideration and will be used in the
analysis of the in�uence of helicity on the anomalous scaling of correlation functions of passively
advected magnetic ˇeld.

PACS: 47.27.ef; 47.27.tb; 05.10.Cc

INTRODUCTION

The main conclusion of the phenomenological KolmogorovÄObukhov (KO)
theory [1, 2] is the statement that the statistical properties of random ˇelds deep
inside in the inertial interval l � r � L of fully developed turbulent system
are independent of the integral scale L (a typical scale on which the energy is
pumped into the system) as well as the viscous scale l (a typical scale on which
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the energy starts to dissipate). This behavior was formulated in the form of
the well-known Kolmogorov hypotheses. The assumption of validity of these
hypotheses, together with simple dimensional analysis, then leads to the scaling
behavior of correlation functions with deˇnite exponents.

On the other hand, it is also well known that both experimental and theoretical
studies show the existence of deviations from the predictions of the KO theory.
Actually, the dependence of the correlation functions on the integral scale L is
detected in contradiction with the ˇrst Kolmogorov hypothesis. Such deviations,
referred to as anomalous or nondimensional scaling, manifest themselves in a
singular dependence of the correlation functions on the distances and the integral
scale L and are usually explained by the existence of strong developed �uctuations
of the dissipative rate (intermittency) [1Ä4].

During the last two decades this problem was intensively studied within the
scope of models of passive scalar and vector ˇelds (concentration of an admix-
ture, temperature, or weak magnetic ˇeld are examples) advected by a ®syn-
thetic¯ velocity ˇeld with prescribed Gaussian statistics. The reason is twofold.
In the ˇrst place, the deviation from the classical theory is even more strongly
noticeable for a passively advected ˇeld than for the velocity ˇeld itself, see,
e.g., [3Ä5], and secondly, the problem of passive advection is considerably easier
for theoretical investigation. Moreover, it reproduces many of the anomalous fea-
tures of genuine turbulent heat or mass transport observed in experiments. Thus,
the theoretical study of the models of a passive scalar or vector advection can
be treated as the ˇrst step on the long way of the investigation of intermittency
and anomalous scaling in fully developed turbulence. In this respect, during a
long period the crucial role in the theoretical investigations of anomalous scaling
was played by the simple model of a passive scalar quantity advected by a ran-
dom Gaussian velocity ˇeld, white in time and self-similar in space, the so-called
Kraichnan rapid-change model [6]. Namely, in the framework of the rapid-change
model, for the ˇrst time, the anomalous scaling was established on the basis of
a microscopic model and corresponding anomalous exponents were calculated
within controlled approximation in the framework of the so-called zero-mode
approach (see, e.g., [4] and references cited therein).

A considerable progress in the understanding of the anomalous scaling in
turbulence was also done by the renormalization group (RG) technique which
represents an effective method for investigation of self-similar scaling behav-
ior [7Ä9]. In [10, 11], the ˇeld-theoretic RG and the operator-product expan-
sion (OPE) were used in the systematic investigation of the anomalous scaling
in Kraichnan's rapid-change model. It was shown that in the framework of the
ˇeld-theoretic RG approach the anomalous scaling is related to the existence in
the model of dangerous composite operators with negative critical dimensions in
the OPE (see, e.g., [9, 12] for details). Thereafter, the ˇeld-theoretic RG tech-
nique was widely used for investigation of the anomalous behavior of various
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descendants of the Kraichnan model, e.g., models with inclusion of small-scale
anisotropy, compressibility, models with the ˇnite correlation time of the velocity
ˇeld, and spatial parity violation (helicity) (see, e.g., [5, 13Ä15] and references
cited therein). Besides, advection of the passive vector ˇeld by the Gaussian self-
similar velocity ˇeld (with and without large and small-scale anisotropy, pressure,
compressibility, and ˇnite correlation time) has also been investigated, all possible
asymptotic scaling regimes and cross-over among them have been classiˇed, and
anomalous scaling was analyzed [16Ä18]. A general conclusion of all these inves-
tigations is that the anomalous scaling remains valid for all generalized models.

The general solution of the problem of anomalous scaling in the framework
of the ˇeld-theoretic approach [9, 12] is divided into two main stages. In the
ˇrst stage, the multiplicative renormalizability of the corresponding ˇeld-theoretic
model is demonstrated and the differential RG equations for its correlation func-
tions are obtained. The asymptotic behavior of the latter on their ultraviolet
argument (r/l) for r � l and any ˇxed (r/L) is given by infrared stable ˇxed
points of those equations. It involves some ®scaling functions¯ of the infrared ar-
gument (r/L), whose form is not determined by the RG equations. In the second
stage, the behavior of scaling functions at r � L is found from the OPE within
the framework of the general solution of the RG equations. There, the crucial
role is played by the critical dimensions of various composite operators, which
give rise to an inˇnite family of independent aforementioned scaling exponents
(and hence to multiscaling).

However, unlike the investigations of the anomalous scaling of passive scalar
admixture in the framework of the Kraichnan model, generalized Kraichnan
model [5], as well as in the model with advection by the NavierÄStokes velocity
ˇeld [19], which were done up to the second-order (two-loop) approximation (in
the case of the Kraichnan model, three-loop analysis of the anomalous exponents
has also been done [11]), the complete ˇeld-theoretic RG analysis of the passively
advected vector ˇeld, even within the simplest model, the so-called KazantsevÄ
Kraichnan kinematic magnetohydrodynamic (MHD) turbulence, is known only to
the ˇrst order of approximation. Only quite recently [20,21], brief RG discussions
of this problem have been done in two-loop approximation. At the same time,
the calculation and deeper analysis of the two-loop corrections to the anomalous
exponents in the framework of the KazantsevÄKraichnan model, as well as in the
framework of its various generalizations, are important from theoretical as well as
experimental point of view. First of all, it is well known that at one-loop level of
approximation the scaling regimes and the critical exponents of the most impor-
tant composite operators that determine the anomalous scaling of the single-time
correlation or structure functions of advected scalar or vector ˇelds are the same in
the corresponding models of passive advection (see, e.g., [10,16,18,22]). It means
that at one-loop approximation it is impossible to identify and study possible in�u-
ence of the internal tensor structure of the advected ˇeld on its scaling properties.
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On the other hand, it is also well known that in the framework of the sim-
plest models of the passive scalar or vector advection, namely, in the framework
of the Kraichnan model and the corresponding KazantsevÄKraichnan model of
kinematic MHD, by using the ˇeld-theoretic methods it is impossible to study
the behavior of the model under the in�uence of more realistic properties of the
turbulent environment. For example, it is well known that in the framework of
the Kraichnan model it is impossible to study the in�uence of the presence of
spatial parity violation (helicity) on the properties of the diffusion processes of
passively advected scalar ˇeld. At the same time, as was shown in [15], the
importance of the presence of helicity for diffusion processes of a scalar quantity
in turbulent environment can be rather signiˇcant. Besides, due to the structure
of the Feynman diagrams, the effects of helicity on the diffusion processes can
be studied only starting from the two-loop approximation.

In the present paper, we shall investigate the generalized KazantsevÄKraichnan
model of passively advected magnetic ˇeld by the Gaussian velocity ˇeld with
ˇnite time correlations and with the presence of helicity. The aim is twofold.
First of all, we shall analyze the structure of all possible scaling regimes of
the model in two-loop approximation, and the results will be compared to those
obtained in the framework of the corresponding model of passively advected
scalar ˇeld [15]. It will be shown that, in the case where the turbulent envi-
ronment is incompressible, isotropic, and nonhelical, the structure of the scal-
ing regimes as well as the corresponding coordinates of the IR stable ˇxed
points for the model of scalar advection and vector advection are completely
the same; i.e., it is shown that the internal tensor structure of the advected
ˇeld in the framework of the present model is not important for the prop-
erties of diffusion processes in fully symmetric turbulent environments. The
second aim is to investigate the in�uence of the presence of the spatial par-
ity violation on the scaling regimes of the model and to compare the results
to those obtained in the corresponding scalar problem [15]. As we shall see,
the presence of helicity in the studied turbulent systems leads to the different
diffusion behavior of the scalar ˇeld in comparison with the behavior of the
vector ˇeld.

Here, we consider only the ˇrst stage of the solution of the problem of anom-
alous scaling in the framework of the ˇeld-theoretic approach; i.e., we shall only
establish the possible scaling regimes of the model. The next step will be to use
the obtained results for the investigation of the properties of the scaling functions
of the correlation functions of the advected magnetic ˇeld in the framework of
the OPE to determine the critical dimensions of the most important composite
operators that lead to the anomalous scaling. However, the problem of anomalous
scaling will be studied elsewhere.

The paper is organized as follows. In Sec. 1, the generalized KazantsevÄ
Kraichnan model of the passively advected vector (magnetic) ˇeld with presence
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of helicity is introduced and its ˇeld-theoretic formulation is given in Sec. 2.
In Sec. 3, the RG analysis of the model is done, and the possible scaling regimes
and their IR stability under the in�uence of helicity are given in Sec. 4. In the
Conclusion, the discussion of results is presented.

1. DESCRIPTION OF THE MODEL

In what follows, we shall consider the advection of a solenoidal passive
magnetic ˇeld b ≡ b(x) (x ≡ (t,x)) by an incompressible velocity ˇeld v ≡
v(x), which is described by the following advection-diffusion equation:

∂tb = ν0�b− (v · ∂)b + (b · ∂)v + fb, (1)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, � ≡ ∂2 is the Laplace operator; ν0 = c2/(4πσ)
represents the magnetic diffusivity (in what follows, a subscript 0 will denote
bare parameters of the unrenormalized theory); c is the speed of light, and σ is
the conductivity. Thus, both v and b are divergence-free vector ˇelds: ∂ · v =
∂ · b = 0.

The magnetic energy pumping given by a transverse Gaussian random noise
fb = fb(x) with zero mean and the correlation function

Db
ij(x; 0) ≡ 〈f b

i (x)f b
j (0)〉 = δ(t)Cij(|x|/L) (2)

represents the source of the �uctuations of the magnetic ˇeld b and maintains the
steady state of the system. Here, L is an integral scale related to the corresponding
stirring, and Cij is a function ˇnite in the limit L → ∞. In what follows, the
detailed form of the function Cij is unimportant; the only condition which must
be satisˇed is that Cij decreases rapidly for |x| � L. If Cij depends on the
direction of the vector x and not only on its modulus r = |x|, then it can be
considered as a source of the large-scale anisotropy (see, e.g., [16]).

In real problems it is usually supposed that the velocity ˇeld v(x) satisˇes the
stochastic NavierÄStokes equation. In spite of this fact, in what follows, we shall
suppose that the statistics of the velocity ˇeld is given in the form of Gaussian
distribution with zero mean and correlation function [18,22,23]

〈vi(x)vj(x′)〉 ≡ Dv
ij(x; x′) =

∫
dωddk
(2π)d+1

Rij(k)D̃v(ω, k)×

× exp [−iω(t− t′) + ik(x − x′)], (3)

with

D̃v(ω, k) =
g0ν

3
0 k4−d−2ε−η

(iω + u0ν0 k2−η)(−iω + u0ν0k2−η)
, (4)
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where k = |k| is the wave number; ω is frequency; d is the dimensionality of
the x space (of course, when one investigates system with helicity the dimension
of the x space must be strictly equal to three; nevertheless, in what follows, we
shall remain the d-dimensionality of all results which are not related to helicity
to be also able to study d-dependence of nonhelical case of the model). The
geometric properties of the velocity correlator are given by the form of the
transverse (due to incompressibility of the �uid) projector Rij(k). In the simplest
isotropic nonhelical case, it has the form of the standard transverse projector
Rij(k) = Pij(k) ≡ δij − kikj/k2. On the other hand, the transition to a helical
�uid corresponds to the giving up of conservation of spatial parity. Technically,
this is expressed by the fact that the correlation function is speciˇed in the form
of mixture of a true tensor and a pseudotensor. In our approach, it is represented
by two parts of transverse projector

Rij = Pij(k) + Hij(k), (5)

which consists of nonhelical standard transverse projector Pij(k) as it is given
above and Hij(k) = iρεijlkl/k which represents the presence of helicity in the
�ow. Here, εijl is Levi-Civita's completely antisymmetric tensor of rank 3 (it
is equal to 1 or −1 according to whether (i, j, l) is an even or odd permutation
of (1, 2, 3) and zero otherwise), and the real parameter of helicity, ρ, characterizes
the amount of helicity. Due to the requirement of positive deˇniteness of the
correlation function, the absolute value of ρ must be in the interval |ρ| ∈ [0, 1].
Physically, nonzero helical part (proportional to ρ) expresses existence of nonzero
correlations 〈v · rot v〉.

The correlator (4) is directly related to the energy spectrum via the frequency
integral [22,24,25]

E(k) � kd−1

∫
dωD̃v(ω, k) � g0ν

2
0

u0
k1−2ε. (6)

Therefore, the coupling constant g0 and the exponent ε describe the equal-time
velocity correlator or, equivalently, energy spectrum. On the other hand, the
constant u0 and the second exponent η are related to the frequency ω � u0ν0k

2−η

which characterizes the mode k [22, 24Ä27]. Thus, in our notation, the value
ε = 4/3 corresponds to the well-known Kolmogorov ®ˇve-thirds law¯ for the
spatial statistics of velocity ˇeld, and η = 4/3 corresponds to the Kolmogorov
frequency. Simple dimensional analysis shows that the parameters (charges) g0

and u0 are related to the characteristic ultraviolet (UV) momentum scale Λ (of
the order of inverse Kolmogorov length) as follows:

g0 � Λ2ε+η, u0 � Λη. (7)

In [23], it was shown that the Gaussian model (3), (4) is not Galilean invariant
and, as a consequence, it does not take into account the self-advection of turbulent
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eddies. As a result of these so-called ®sweeping effects¯, the different time
correlations of the Eulerian velocity are not self-similar and depend strongly on
the integral scale; see, e.g., [28]. But, on the other hand, the results presented
in [23] show that the Gaussian model gives reasonable description of the passive
advection in the appropriate frame, where the mean velocity ˇeld vanishes. One
more argument to justify the model based on statistics of the velocity ˇeld given
in Eqs. (3) and (4) is that, in what follows, we shall be interested in the equal-
time, Galilean invariant quantities (structure or correlation functions), which are
not affected by the sweeping, and, therefore, as we expect (see, e.g., [22,29,30]),
their absence in the Gaussian model (3), (4) is not essential.

Model (3), (4) contains two special cases that are interesting themselves. One
of them is the so-called rapid-change model limit (in our context, one comes to
the so-called KazantsevÄKraichnan model of kinematic MHD), where u0 → ∞
and g′0 ≡ g0/u2

0 = const,

D̃v(ω, k) → g′0ν0 k−d−2ε+η, (8)

and the other one is the so-called quenched (time-independent or frozen) velocity
ˇeld limit which is deˇned by u0 → 0 and g′′0 ≡ g0/u0 = const,

D̃v(ω, k) → g′′0ν2
0πδ(ω)k−d+2−2ε, (9)

which is similar to the well-known models of the random walks in random
environment with long-range correlations; see, e.g., [31,32].

2. FIELD-THEORETIC FORMULATION OF THE MODEL

According to the well-known theorem (see, e.g., [9] and references cited
therein), the stochastic problem (1)Ä(4) is equivalent to the ˇeld-theoretic model
of the set of three ˇelds Φ ≡ {b,b′,v} with action functional

S(Φ) = −1
2

∫
dt1 ddx1 dt2 ddx2 vi(t1,x1)[Dv

ij(t1,x1; t2,x2)]−1×

× vj(t2,x2) +
1
2

∫
dt1 ddx1 dt2 ddx2 b′i(t1,x1)Db

ij(t1,x1; t2,x2)b′j(t2,x2)+

+
∫

dt ddx b′[−∂tb + ν0�b− (v · ∂)b + (b · ∂)v], (10)

where b′ is an auxiliary vector ˇeld which has the same properties as the ˇeld
b, and Db

ij and Dv
ij are correlators (2) and (4), respectively. In the action (10)

all the required integrations over x = (t,x) and summations over the vector
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indices are understood. The second and the third integrals in Eq. (10) represent
the DominicisÄJansen-type action for the stochastic problem (1), (2) at ˇxed v,
and the ˇrst integral represents the Gaussian averaging over v.

Model (10) corresponds to a standard Feynman diagrammatic perturbation
theory with bare propagators (in frequency-momentum representation)

〈bi(ω,k)b′j(−ω,−k)〉0 =
Pij(k)

−iω + ν0k2
, (11)

〈b′i(ω,k)bj(−ω,−k)〉0 = 〈bi(ω,k)b′j(−ω,−k)〉∗0, (12)

〈bi(ω,k)bj(−ω,−k)〉0 =
Cij(k)

| − iω + ν0k2|2 , (13)

〈b′i(ω,k)b′j(−ω,−k)〉0 = 0, (14)

and the bare propagator 〈vivj〉0 for the velocity ˇeld is given directly in Eqs. (3)
and (4). Cij(k) in Eq. (13) is the Fourier transform of the function Cij(|x|/L)
from Eq. (2). The graphical representation of nonzero propagators is presented
in Fig. 1 (the end with a slash in the propagator 〈bib

′
j〉0 corresponds to the

ˇeld b′ and the end without a slash corresponds to the ˇeld b). The triple
(interaction) vertex

b′i[−vj∂jbi + bj∂jvi] = b′iVijlbjvl, (15)

with the vertex factor (in frequency-momentum representation)

Vijl = i(klδij − kjδil), (16)

is shown in Fig. 2, where the momentum k is �owing into the vertex via the
auxiliary ˇeld b′.

Let us remind that the formulation of the stochastic problem (1)Ä(4) through
the action functional (10) replaces the statistical averages of random quantities
with equivalent functional averages with weight exp S(Φ).

� � �b bi j 0

�� � �i j� 0

� �� �b bi j 0

Fig. 1. Graphical representation of the
propagators of the model

Fig. 2. The interaction vertex of the model
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3. RENORMALIZATION GROUP ANALYSIS

The information about possible UV divergences in a ˇeld-theoretic model
can be found by the standard analysis of canonical dimensions [7, 8]. The ˇeld-
theoretic model deˇned by the action functional (10) belongs among the so-called
two-scale models [9, 12] for which the total canonical dimension dQ of some
quantity Q (which plays the same role in the renormalization theory of our
dynamical model as the simple momentum dimension does in static models) is
deˇned by two numbers, namely, the momentum dimension dk

Q and the frequency

dimension dω
Q with the standard normalization conditions dk

k = −dk
x = 1, dω

ω =
−dω

t = 1, dω
k = dω

x = dk
ω = dk

t = 0. In the present model the total canonical
dimension is given as dQ = dk

Q + 2dω
Q.

The canonical dimensions of the model under consideration are presented
in table, where the canonical dimensions of the renormalized parameters are also
shown (see below). The model is logarithmic for ε = η = 0 (the coupling
constants g0 and u0 are dimensionless); therefore, the UV divergences in the
correlation functions have the form of the poles in ε, η, and their linear com-
binations. It is also important to stress that, like in the model of real MHD
turbulence described by the stochastic MHD equations with the presence of he-
licity (see, e.g., [33] and references cited therein), in the present vector model
with helicity the linear divergences can appear. Their correct treatment in gen-
uine MHD turbulence leads to the appearance of the homogeneous large-scale
magnetic ˇeld (turbulent dynamo effect) generated by a kind of spontaneous
symmetry-breaking mechanism. However, this mechanism needs the presence of
the Lorentz force term in the stochastic NavierÄStokes equation in the model.
Because such kind of term is not present in the model under consideration, where
the velocity ˇeld has a Gaussian statistics, we shall leave the problem of the
linear divergences untouched in the present paper and we shall concentrate only
on the problem of the existence and stability of the IR scaling regimes which
can be studied without considering the linear divergences. At the same time, we
are aware of the fact that the full problem with the presence of helicity can be
solved only in the framework of the genuine MHD turbulence described by the
stochastic MHD equations. The corresponding analysis will be given elsewhere.
Thus, in what follows, we shall consider and work only with the logarithmic
divergences.

Canonical dimensions of the ˇelds and parameters of the model under consideration

Q v b b′ m, Λ, μ ν0, ν g0 u0 g, u

dk
Q −1 0 d 1 −2 2ε + η η 0

dω
Q 1 0 0 0 1 0 0 0

dQ 1 0 d 1 0 2ε + η η 0
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Detailed analysis of the possible divergences of the present model was done
in [18]; therefore, it is not necessary to repeat it here. The ˇnal conclusion of
the analysis is that the only superˇcially divergent function of the model is the
one-irreducible Green's function 〈b′ibj〉1−ir and can be removed multiplicatively
by the only counterterm b′i�bj . It can be explicitly expressed in the multiplicative
renormalization of the bare parameters g0, u0, and ν0 in the following form:

ν0 = νZν , g0 = gμ2ε+ηZg, u0 = uμηZu. (17)

Here the dimensionless parameters g, u, and ν are the renormalized counterparts
of the corresponding bare ones; μ is the renormalization mass (a scale-setting
parameter) in the minimal subtraction (MS) scheme; and Zi = Zi(g, u) are renor-
malization constants.

On the other hand, the renormalized action functional has the following form:

SR(Φ) = −1
2

∫
dt1 ddx1 dt2 ddx2 vi(t1,x1)×

× [Dv
ij(t1,x1; t2,x2)]−1 vj(t2,x2) +

1
2

∫
dt1 ddx1 dt2 ddx2×

× b′i(t1,x1)Db
ij(t1,x1; t2,x2)b′j(t2,x2)+

+
∫

dt ddxb′[−∂tb + νZ1�b− (v · ∂)b + (b · ∂)v], (18)

with the only renormalization constant Z1 related to the renormalization constants
deˇned in Eq. (17) as follows (the terms with correlators Dv

ij and Db
ij , as well as

the ˇelds, are not renormalized):

Zν = Z1, Zg = Z−3
ν , Zu = Z−1

ν . (19)

The second and third relations are consequence of the absence of the renormal-
ization of the term with Dv in renormalized action (18), i.e.,

g0ν
3
0 = gν3μ2ε+η, u0ν0 = uνμη. (20)

In our case, the only independent renormalization constant Z1, in general,
contains poles of linear combinations of ε and η, i.e., Z1 = Z1(g, u, d, ρ; ε, η).
However, as detailed analysis shows, to obtain all important quantities as the γ
functions, β functions, coordinates of ˇxed points, and the critical dimensions,
the knowledge of the renormalization constants for the special choice η = 0
is sufˇcient up to two-loop approximation (see, e.g., [22] for details). It is
important here that the parameter ε alone provides the UV regularization for the
theory, hence the renormalization constant Z1 remains ˇnite at η = 0.
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� �

Fig. 3. The one- and two-loop contributions to the self-energy operator Σb′b

The renormalization constant Z1 can be determined by the requirement that
the one-irreducible Green's function 〈b′ibj〉1−ir must be UV ˇnite when is written
in the renormalized variables; i.e., it has no singularities in the limit ε → 0
(as was brie�y discussed above, one can put η = 0 in calculations). By using
this condition, the renormalization constant Z1 is determined up to a UV ˇnite
contribution which is ˇxed by the choice of the renormalization scheme. Up to
the second order of the perturbation theory in the standard MS scheme, used in
the present paper, the Z1 has the following form:

Z1(g, u, d, ρ; ε) = 1 +
2∑

n=1

gn
n∑

j=1

znj(d)
εj

. (21)

Thus, to determine the renormalization constant Z1 to the second order of the
perturbation theory, i.e., to the order in which we are working here, it is necessary
to ˇnd the coefˇcients z11, z21 and z22 of the series (21). On the other hand,
one-irreducible Green's function 〈b′ibj〉1−ir is related (through the Dyson equation
[8,9]) to the self-energy operator Σb′b, which is expressed via the corresponding
set of Feynman diagrams shown in Fig. 3.

By explicit calculations it can be shown that the singular parts of diagrams
in Fig. 3 have the following analytical form:

A = − Sd

(2π)d

gνp2δij

4u(1 + u)
d − 1

d

( μ

m

)2ε 1
ε
, (22)

B1 =
S2

d

(2π)2d

g2νp2δij

16u2(1 + u)3
(d − 1)2

d2

( μ

m

)4ε

×

× 1
ε

[
1
2ε

+
2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)
(d + 2)(1 + u)2

−

− ρ2

2(d − 2)π 2F1

(
−1

2
,
3
2
; 1 +

d

2
;

1
(1 + u)2

)
(d − 1)2

]
, (23)
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B2 =
S2

d

(2π)2d

g2νp2δij

16u2(1 + u)3
(d − 1)

d2

( μ

m

)4ε 1
ε
×

×
[

2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)
(d + 2)(1 + u)

−

− ρ2

(d − 2)(d − 5)π 2F1

(
1
2
,
1
2
; 1 +

d

2
;

1
(1 + u)2

)
2(d − 1)

]
, (24)

where A corresponds to one-loop contribution (the ˇrst diagram in Fig. 3), B1 is
related to the second diagram in Fig. 3, and B2 is the result for the third diagram.
Here, Sd = 2πd/2/Γ(d/2) denotes the d-dimensional sphere and 2F1(a, b, c, z) =

1+
a b

c · 1z+
a(a + 1)b(b + 1)
c(c + 1) · 1 · 2 z2+. . . represents the corresponding hypergeometric

function. In further investigations the helical terms with ρ2 in B1 and B2 has to
be taken with d = 3, but for completeness we have remained the d-dependence
of these parts in B1 and B2 in Eqs. (23) and (24).

Finally, the renormalization constant Z1 = Zν is given as follows:

Zν = 1 − ḡ

ε

d − 1
d

1
4u(1 + u)

+
ḡ2

ε2

(d − 1)2

d2

1
32u2(1 + u)3

+

+
ḡ2

ε

(d − 1)(d + u)
d2(d + 2)

1
16u2(1 + u)5 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)
−

− ḡ2

ε

ρ2πδ3d

72u2(1 + u)3

[
2F1

(
−1

2
,
3
2
;
5
2
;

1
(1 + u)2

)
−

− 1
2 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u)2

) ]
, (25)

where ḡ = gSd/(2π)d. In the helical part (the last two lines), we have already put
d = 3 and we have also introduced the Konecker symbol δ3d to show explicitly
that this term has sense only for d = 3.

The basic RG differential equation, for example, for the renormalized con-
nected correlation functions WR = 〈Φ · · ·Φ〉R (the counterparts of the bare
connected correlation functions W = 〈Φ · · ·Φ〉) are obtained from the relation
S(Φ, e0) = SR(Φ, e, μ), where e0 stands for the complete set of bare parameters
and e stands for the renormalized one, together with the fact that ˇelds v,b, and
b′ are not renormalized. It leads to the relation

WR(e, μ, . . .) = W (e0, . . .), (26)
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where the dots stand for other arguments which are untouched by renormalization,
e.g., coordinates and times. Further, using the fact that unrenormalized correlation
functions are independent of the scale-setting parameter μ, one can apply the
differential operator μ∂μ at ˇxed unrenormalized parameters on both sides in
Eq. (26) which leads to the basic RG equation

DRGWR(A, e, μ) = 0, (27)

where operator DRG has the following explicit form:

DRG = μ∂μ + βg(g, u)∂g + βu(g, u)∂u − γν(g, u)Dν , (28)

where we denote Dν ≡ ν∂ν and the RG functions (the β and γ functions)
are given by well-known deˇnitions and in our case, using relations (19) for
renormalization constants, they have the following form:

γν ≡ μ∂μ ln Zν , (29)

βg ≡ μ∂μg = g(−2ε − η + 3γν), (30)

βu ≡ μ∂μu = u(−η + γν). (31)

Now using the deˇnition of the anomalous dimension γν in Eq. (29), together
with the explicit expression for Zν as it is given in Eq. (25), one comes to the
following result:

γν = −2(ḡA + 2ḡ2B), (32)

where

A = −d − 1
d

1
4u(1 + u)

(33)

is the one-loop contribution to anomalous dimension γν and the two-loop one is

B =
(d − 1)(d + u)

16d2(d + 2)u2(1 + u)5 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)
−

− πρ2δ3d

72u2(1 + u)3

[
2F1

(
−1

2
,
3
2
;
5
2
;

1
(1 + u)2

)
−

− 1
2 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u)2

) ]
. (34)

Finally, the possible asymptotic scaling behavior of the correlation functions
of the model (the possible scaling regimes of the model deep inside in the inertial
interval) is given by the IR stable ˇxed points of the RG equations. On the other
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hand, the coordinates of possible ˇxed points g∗ and u∗ are determined by the
requirement of vanishing of the β functions (30) and (31), namely,

βg(g∗, u∗) ≡ g∗(−2ε − η + 3γ∗
ν) = 0, (35)

βu(g∗, u∗) ≡ u∗(−η + γ∗
ν ) = 0, (36)

where γ∗
ν denotes the function (32) taken at the ˇxed points g∗, u∗.

All possible ˇxed points and the corresponding scaling regimes will be clas-
siˇed and regions of their IR stability will be studied in the next section. But, ˇrst
of all, let us brie�y discuss the consequences of the very existence of an IR scaling
regime on the behavior of important statistical characteristics of the system.

Existence of the stable IR ˇxed point means that the correlation functions of
the model exhibit scaling behavior with given critical dimensions in the IR range.
The issue of interest are especially multiplicatively renormalizable equal-time two-
point quantities G(r) (see below). The IR scaling behavior of a function G(r)
(for r/l � 1 and any ˇxed r/L), namely,

G(r) � ν
dω

G
0 l−dG(r/l)−ΔGR(r/L) (37)

is related to the existence of IR stable ˇxed point of the RG equations (27).
In Eq. (37), dω

G and dG are the corresponding canonical dimensions of the func-
tion G (the canonical dimensions of the model are given in table), l = 1/Λ,
L = 1/m, R(r/L) is a scaling function, which cannot be determined by the RG
equations (see, e.g., [9]), and ΔG is the critical dimension deˇned as

ΔG = dk
G + Δωdω

G + γ∗
G. (38)

Here, γ∗
G is the ˇxed point value of the anomalous dimension γG ≡ μ∂μ ln ZG,

where ZG is the renormalization constant of the multiplicatively renormalizable
quantity G, i.e., G = ZGGR [9], and Δω = 2−γ∗

ν is the critical dimension of the
frequency with γ∗

ν which is deˇned in (32) taken at the corresponding ˇxed point.
However, from Eqs. (35) and (36) one can immediately ˇnd the exact values of
the γ∗

ν for the corresponding scaling regimes. They are exact one-loop results;
i.e., no higher-loop corrections to the γ∗

ν exist. It also means that the critical
dimension of frequency Δω for the corresponding scaling regime is also known
exactly, as well as the critical dimensions of the ˇelds. In the next section, we
shall present them explicitly for all possible IR stable ˇxed points, i.e., for all
possible scaling regimes of the model.

An example of the equal-time quantities built of the magnetic ˇeld b that are
usually studied in the literature are the equal-time two-point correlation functions

BN−m,m(r) ≡ 〈bN−m
r (t,x)bm

r (t,x′)〉, r = |x − x′|, (39)
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which are studied deep inside in the inertial range l � r � L, where br denotes
the component of the magnetic ˇeld directed along the vector r = x−x′ [16,18].

However, as was already mentioned in the Introduction, in the present paper
we shall concentrate only on the analysis of the possible asymptotic scaling
regimes of the present model and the analysis of the so-called anomalous scaling
of the correlation functions of the model will be given elsewhere.

4. FIXED POINTS AND THE SCALING REGIMES

As was already mentioned in the previous section, possible scaling regimes
of a renormalized model are directly given by the infrared (IR) stable ˇxed points
of the corresponding system of the RG equations [8,9]. The ˇxed point of the RG
equations is deˇned by β functions, namely, by requirement of their vanishing.
In our model the coordinates g∗, u∗ of the ˇxed points are found from the system
of two equations

βg(g∗, u∗) = βu(g∗, u∗) = 0, (40)

which are explicitly shown in Eqs. (35) and (36). To investigate the IR stability
of a ˇxed point, it is enough to analyze the eigenvalues of the corresponding
matrix of the ˇrst derivatives Ω:

Ωij =

⎛
⎜⎜⎝

∂βg

∂g

∂βg

∂u

∂βu

∂g

∂βu

∂u

⎞
⎟⎟⎠. (41)

Possible IR asymptotic behaviors are governed by the IR stable ˇxed points, i.e.,
those for which both eigenvalues are positive.

The possible scaling regimes of the model in the framework of the one-
loop approximation were investigated in [18]. The aim of the present paper is to
analyze the problem in two-loop approximation, as well as to analyze the in�uence
of the spatial parity violation (helicity) on the scaling regimes and to compare
the results to the corresponding results obtained in the problem of passive scalar
advection studied in [15].

First of all, we shall study the rapid-change limit which describes the Kazan-
tsevÄKraichnan model of kinematic MHD: u → ∞. For this aim it is con-
venient to make the transformation to new variables, namely, w ≡ 1/u, and
g′ ≡ g/u2 [18,22], with the corresponding changes in the β functions:

βg′ = g′(η − 2ε + γν), (42)

βw = w(η − γν). (43)
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In this notation the anomalous dimension γν acquires the following form:

γν = −2(ḡ′A′ + 2ḡ′2B′), (44)

where again ḡ′ = g′Sd/(2π)d. The one-loop contribution A′ acquires the form

A′ = −d − 1
d

1
4(1 + w)

, (45)

and the two-loop correction B′ is

B′ =
(d − 1)(dw + 1)w2

16d2(d + 2)(1 + w)5 2F1

(
1, 1; 2 +

d

2
;

w2

(1 + w)2

)
−

− πρ2δ3dw

72(1 + w)3

[
2F1

(
−1

2
,
3
2
;
5
2
;

w2

(1 + w)2

)
−

− 1
2 2F1

(
1
2
,
1
2
;
5
2
;

w2

(1 + w)2

) ]
. (46)

Here, it is evident that in the rapid-change limit w → 0 (u → ∞) one comes
to the known result that the two-loop contribution B′ is equal to zero. It is
related to the fact that in the rapid-change limit one obtains the well-known
KazantsevÄKraichnan kinematic MHD [16], where no higher-loop corrections to
the self-energy operator exist and the anomalous dimension γν is determined
exactly at one-loop level of approximation and has the following form [16]:

γν = lim
w→0

(d − 1)ḡ′

2d(1 + w)
=

(d − 1)ḡ′

2d
. (47)

In this limit two different ˇxed points exist. Let us denote them as FPI and FPII.
The ˇrst ˇxed point is trivial, namely,

FPI : w∗ = g′∗ = 0, (48)

with γ∗
ν = 0, and diagonal matrix Ω with eigenvalues (diagonal elements)

λ1 = η, λ2 = η − 2ε. (49)

The region of its stability is shown in Fig. 4. The second point is deˇned as

FPII : w∗ = 0, ḡ′∗ =
2d

d − 1
(2ε − η), (50)
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Fig. 4. Regions of the stability for the ˇxed points in one-loop approximation. The regions
of stability for ˇxed points FPI, FPII, and FPIII are exact, i.e., are not in�uenced by loop
corrections. The ˇxed point FPIV is shown in one-loop approximation. The d-dependence
of the FPIV in two-loop approximation is shown in Fig. 5

with γ∗
ν = 2ε − η. These are exact one-loop expressions as a result of non-

existence of the higher-loop corrections. The corresponding matrix of the ˇrst
derivatives is triangular with diagonal elements (eigenvalues):

λ1 = 2(η − ε), λ2 = 2ε − η. (51)

The region of stability of this ˇxed point is shown in Fig. 4.
The second limit of the present model corresponds to the so-called ®frozen

regime¯ with frozen velocity ˇeld. This regime is obtained in the limit u → 0.
To study this transition, it is appropriate to change the variable g to the new
variable g′′ ≡ g/u [18, 22]. In this case, the β functions are transformed to the
following ones:

βg′′ = g′′(−2ε + 2γν), (52)

βu = u(−η + γν). (53)

In this notation the anomalous dimension γν has the form

γν = −2(ḡ′′A′′ + 2ḡ′′2B′′), (54)

where ḡ′′ = g′′Sd/(2π)d. Here, the one-loop contribution A′′ is

A′′ = −d − 1
d

1
4(1 + u)

, (55)
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and the two-loop one, B′′, is given as follows:

B′′ =
(d − 1)(d + u)

16d2(d + 2)(1 + u)5 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)
−

− πρ2δ3d

72(1 + u)3

[
2F1

(
−1

2
,
3
2
;
5
2
;

1
(1 + u)2

)
−

− 1
2 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u)2

) ]
. (56)

In the limit u → 0 the functions A′′ and B′′ aquire the following form:

A′′
0 = −d − 1

4d
, (57)

and

B′′
0 =

(d − 1)
16d(d + 2) 2F1

(
1, 1; 2 +

d

2
; 1

)
−

− πρ2δ3d

72

[
2F1

(
−1

2
,
3
2
;
5
2
; 1

)
− 1

2 2F1

(
1
2
,
1
2
;
5
2
; 1

)]
. (58)

The system of β functions (52) and (53) exhibits two ˇxed points, denoted as
FPIII and FPIV in [22], related to the corresponding two scaling regimes. One
of them is again trivial, namely,

FPIII : u∗ = g′′∗ = 0, (59)

with γ∗
ν = 0. The eigenvalues of the corresponding matrix Ω, which is diagonal

in this case, are
λ1 = −2ε, λ2 = −η. (60)

Thus, this regime is IR stable only if both parameters ε and η are negative
simultaneously, as can be seen in Fig.4. The second, nontrivial, point is

FPIV : u∗ = 0, ḡ′′∗ = − ε

2A′′
0

− B′′
0

2A′′3
0

ε2, (61)

where A′′
0 and B′′

0 are deˇned in Eqs. (57) and (58), respectively.
First of all, let us brie�y discuss the in�uence of two-loop approximation on

the IR stability of this scaling regime without helicity in general d-dimensional
case. Let us denote the corresponding ˇxed point as FPIV0. Its coordinates are

FPIV0 : u∗ = 0, ḡ′′∗ =
2d

d − 1

(
ε +

1
d − 1

ε2

)
, (62)
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with anomalous dimension γν deˇned as

γ∗
ν =

d − 1
2d

(
ḡ′′∗ − ḡ′′2∗

2d

)
= ε, (63)

which is the exact one-loop result [22]. The eigenvalues of the matrix Ω (taken
at the ˇxed point) are

λ1 = 2ε

(
1 +

1
1 − d

ε

)
, λ2 = ε − η. (64)

The conditions ḡ′′∗ > 0, λ1 > 0, and λ2 > 0 for the IR stable ˇxed point lead to
the following restrictions on the values of the parameters ε and η:

ε > 0, ε > η, ε < d − 1. (65)

The region of stability of the regime for different values of the spatial dimension d
is shown in Fig. 5. The region of stability of this IR ˇxed point increases when
the dimension of the coordinate space d increases. The result is completely the
same as in the corresponding model of passively advected scalar ˇeld [15]; i.e.,
when given turbulent environment is completely symmetric, there is no difference
between scaling regimes in the frozen limit in the models of passively advected
scalar and vector (magnetic) ˇeld.

Fig. 5. Regions of the stability for the ˇxed point FPIV in two-loop approximation without
helicity for different space dimensions d. The IR ˇxed point is stable in the region given
by inequalities: ε > 0, ε > η, and ε < 2(d − 1)
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Now let us turn to the helical case. Here, the dimension of the space is d = 3.
The ˇxed point FPIV is now given as

u∗ = 0, ḡ′′∗ = 3ε +
3
2
ε2. (66)

It is independent of the helicity unlike the corresponding ˇxed point obtained in
the framework of the model of passive scalar advection [15], where the value
of the two-loop ˇxed point depends explicitly on helicity parameter ρ. The
nondependence of the ˇxed point on the helicity is given by the following identity:

2F1

(
−1

2
,
3
2
;
5
2
; 1

)
− 1

2 2F1

(
1
2
,
1
2
;
5
2
; 1

)
= 0; (67)

i.e., the helical part in Eq. (58) is simply equal to zero.
However, in principle, the presence of helicity in the system can have non-

trivial impact on the region of stability of the ˇxed point. Nevertheless, the matrix
of the ˇrst derivatives Ω, which is triangular, has the following diagonal elements
(eigenvalues) taken at the ˇxed point:

λ1 = 2ε − ε2, (68)

λ2 = ε − η, (69)

which are again independent of the helicity parameter ρ. It means that, unlike the
advection of the passive scalar ˇeld by the frozen velocity ˇeld, where nontrivial
dependence of the coordinate of the ˇxed point on the parameter of helicity
exists, the frozen limit of the present model of the advection of the vector (weak
magnetic) ˇeld does not feel the spatial parity violation of the system. Moreover,
the stability of the scaling regime also does not depend on the presence of helicity
in the system and the regime is IR stable for ε > η and ε < 2.

In the end, let us turn to the most interesting scaling regime with ˇnite value
of the ˇxed point for the variable u. In this case, the system of equations (see
also [18,22])

βg = g(−2ε − η + 3γν) = 0, (70)

βu = u(−η + γν) = 0 (71)

can be fulˇlled simultaneously for ˇnite values of g, u only if ε = η. In this case,
the function βg is proportional to the function βu. As a result, we have not one
ˇxed point of this type but a curve of ˇxed points in the g − u plane. The value
of the ˇxed point for variable g in two-loop approximation is given as follows
(we denote this ˇxed point as FPV):

FPV : ḡ∗ = − 1
2A∗

ε − 1
2
B∗
A3

∗
ε2, (72)
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with exact one-loop result for γ∗
ν = ε = η. Here A∗ and B∗ are expressions A

and B in Eqs. (33) and (34) taken in the ˇxed point value u∗ of the variable u.
The possible values of the ˇxed point for the variable u can be restricted as we
shall discuss below. The matrix Ω has the following eigenvalues:

λ1 = 0, λ2 = 3ḡ∗
(

∂γν

∂ḡ

)
∗

+ u∗
(

∂γν

∂u

)
∗
, (73)

where γν is given in Eq. (32). The vanishing of the λ1 is an exact result which
is related to the degeneracy of the system of Eqs. (70) and (71) when nonzero
solutions in respect to g and u are assumed, or, equivalently, it re�ects the
existence of a marginal direction in the g − u plane along the line of the ˇxed
points.

In the nonhelical case (ρ = 0), the coordinate g∗ of the possible ˇxed point as
function of the spatial dimension d and arbitrary ˇxed point value of parameter u∗
is given as follows:

ḡ∗ =
2du∗(1 + u∗)

d − 1
ε +

2du∗(d + u∗)2F1

(
1, 1; 2 +

d

2
;

1
(1 + u∗)2

)
(d − 1)2(d + 2)(1 + u∗)2

ε2. (74)

To have positive value of the ˇxed point for variables g and u, the condition
ε > 0 must be fulˇlled. However, possible restrictions on the IR ˇxed point
value of the variable u can be found from condition λ2 > 0. The explicit form
of λ2 is the same as in the model of passively advected scalar ˇeld [15], namely,

λ2 =
2 + u∗
1 + u∗

ε +
ε2

(d − 1)(d + 2)(d + 4)(1 + u∗)6
×

×
[
(1 + u∗)2(4 + d)(2d(u∗ − 1) + (u∗ − 3)u∗)×

× 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u∗)2

)
+

+ 4u∗(d + u∗)2F1

(
2, 2; 3 +

d

2
;

1
(1 + u∗)2

) ]
. (75)

In Fig. 6, the regions of stability for the ˇxed point FPV without helicity in
the u − ε plane for different space dimension d are shown. Thus, in two-loop
approximation nontrivial d-dependence of IR stability of the ˇxed point appears
in contrast to the one-loop approximation [18]. At the same time, again the result
is the same as in the corresponding model of passively advected scalar ˇeld.

Now, let us turn to the helical case; i.e., let us investigate the in�uence of the
presence of helicity on the value of the ˇxed point as well as on its IR stability.
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Fig. 6. Regions of the IR stability for the ˇxed point FPV in two-loop approximation
without helicity. The d-dependence of the stability is shown. The restrictions are the same
as in the corresponding model of advection of a passive scalar ˇeld

In helical case, one works directly in three-dimensional space and the coordinate
g∗ of the ˇxed point is given by the following equation:

ḡ∗ = 3u∗(1 + u∗)ε +
3u∗ε

2

20(1 + u∗)2

{
2(3 + u∗)2F1×

×
(

1, 1;
7
2
;

1
(1 + u∗)2

)
− 5π(1 + u∗)2ρ2

[
2 2F1

(
−1

2
,
3
2
;
5
2
;

1
(1 + u∗)2

)
−

− 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u∗)2

) ]}
. (76)

On the other hand, the explicit form of the eigenvalue λ2 in Eq. (73) as function
of the parameter of helicity ρ has the following form:

λ2 =
2 + u∗
1 + u∗

ε +
ε2

48(1 + u∗)3
×

×
{

8(1 + u∗)
[
− 6 + u∗(51 + u∗(95 + 12u∗(5 + u∗)))−

− 3u∗
√

u∗(2 + u∗)(21 + u∗(33 + 4u∗(5 + u∗))) arccos (1 + u∗)
]
+

+ 6πu2
∗ρ

2

[
3
√

u∗(2 + u∗)(2 − u∗(7 + 2u∗(5 + 2u∗)))+

+ 3(1 + u∗)2(2 + u∗(7 + 2u∗(5 + 2u∗)))×

× arccos (1 + u∗) − 4(1 + u∗)(2 + u∗)2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u∗)2

) ]}
. (77)
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Fig. 7. Regions of the IR stability for the ˇxed point FPV in two-loop approximation with
presence of helicity

In Fig. 7 the regions of stability in the plane u − ε are shown for various
values of the helicity parameters. It is evident that the presence of helicity in our
vector model enlarges the region of values of parameters for which the IR stable
scaling regime can exist.

The most important conclusion of our two-loop investigation of the scaling
regimes in the present model is the fact that the possible restrictions on the regions
of stability of the IR ˇxed points are ®pressed¯ to the region with large values
of the parameter ε, namely, ε � 2, and do not disturb the regions with important
relatively small values of ε. For example, the Kolmogorov point (ε = η = 4/3)
is not disturbed by the two-loop corrections, as well as by the presence of helicity
in the system.

Now, we have all needed results to return to the basic analysis of the scaling
behavior of the correlation functions in the scaling regimes given by the IR stable
ˇxed points as discussed at the end of Sec. 3. As was shown in the present section,
the ˇxed point value of the anomalous dimension γ∗

ν is exactly given already at
the one-loop level of approximation. It means that the critical dimension of
frequency Δω = 2 − γ∗

ν , as well as of ˇelds Φ ≡ {b,b′,v}, is also deˇned
exactly at one-loop level approximation. Thus, one has

Δω =

⎧⎨
⎩

2 − 2ε + η for FPII,
2 − ε for FPIV,
2 − ε = 2 − η for FPV

(78)

and
Δv = 1 − γ∗

ν , Δb = 0, Δb′ = d. (79)
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By using all these results together with the explicit scaling representation
given in Eq. (37) with the critical dimensions deˇned in Eq. (38), the scaling
behavior of the most interesting equal-time two-point quantities (for example,
usually studied equal-time correlation functions deˇned in Eq. (39)) can be stud-
ied except for the properties of the scaling function R(r/L). As was brie�y
discussed in the Introduction, the scaling behavior of the scaling functions can be
investigated by means of the OPE. However, this question is beyond the scope
of the present paper and will be studied elsewhere.

CONCLUSION

In the present paper, we have investigated the advection of a weak magnetic
ˇeld by a turbulent environment with spatial parity violation in the framework of
extended KazantsevÄKraichnan model of kinematic MHD, where turbulent �ow is
given by the Gaussian statistics of the velocity ˇeld with ˇnite correlations in time.
The complete analysis of all possible scaling regimes was done and the IR stability
of the corresponding ˇxed points of the RG equations was analyzed in detail. It is
shown that in the case when the turbulent environment is isotropic and nonhelical
the scaling regimes of the model of passive advection of the vector (magnetic) ˇeld
in the framework of extended KazantsevÄKraichnan model of kinematic MHD
have completely the same properties as in the model of passive advection of the
scalar ˇeld in the framework of the corresponding extended Kraichnan model
(see, e.g., [15]). On the other hand, it is also shown that when the turbulent
environment exhibits the spatial parity violation, nontrivial differences between
properties of the scaling regimes for the scalar and vector models appear. For
example, within the so-called frozen limit the coordinate of the ˇxed point, as well
as its IR stability, does not depend on the presence of helicity in the system in the
framework of the extended KazantsevÄKraichnan model of passively advected
vector ˇeld unlike the extended Kraichnan model of passively advected scalar
ˇeld, where the system feels the presence of helicity and the coordinate of the
ˇxed point depends explicitly on the parameter that controls the amount of helicity
in the turbulent environment. On the other hand, in the most interesting case with
ˇnite correlations in time of the velocity ˇeld, the coordinates of the ˇxed points,
as well as their stability, for both models, namely, extended Kraichnan model
of passively advected scalar ˇeld and extended KazantsevÄKraichnan model of
passively advected magnetic ˇeld, depend on helicity. However, the dependence
is different for the scalar and vector model. These results demonstrate importance
and necessity of inclusion of various symmetry breaking (e.g., helicity or small-
scale anisotropy) into the turbulent models for analysis of the in�uence of the
existence of internal tensor structure of advected ˇelds on scaling properties of
the corresponding models deep inside in the inertial interval.
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In the present paper, we have analyzed only the ˇrst stage of the solution
of the problem of the anomalous scaling in the framework of the ˇeld-theoretic
approach; i.e., we have established all possible scaling regimes of the model
and discussed their IR stability. The most important conclusion of our two-
loop investigation of the scaling regimes is the fact that the ˇxed points remain
stable under the in�uence of helicity for ε � 2; i.e., the IR scaling regimes
are not changed for relatively small values of ε. For example, the Kolmogorov
scaling regime that corresponds to ε = η = 4/3 is not disturbed by the two-loop
corrections, as well as by the presence of helicity in the system.

The next step will be to use the obtained results for the investigation of the
properties of the scaling functions of the correlation functions of the advected
magnetic ˇeld (in this respect, the most interesting are the single-time two-point
correlation functions deˇned in Eq. (39)) in the framework of the OPE to deter-
mine the critical dimensions of the most important composite operators that lead
to the anomalous scaling. However, the problem of anomalous scaling will be
studied elsewhere.
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