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AND DARK MATTER
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Fundamental concepts, symmetries, and dynamic equations of the theory of dark matter are
derived from the simple relation: everything in the concept of space and the concept of space in
everything. It is shown that the electromagnetic ˇeld is the singlet state of the dark matter ˇeld and,
hence, the last may be considered as a generalized electromagnetic ˇeld (shortly gef) and a simple
solution is given to the old problem of connecting the electromagnetic ˇeld with geometric properties
of the physical manifold itself. It is shown that gauge ˇxing renders the generalized electromagnetic
ˇeld effectively massive while the Maxwell electromagnetic ˇeld remains massless. To learn more
about interactions between matter and dark matter on the microscopic level (and to recognize the
fundamental role of internal symmetry in this case), the general covariant Dirac equation is derived
and its natural generalization is considered. The experiment is suggested to test the formulated theory.
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INTRODUCTION

The problem of invisible mass is acknowledged to be among the greatest
puzzles of modern cosmology and ˇeld theory (see, for example, [1] and [2]).
The most direct evidence for the existence of large quantities of dark matter in
the Universe comes from the astronomical observation of the motion of visible
matter in galaxies [3]. One neither knows the identity of the dark matter nor
whether there is one or more types of its structure elements. The most commonly
discussed theoretical elementary particle candidates are a massive neutrino, a
sypersymmetric neutralino, and the axion. So, at the present time there is a good
probability that the set of known ˇelds is by no means limited to those ˇelds.
Moreover, we are free to look for deeper reasons for the existence of a new
entity unusual in many respects. Of course, such reasoning is grounded on the
point of view that there is a general and easily visible mathematical structure that
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stands behind all phenomena that we observe. We put forward an idea that a
needed mathematical structure is deˇned by the fundamental relation: everything
in the concept of manifold and the concept of manifold in everything. Here a
ˇeld theory of the so-called dark matter is derived from the only ˇrst principle.
According to the modern viewpoint, a fundamental physical theory is the one that
possesses a mathematical representation whose elements are a smooth manifold
and geometrical objects deˇned on this manifold. Most physicists nowadays
consider a theory be fundamental only if it does make explicit use of this concept.
This picture is generally accepted and it is based on such a long history of physical
research that there is no reason to question it. The geometrical structure of the
physical manifold (points, curves, congruences of curves, families of curves)
determines a very restricted set of really geometrical quantities and along with
that geometrical internal symmetry that makes these quantities variable and forms
from them the fundamental physical ˇelds [4]: the Riemann metric gij ; the linear
(afˇne) connection P i

jk (the group of geometrical internal symmetry is a general
linear group GL(n, R)); the scalar and covariant vector ˇelds, and antisymmetric
covariant tensor ˇelds which are connected by the geometrical internal symmetry
(spin symmetry) into the spinning ˇeld

A = (a, ai, aij , . . . , aijk...l), i, j, k, l = 1, 2, . . . , n.

(the group of geometrical internal symmetry is a general linear group GL(2n, R)).
It should be noted that the idea of geometrical internal symmetry was at ˇrst
introduced by Weyl as the process of recalibration [5]. The concept of really
geometrical quantity is tightly connected with the general concept of potential
ˇeld deˇned below. The last concept can be considered as exact mathematical
expression of the minimality principle of the gravitational interactions.

We connect the second of these ˇelds with the problem of dark matter.
Thus, the ˇeld that we put in correspondence with dark matter has a fundamental
geometrical interpretation (parallel transport deˇnes congruence of curves) and
carries intrinsically inherent local symmetry that guarantees the uniqueness of the
theory. The equations of the dark matter ˇeld are derived which are invariant with
respect to the local transformations. It is shown that the electromagnetic ˇeld can
be considered as the singlet state of the dark matter ˇeld. Thus, the dark matter
ˇeld may be considered as a generalized electromagnetic ˇeld (shortly gef) and,
at the same time, we get a simple solution of the old problem raised by Weyl,
Einstein, and Eddington to connect the electromagnetic ˇeld with geometrical
properties of the physical manifold itself. The idea is that the process of local
symmetry breaking is an intrinsic property of the system itself which means
that gauge ˇxing cannot be arbitrary. This approach is realized here in the
framework of the concept of the gef ground state. It is interesting that the ground
ˇeld belongs to the set of potential ˇelds as well. It should be noted that gauge
ˇxing renders the gef effectively massive while the Maxwell electromagnetic ˇeld
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remains massless (in this context a particle of dark matter is a heavy photon). To
learn more about interactions between matter and dark matter on the microscopical
level, we use the Dirac theory. The general covariant Dirac equation is derived in
the Minkowski spaceÄtime and, in course of this, the fundamental role of internal
symmetry is recognized. On this ground, the Dirac equation is derived which
describes the interactions of the spinor ˇeld with the ground ˇeld. This leads to
the general conclusion that interactions of the generalized electromagnetic ˇeld
with the Dirac spinor ˇeld occur only via the above-introduced ground ˇeld. The
general conclusion is that dark matter gravitates, but there is no actually direct
interactions of this new form of matter with known physical ˇelds that represent
luminous matter. A rather simple and feasible experiment is proposed to verify
this conclusion.

1. CONCEPT OF POTENTIAL FIELD

The concept of really geometrical quantity is tightly connected with the
concept of potential ˇeld which will be introduced here in the most general form.
If we take the components of the symmetrical covariant tensor ˇeld gij and
form its derivatives (∂igjk), then these derivatives are neither the components
of a tensor nor of any geometrical object. However, from gij and these partial
derivatives one can form (with the help of algebraic operations only) a new
geometrical object

Γi
jk =

1
2
gil(∂jgkl + ∂jgkl − ∂lgjk), (1)

which is called the Christoffel connection, where gil are contravariant components
of gij . Now we can formalize this particular case and give general deˇnition of
the potential ˇeld.

If some geometrical object (or a geometrical quantity) is given and from
the components of this object and its partial derivatives one can form (using the
algebraic operations only) a new geometrical object (or geometrical quantity),
then we deal with a new geometrical quantity that will be called a potential ˇeld.
The potential ˇeld is characterized by the potential P and the strength H and in
what follows it will be written in the form (P, H). The connection between the
potential and the strength is then called a natural derivative and in a symbolic
form can be written as follows: H = ∂P . If we go back to our starting point,
gij is a potential and Γi

jk is a strength of the potential ˇeld (g, Γ) known after
Einstein as the gravitational ˇeld.

Let us consider the Riemann tensor of the connection P i
jk

Bijl
k = ∂iP

k
jl − ∂jP

k
il + P k

imPm
jl − P k

jmPm
il . (2)
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Now we go back to the deˇnition of the potential ˇeld and see that our really
geometrical quantity deˇnes a new potential ˇeld (P, B). The theory of this
potential ˇeld is deˇned by the group of geometrical internal symmetry inherent
in this entity (gef symmetry). Let Si

j be components of a tensor ˇeld of type (1, 1)
(a ˇeld of linear operator), Det (Si

j) �= 0. Of two tensor ˇelds Si
j and Qi

j of

type (1, 1), a tensor ˇeld P i
j = Si

kQk
j of type (1, 1) can be constructed, called

their product. With the operation of multiplication thus deˇned, the set of tensor
ˇelds of type (1, 1) with a nonzero determinant forms the group GL(n, R). At
the given vector ˇeld Ei, any element of the group GL(n, R) deˇnes a bundle
of vector ˇelds which is deˇned as follows:

Ēi = Si
jE

j , Ẽi = T i
jE

j , etc.,

where T i
j are the components of the ˇeld S−1 inverse to S, Si

kT k
j = δi

j . It is
clear that the notion of the parallel transport is not applied to the bundle of the
vector ˇelds and the parallel transport of the bundle of the vector ˇelds is deˇned
by the bundle of the linear connections which is deˇned by the relation

P
i

jk = Si
mPm

jnT n
k + Si

m∂jT
m
k .

It is easy to see from this formula that the tensor P i
jk − P i

kj deˇnes no represen-
tation of the group GL(n, R).

Thus, we shall expand the diffeomorphism group to include into the consider-
ation the group of local symmetry GL(n, R) deˇned above. It can be shown that
the diffeomorphism group is the group of external automorphisms of the group of
local symmetry, i.e., the group GL(n, R) is invariant under the transformations of
the group Diff (M). Thus, we have a nontrivial uniˇcation of these symmetries
and possibility to consider one more potential ˇeld with the nontrivial and most
wide internal symmetry.

We conclude that the theory of the potential ˇeld (P, B) should be invariant
not only with respect to the general transformations of the coordinates but with
respect to the transformations of the local symmetry group GL(n, R) as well. We
put in correspondence to this ˇeld the so-called dark matter and develop theory
of dark matter as the theory of this new potential ˇeld. For brevity, we use the
matrix notation

S = (Sk
l ), Pi = (P k

il), E = (δk
l ), Hij = (Hijl

k), TrU = Uk
k .

The transformations of gef symmetry take the form

Pi = SPiS−1 + S∂iS−1 = Pi + SDiS−1, (3)

where Di is the natural differential operator associated with gef symmetry only

DiS = ∂iS + PiS− UPi = ∂iS + [Pi,S]
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and which is especially convenient when one deals with local symmetry in ques-
tion. In what follows, we shall meet many examples of this. Relation (3) is
indeed the transformation of the connection, since SDiS−1 is a tensor ˇeld of
type (1, 2) and, hence, Pi is the connection with respect to the coordinate trans-
formations. Since the connection between the potential and strength in matrix
notation is given by the formula

Bij = ∂iPj − ∂jPi + [Pi,Pj ],

from (3) it follows that under the transformations of the group GL(n, R) the
strength is transformed as follows:

Bij = SBijS−1. (4)

For Bij we have
DiBjk = ∂iBjk + [Pi,Bjk],

and if Di is deˇned by the potential Pi, then from (3) and (4) it follows that

DiBjk = S(DiBjk)S−1. (5)

In the general case the operator Di is not general covariant; however, the com-
mutator [Di, Dj] is always general covariant and we get the important relation
for the strength tensor

[Di, Dj]Bkl = [Bij ,Bkl]. (6)

Thus, in our approach the theory of dark matter is tightly connected with
the local symmetry, it is general covariant and has a profound geometrical inter-
pretation.

2. MAIN EQUATIONS OF THE THEORY

The simplest general covariant and gauge invariant Lagrangian of the poten-
tial Pi

LP = −1
4
Tr (BijBij),

was considered in [6] and [7], where the gauge theory of oriented media was
formulated, and it was proven that the Euler equation δLP = 0 has nontrivial
solutions. We do not consider this Lagrangian here for the following reason.

The Riemann tensor of Pi is reducible with respect to the transformations (4)
since

Bij =
(
Bij −

1
4
Tr (Bij)E

)
+

1
4
Tr (Bij)E.
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Hence, the strength tensor of the generalized electromagnetic ˇeld is given by the
formula

Hij = Bij −
1
4
Tr (Bij)E, Tr (Hij) = 0,

and the singlet state of the gef deˇnes the strength tensor of the electromagnetic
ˇeld Fij = Tr (Bij) which should be considered independently of Hij . The
ground state of gef is deˇned by the equation Bij = 0 which means that this state
transfers a new form of energy. We give a general solution of this equation. Let
four linear independent vector ˇelds Ei

μ be given and one can construct purely
algebraical components of the four covector ˇelds Eμ

i , so that Ei
μEμ

j = δi
j holds

valid. Setting P i
jk = Li

jk, where Li
jk = Ei

μ∂jE
μ
k is the canonical connection, we

get the general solution of the equation in question. Let us introduce a tensor
ˇeld Qi

jk = P i
jk − Li

jk and consider the irreducible deviation tensor

T i
jk = Qi

jk − 1
4
Ql

jlδ
i
k, Tj = Qj −

1
4
Tr (Qj)E, TrTi = 0.

The Lagrangian of gef dynamics takes the form

LP = −1
4
Tr (HijHij) +

μ2

2
Tr (TiTi), (7)

where μ is a constant of dimension of cm−1,

Hij = gikgjlHkl, Ti = gikTk.

Varying the Lagrangian LP with respect to Pi the following equations of the
generalized electromagnetic ˇeld hold valid:

1
√

g
Di(

√
gHij) + μ2Tj = 0, (8)

where g = −Det (gij). From the properties of the operator Di it is not difˇcult
to see that equations (8) are invariant with respect to the local symmetry group
in question. The tensor character of these equations can be seen from the identity

(
1
√

g
Di(

√
gHij)

)k

l

=
p

∇i (Hij)k
l + ωi(Hij)k

l − 1
2
(P j

im − P j
mi)(H

im)k
l ,

where
p

∇i is the usual covariant derivative with respect to the connection Pi and
ωi = ∂i ln

√
g − P k

ki are the components of the covector ˇeld. Thus, it is shown
that the group of diffeomorphisms is the group of covariance of equations (8).
Equations (8) form the ˇrst group of equations of gef. The second one is presented
by the identity

DiHjk + DjHki + DkHij = 0. (9)



GEOMETRIZATION OF THE ELECTROMAGNETIC FIELD AND DARK MATTER 869

From the deˇnition of the operator Di it follows that the left-hand side of rela-
tion (9) is a tensor and hence it is general covariant.

We see that in some sense one can treat μ as the effective mass of the heavy
photon. Since trace of Hij equals zero, it is clear why we need to consider an
irreducible tensor of deviation. In our case, the trace of Ti is trivial and the
system of equations (8) is compatible. From (8), it follows that Ti has to satisfy
the equation

1
√

g
Di(

√
gTi) = 0, (10)

in accordance with (6), DiDj(
√

gHij) = 0. It is very important that the same
equation appears under varying (7) with respect to Ei

μ. Equations (10) represent
sixteen additional invariant constraints on the potential Pi.

However, Eqs. (8), (9), and (10) are invariant with respect to the local trans-
formations and, hence, we still have a problem of gauge ˇxing. It is interesting
that there is only one plausible possibility to solve this problem which will be
considered in what follows.

Varying the Lagrangian LP with respect to gij we obtain the so-called metric
tensor of energyÄmomentum of gef (dark matter ˇeld)

Tij = −Tr (HikHj
k) − gijLP + μ2Tr (TiTj), (11)

where Hk
j = Hjlg

kl. With Eqs. (8) and (9) one can show that the metric tensor
of the energyÄmomentum satisˇes the equations

∇iT
ij = 0, (12)

where ∇i denotes, as usual, the covariant derivative with respect to the Christoffel
connection (1) and ∇i = gik∇k. It is evident that the metric tensor energyÄ
momentum is invariant with respect to the group of gef symmetry. Now we can
write down the full action for the ˇelds gij and Pi:

A = − l−2

2

∫
R
√

g d4x −
∫

1
4
Tr (HijHij)

√
g d4x +

∫
μ2

2
Tr (TiTi)

√
g d4x,

where R is the scalar curvature and l is the constant of the dimension of length.
From the geometrical interpretation of the ˇeld Pi it follows that it has the
dimension cm−1. As all coordinates can be considered to have the dimension cm,
the action A is dimensionless.

Varying the full action A with respect to gij we derive the Einstein equations

Rij −
1
2
gijR = l2Tij , (13)

where Tij is the metric tensor of energyÄmomentum of gef. Thus, it is shown that
the interactions of the generalized electromagnetic ˇeld with the gravitational ˇeld
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are characterized by some length l. Equations (8), (9), and (13) are compatible
in view of (12). This system of equations describes a new form of matter which
is known as dark matter.

Now consider a question concerning the potential of the electromagnetic ˇeld.
Since tensor of the electromagnetic ˇeld is the singlet state of gef, we have

Fij = ∂iTrPj − ∂jTrPi = ∂iP
k
jk − ∂jP

k
ik.

Taking trace of relation (3) we get

P
k

ik = P k
ik − ∂i ln |�|,

where � = Det (Si
j). We put TrPi = P k

ik − Lk
ik + Lk

ik. Since Lk
ik = (1/p)∂jp,

p = Det (Eμ
i ), for a singlet state of gef, we have Fij = ∂iAj − ∂jAi, where

Ai = P k
ik − Lk

ik is the covector ˇeld. Thus, the question of the nature of the
gauge transformations is completely solved and the geometrical origin of the
electromagnetic ˇeld is recognized.

Now we have to solve the problem of the general covariant gauge ˇxing
that is provided by the Cauchy problem for the ˇeld in question. The distinctive
feature of the generalized electromagnetic ˇeld is that it is self-interacting: it
is nonlinear even in the absence of other ˇelds. Two potentials Pi and Pi are
physically equivalent if there is a local transformation which takes Pi into Pi, and
clearly Pi satisˇes the ˇeld equations if and only if Pi does. In order to obtain
a deˇnite member of the equivalence class of potentials, one has to introduce
general covariant gauge conditions. These conditions have to remove the sixteen
degrees of freedom and lead to a unique solution for the potential components.
To solve these problems, we suggest that gauge ˇxing is an internal property of
the system in question connected with the notion of the ground state of gef.

3. EQUATIONS OF THE GROUND FIELD

The local symmetry will be broken if we introduce the quantity

U i
jk = Ei

μ(∂jE
μ
k − ∂kEμ

j ). (14)

From the deˇnition it follows that U i
jk is evidently a tensor ˇeld antisymmetric

in covariant indices. On the other hand, from the deˇnition it follows that this
tensor is not a geometrical object with respect to the local symmetry group. The
tensor U i

jk deˇnes no representation of the group GL(n, R). Thus, it is convenient
for our goal. Further, we shall establish a geometrically motivated Lagrangian
that can be constructed for this ground ˇeld. It leads us to the investigation of
the geometry of afˇne space which is characterized by the connection

Li
jk = Γi

jk + U i
jk, (15)
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where the ˇrst summand is given by expression (1). The physical meaning of this
connection is to investigate two quite independent potential ˇelds in the uniform
geometrical framework. Consider the most important geometrical quantity deˇned
by connection (15). For the Riemann tensor as a function of the potentials of
gravity and ground state we have

Bijk
l = Rijk

l + ∇iU
l
jk −∇jU

l
ik + U l

imUm
jk − U l

jmUm
ik , (16)

where
Rijk

l = ∂iΓl
jk − ∂jΓl

ik + Γl
imΓm

jk − Γl
jmΓm

ik (17)

is the Riemann curvature tensor of metric gij , and ∇i as earlier stands for the
covariant derivative with respect to the Christoffel connection (1)

∇iU
l
jk = ∂iU

l
jk + Γl

imUm
jk − Γm

ij U l
mk − Γm

ikU l
jm.

By contraction we get from (16) the tensor

Bjk = Bijk
i = Rjk + ∇iU

i
jk −∇jU

i
ik + U i

imUm
jk − U i

jmUm
ik , (18)

where Rjk is the Ricci tensor. From (18) one can ˇnd by contraction with gjk

the following expression for the scalar:

B = gjk Bjk = R + gjkU l
jmUm

kl −∇jU
j,

where R is the Ricci scalar curvature and U j = gjkUk = gjkU l
lk. Hence,

connection (15) uniquely determines the geometrical Lagrangian of the potential
ˇelds of the curvature and the ground state which is a natural generalization of
the EinsteinÄGilbert Lagrangian of the gravitational ˇeld. Thus, we shall derive
equations describing the interactions of the gravitational ˇeld and the ground ˇeld
from the action

A =
l−2

2

∫
B
√

g d4x. (19)

From (19) it follows that connection (15) uniquely determines the Lagrangian
LgfLgf

of the ground ˇeld itself

Lgf =
1
2
gjk U l

jm Um
kl . (20)

It is natural that the Lagrangian of the ground ˇeld like the dark matter Lagrangian
contains no derivatives of the components of the gravitational potential since U i

jk

can be considered as a strength with respect to Eμ
i .

Varying action (20) with respect to gij , we get the Einstein equations

Gij = Tij ,
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where
Tij = gijLgf − Uk

ilU
l
jk (21)

is the metric tensor energyÄmomentum of the ground ˇeld. From (22) and (21)
it follows that gijTij = 2Lgf and hence the equations of the ground ˇeld are
not conformally invariant. It is yet another general property of gravity and
ground state.

It is convenient to introduce the tensor

F ij
k = gilU j

lk − gjlU i
lk = U ij

k − U ji
k

with inverse transformation

U i
jk =

1
2
(gilFmn

l gjmgkn + gjlF
il
k − gklF

il
j ).

Now we make small variations in our ˇeld quantities El
μ, and the variational

principle provides the following equations for the potential of the ground ˇeld:

Eμ
k∇jF

jk
l + F jk

l ∇jE
μ
k + F jk

m Eμ
k Eν

l ∇jE
m
ν = 0.

It is possible to rewrite this equations in the simplest form setting

F iμ
ν = F ik

l El
νEμ

k .

As a result, the following equations hold valid:

∇iF
iμ

ν = 0. (22)

Like the equations of the gravitational ˇeld and the generalized electromagnetic
ˇeld (dark matter ˇeld or gef), the equations of the ground ˇeld are essentially
nonlinear. Now we shall consider the interactions of the generalized electromag-
netic ˇeld with matter in the framework of the Dirac theory that is very important
since nothing is known about the interactions of dark matter with luminous matter.

4. THE DIRAC EQUATION IN THE GENERAL COVARIANT FORM

The description of the interactions between the matter and dark matter will
be provided in the framework of the Dirac equation which is the basis for the
description of matter. It is one of the fundamental principles of modern geometry
and theoretical physics that the laws of geometry and physics do not depend on the
choice of coordinate systems. It is natural to write all equations in the coordinate
basis since the problem to rewrite these equations in any other basis is a formal
and hence trivial task. In our days, this statement is as canonical as the energy
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conservation. Let us show that the original Dirac equation is in full agreement
with this fundamental statement and that it is deˇned by the internal symmetry.
As is known, internal symmetries play a fundamental role in modern physical
theories and hence it is very important to have clear understanding of the role of
internal symmetries in the Dirac theory, which is the basis for all modern theories
of elementary particles and their interactions; in particular, Dirac's Hamiltonian
deˇnes entirely the space-time sector of the standard model.

Let C4 be a linear space of columns of four complex scalar ˇelds ψ1, ψ2,
ψ3, ψ4. Linear transformations in this space can be represented by the complex
matrices (4×4). The set of all invertible (4×4) complex matrices forms a group
denoted by GL(4,C). Dirac's γμ matrices belong to GL(4,C) and obey the
anticommutation relations

γμγν + γνγμ = 2ημν ,

where ημν is digital matrix originated by the fundamental quadratic form

ϕ = (x0)2 − (x1)2 − (x2)2 − (x3)2.

From γμ one can construct sixteen linear independent matrices that form a basis
of the Lie algebra of GL(4,C). This basis is especially important since the
matrices Sμν = (1/2)γμγν form the basis of the Lie algebra of the Lorentz group
(subgroup of GL(4,C)). Thus, a spinor is an element of the space C4 that
is equipped with the matrix ημν deˇned above. It should be noted that in the
space C3 there are no matrices like γμ.

If one considers ψ1, ψ2, ψ3, ψ4 as a set of complex scalar ˇelds on the
spaceÄtime manifold, then a spinor ˇeld emerges on the manifold as a basis of
irreducible representation of the group GL(4,C). It is not difˇcult to understand
that GL(4,C) is a group of internal symmetry since its transformations involve
only functions of the spinor ˇeld and do not affect the coordinates. In other
words, spin symmetry is internal symmetry.

Now, on this ground we consider the general covariant formulation of the
Dirac equation in the Minkowski spaceÄtime. We shall follow the fundamental
physical principle that was mentioned above. With respect to an arbitrary curvi-
liner system of coordinates the Minkowski spaceÄtime is characterized by the
metric

ds2 = gij dxi dxj

of the Lorentz signature, which satisˇes the equation Rijk
l = 0. At given gij , the

generators of the group of spaceÄtime symmetry can be represented as a set of
linear independent solutions of general covariant system of equations (Killing's
equations)

Ki∂igjk + gik∂jK
i + gji∂kKi = 0
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for a vector ˇeld Ki. In the case of the Minkowski metric, we have ten linear
independent solutions of the Killing equations which are denoted by Ki

μ and
Ki

μν = −Ki
νμ and, hence, the Greek indices enumerate vector ˇelds and take the

values 0, 1, 2, 3, like coordinate Latin indices.
It is well known that the generators of the Poincar�e group

Pμ = Ki
μ

∂

∂xi
, Mμν = Ki

μν

∂

∂xi

satisfy the following commutation relations:

[Pμ,Pν ] = 0, (23)

[Pμ,Mνλ] = ημνPλ − ημλPν . (24)

It is evident that all these relations are general covariant and that the operators
Pμ = Ki

μ(∂/∂xi) transform a scalar ˇeld into the scalar one.
Now we shall show that the general covariant Dirac equation has the form

iγμPμψ =
mc

�
ψ, (25)

where ψ is a column of four complex scalar ˇelds in question and Pμ are the
generators of spaceÄtime translations. To be exact in all details, let us explain
what it means that the Dirac equation is general covariant. Transformation ϕ of
the local group of diffeomorphisms (group of general coordinate transformations)
can be represented by the smooth functions

ϕ : xi ⇒ ϕi(x), ϕ−1 : xi ⇒ f i(x), ϕi(f(x)) = xi.

Induced transformation of the metric tensor is of the form

g̃ij(x) = gkl(f(x))fk
i (x)f l

j(x),

where fk
i (x) = ∂if

k(x). For the scalar and vector ˇelds we have

ψ̃(x) = ψ(f(x)), P̃ i(x) = P k(f(x))ϕi
k(f(x)),

where ϕi
k(x) = ∂kϕi(x). It is not difˇcult to verify that if Ki(x) is a solution of

the Killing equations for the metric gij(x), then K̃i(x) is a solution of the Killing
equations for the metric g̃ij(x). Further, if ψ(x) is a solution of the Dirac equa-
tion (25), then ψ̃(x) will be a solution of equation (25) when Ki

μ(x) is substituted

by K̃i
μ(x). Besides, the transformations of the diffeomorphisms group conserve

the form of the commutation relations of the Poincar�e group. Dirac's equation
is covariant with respect to the general coordinate transformations. It is known
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that in the Minkowski spaceÄtime, there is a preferred class of the coordinate
systems. In the preferred system of coordinates the Dirac equation (25) has a
customary form.

It is also clear that Eq. (25) is equivalent to the equation

iγ̃μPμψ =
mc

�
ψ,

if γ̃μ = SγμS−1, where S ∈ GL(4,C) (the Dirac equation (25) is covariant with
respect to the transformations of the group GL(4,C)).

Now we have found enough to provide some valuable insights into the con-
nection between the spaceÄtime and internal transformations. Consider again the
generators of the internal Lorentz group Sμν = (1/4)(γμγν − γνγμ) and pay
attention to the commutation relations

[γμ, Sνλ] = ημνγλ − ημλγν . (26)

Comparing (24) and (26) it is not difˇcult to verify that the operators

Lμν = Mμν + Sμν

commute with the Dirac operator D = iγμPμ and satisfy the commutation re-
lations of the Poincar�e group. Thus, in the Minkowski spaceÄtime, there is
a relation between the internal symmetry group and the spaceÄtime symmetry
group. The consequence is that Dirac's equation (25) is invariant with respect
to the transformations of the Poincar�e group. Thus, the geometrical and group-
theoretical meaning of both the spinor and original Dirac equation is quite clear.
We see that the structure of the Dirac equation is deˇned by the internal symmetry
and the derivatives with respect to the given directions. In the considered case
these derivatives coincide with the generators of the translation group. In this
respect, the Dirac equation differs radically from the Einstein equations where
internal symmetry has no role at all. The spinor enters into the world of tensors
as a four-component complex scalar ˇeld being a carrier of nontrivial internal
symmetry which, thus, was discovered together with the Dirac equation.

Consider now the possible natural generalizations of the general covariant
Dirac equation. We will strive to realize the project when the diffeomorphism
group is the group of invariance (not covariance) of the generalized theory and
internal symmetry remains without change. There is only one natural way to do
this and it will be the subject of our consideration in later sections.

5. GENERALIZATION OF THE DIRAC THEORY

In this chapter, it is shown that a spinor ˇeld can be represented as a natural
origin of the ground ˇeld considered above.
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We take that the canonical energyÄmomentum tensor plays a fundamental
role in the theory of the spinor ˇelds and, in accordance with this, the generalized
Dirac Lagrangian has the form

LD =
i

2
Ei

μ

(
ψ̄γμDiψ − (Diψ̄)γμψ

)
− mψ̄ψ, (27)

where Ei
μ are contravariant components of the potential of the ground ˇeld,

Diψ = (∂i − iqAi)ψ, Diψ̄ = (∂i + iqAi)ψ̄.

It is evident that varying (27) with respect to Ei
μ results in the canonical energyÄ

momentum tensor of the spinor ˇeld. Lagrangian (27) is invariant with respect
to the substitutions

ψ ⇒ eiϕψ, ψ̄ ⇒ e−iϕψ̄, Ai ⇒ Ai + ∂iϕ

and, hence, it is general covariant and invariant with respect to the local transfor-
mation of the group U(1). The action has the form

A =
∫

LD p d4x,

where p = Det (Eμ
i ). Since

Ei
μ∂jE

μ
i =

1
p
∂jp,

this action leads to the Dirac equations in the presence of the external ground
ˇeld and the electromagnetic ˇeld

iEi
μγμ

(
Di +

1
2
Ui

)
ψ = mψ, (28)

iEi
μ(Di +

1
2
Ui)ψ̄γμ = −mψ̄, (29)

where, as earlier, Ui = Uk
ik.

Setting

Wμ
i =

i

2
(ψ̄γμDiψ − (Diψ̄)γμψ),

we have LD = Ei
μWμ

i − mψ̄ψ. Hence, from the action

A =
∫

LD p d4x +
l−2

2

∫
Lgf

√
gd4x, g = −Det (gij)
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we verify (in accordance with (22)) the following equations for the potential of
the ground ˇeld:

∇jF
jμ

ν + l2Wμ
ν = 0, (30)

where
Wμ

ν = εEl
νWμ

l , ε = p/
√

g.

Equations (30) generalize Eqs. (22) and together with the Dirac equations (28)
and (29) explain clearly how the ground ˇeld interacts with the spinor ˇeld.
There is no direct interaction of the generalized electromagnetic ˇeld with the
spinor ˇeld. From Eq. (30) an interesting relation can be derived. By summing
over the indices μ and ν, we get that a trace of U i

jk satisˇes the following
equation:

∇iU
i = mψ̄ψ, (31)

where U i = gikUk. We conclude that for m = 0, the interactions of the ground
ˇeld and the spinor ˇeld are characterized by a new conserved quantity. Indeed,
this fact simply means that the action is invariant under the mapping

Eμ
i → aEμ

i , ψ → a−(1/2)ψ,

where a is dimensionless constant. Thus, the introduction of the ground ˇeld into
the framework of the standard model may shed new light on the mechanism of
the lepton mass generation.

CONCLUSION

Here we suggest an experiment to test the formulated theory. It is suggested
to measure the gravitational acceleration of electrons and positrons in the Earth
gravitational ˇeld. The motivation is as follows.

In 1967, Witteborn and Fairbank measured the net vertical component of
gravitational force on electrons in vacuum enclosed by a copper tube [8]. This
force was shown to be less than 0.09mg, where m is the inertial mass of the
electron and g is 980 cm/s2. They concluded that this result supported the
contention that gravity induced an electric ˇeld outside a metal surface of such
magnitude and direction that the gravitational force on electrons was cancelled.
If this is true, then the positrons will fall in this tube with the acceleration
a = 2g. The conclusion from the theory presented here is that electrons and
positrons do not interact with the gravitational ˇeld directly but only through
the ground ˇeld and electromagnetic channel. And the result presented by the
measurements may be considered as an estimation for the energy of the ground
ˇeld generated by electron (and positron). Thus, the new measurements of the
net vertical component of the force on positrons in vacuum enclosed by a copper
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tube will have the fundamental signiˇcance for understanding the conceptual basis
of contemporary theoretical physics and for the understanding the nature of dark
matter as well.
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