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ANALYTICAL RESULTS
FOR THE FOUR-LOOP RG FUNCTIONS
IN THE 2D NONLINEAR O(n) σ-MODEL

ON THE LATTICE
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We recalculate four-loop renormalization group functions in 2-dimensional nonlinear O(n) σ-
model using coordinate-space method. The high accuracy of calculation allows us to ˇnd the analytical
form of β and γ functions (anomalous dimension).
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INTRODUCTION

Nonlinear σ-models have been the objects of the intensive studies for many
years. The particular case of these models, considered in this paper, is the
2-dimensional nonlinear O(n) σ-model. This model is known to be asymptotically
free and can be applied, e.g., to the study of ferromagnetic systems. It can also
serve as a toy model for the strong interactions in particle physics.

In calculations of physically interesting characteristics it is important to know
the β function and anomalous dimension γ. The know of them allows one, in
particular, to predict the correlation length ξ and the spin susceptibility χ. In the
regime of weak coupling, β and γ functions can be evaluated as perturbative
series in the coupling constant. In order to study the whole range of the coupling
constant, one has to appeal to the lattice simulations. Due to the asymptoti-
cal freedom, this model is especially suitable for such a study. For the precise
comparison of Monte Carlo data with perturbative expansions, higher loop cal-
culations within the lattice regularization are required. Such a calculation to two
loops has been done analytically in [1] and then pushed forward to four loops
in [2] numerically and checked in [3]. At the same time, analogous results at the
four-loop order in the continuum limit are known analytically [4].
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The goal of this work is to ˇnd the analytical expressions for the renormal-
ization group (RG) coefˇcients to the four-loop order in the lattice perturbation
theory. In order to do this, we use the methods proposed in the continuum ˇeld
theory for the evaluation of the multiloop integrals. Diagrams on the lattice, as
well as in the continuum limit, are related to each other algebraically. Such rela-
tions arise due to the integration by parts method [5], which leads, in general, to
the reduction of the number of independent integrals. However, the realization of
this algorithm in the lattice already at the three-loop level is quite difˇcult task.

In Sec. 1 we give the deˇnitions and discuss the method. In Sec. 2 our results
are presented, and in Appendix A we give all integrals from [2] separately.

1. DEFINITIONS

The action of the nonlinear O(n) σ-model is usually written in the form

S =
1

2f0

∫
d2x(∂μq(x) ∂μq(x)), (1)

where qi(x) is an n-component real vector ˇeld of unit length and f0 is the
bare coupling constant. In the lattice formulation the derivatives are, as usual,
understood as ˇnite differences.

The perturbative expansions of the β̂ and γ̂ functions can be written as
follows∗:

β̂(f) = −a
d

da
f0 = −2π(n − 2)

∑
L=1

b̂(L)

(
f0

2π

)L+1

, (2)

γ̂(f) = a
d

da
ln Z = 2π(n − 1)

∑
L=1

ĉ(L)

(
f0

2π

)L+1

, (3)

where a is the lattice spacing and Z is the renormalization constant of the ˇeld.
Prefactors (n − 2) and (n − 1) in the above formulae always factorize and we
take them in front of the expressions.

Coefˇcients b̂(L) and ĉ(L) can be computed using the technique of Feynman
diagrams. Generally, Feynman diagrams on the lattice are more difˇcult to
evaluate than the ones in the continuum ˇeld theory. Therefore, the analytical
results in the lattice are known only to two loops [1], while analogous quantities
in the continuum theory are known to four loops [4]. The RG coefˇcients were
computed on the lattice numerically to four loops [2], where they were expressed

∗Our coefˇcients b̂(L) and ĉ(L) are deˇned slightly differently than those in [2].
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in terms of 12 different integrals. The evaluation of these integrals has been
repeated in [3] to somewhat better accuracy (about ∼ 10−9) and the wrong
notation of [2] was clariˇed in [6].

It is known that between different Feynman diagrams there are many algebraic
relations, which can be obtained by partial integration [5]. This explains the fact
that a big number of different integrals could be expressed as linear combinations
of few constants (irrationalities) with rational coefˇcients. Moreover, there were
proposed some rules how to predict the constants that occur in higher loop
calculations [7, 8]. The interesting question arises: which constants appear in the
lattice diagrams calculation? We make a conjencture that they are the same as in
the continuum case, proposed in [8]. To test this conjencture, the so-called PSLQ
test [9] has been used.

Let us brie�y describe this approach. Suppose that we have some irrational
numbers η1, . . . , ηn given to some a certain precision with d decimal digits. We
say that they obey an integer relation with norm bound N if η1, . . . , ηn are
linear-dependent with integer coefˇcients. Precisely, there exist integer numbers
c1, . . . , cn such that

|c1η1 + . . . + cnηn| < ε, provided that max |ci| < N, (4)

where ε > 0 is some small number of the order 10−d and N is norm bound.
Given accuracy d, ®detection threshold¯ ε and norm bound N , the PSLQ test

allows one to ˇnd out whether relation (4) exists or not (for detail, see [9]). This
approach has been applied in several calculations (see, e.g., [10]).

The crucial point is the knowledge of the basis elements ηj . We suppose,
naturally, that the basis for lattice integrals under consideration is the same as
for those in continuum ˇeld theory for a single-scale diagrams. The reason
for that is that the ˇnite part of diagrams contains the same class of functions,
regardless of which kind of regularization has been used. It was suggested in [7]
that the basis elements form an algebra; i.e., if η1 and η2 belong to the basis,
then the product η1η2 does either. Thus, some ®higher¯ elements (but not all of
them) are constructed from ®lower¯ ones by forming all possible products of the
latters. In addition, the integral and the basic elements can be ordered by their
®weights¯ (for detail, see [7, 8]), which are determined by the number of loops
but not by the topology of a diagram (for several single-scale diagrams it has
been tested in [12]).

Thus, we come to the following basis elements:

π, log 2,

π2, π log 2, log2 2, G,

π3, π2 log 2, π log2 2, log3 2, Gπ, G log 2, ζ3, Ls3(π/2)

(5)
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and
π√
3
, log 3,

π2,
π√
3

log 3, log2 3,
Ls2(π/3)√

3
, (6)

π3

√
3
, π2 log 3,

π√
3

log2 3, log3 3, πLs2(π/3), log 3
Ls2(π/3)√

3
, ζ3,

Ls3(2π/3)√
3

,

where ζk = ζ(k) is Riemann ζ function, G = 0.915965594177219015 . . . is the
Catalan constant and the constant Ls2(π/3) = 1.014941606409653625 . . . is de-
ˇned through the so-called log-sine integral [13]

Lsk(θ) =

θ∫
0

logk−1

(
2 sin

θ′

2

)
dθ′.

In Eqs. (5) and (6) the ˇrst, second and third lines correspond to weights 1, 2
and 3, respectively. The elements of higher weights would correspond to higher
loop integrals and do not appear here.

2. RESULTS AND DISCUSSION

We applied the ideas explained above to the lattice integrals presented in [2].
The integrals were computed to accuracy better than 10−40 using the coordinate-
space method proposed in [14]. The most problematic integrals V3 and V6 were
computed even to higher accuracy. The analysis established that these integrals
can be expressed within bases (5) and (6) plus one more constant, introduced
below. From 28 elements of (5) and (6) only ˇve do contribute. Namely, we
were able to express all integrals evaluated numerically in [2, 3] in terms of the
following six irrational constants:

π, π2, ζ3, G,
Ls2(π/3)√

3
, and (2π)3K, (7)

where integral K is the same three-loop bubble as in [2, 3].
Among these integrals only for K we did not ˇnd a relation to the bases (5)

and (6). Therefore, we include it as an independent constant. However, it is not
excluded that (2π)3K can be rewritten as a linear combination of elements (5)
and (6) and the possible reason for our misˇnding is the lack of the accuracy for
the numerical value of this integral.

For the last constant K , we give numerical result accurate to 10−37:

(2π)3K = 23.7849506237378578142256363314563137344(1). (8)
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Coefˇcients b̂(L) of beta function (2) now read

b̂(1) = 1, (9)

b̂(2) = 1, (10)

b̂(3) =
n − 7
24

π2 +
1
2
π − n − 4

2
, (11)

b̂(4) = −28n2 − 66n− 38
12

ζ3 −
(n − 2)(n + 1)

8
(2π)3K +

3n− 1
12

π3 −

− 10(n− 2)π
Ls2(π/3)√

3
+ 20(n− 2)πG +

6n2 − 26n− 1
12

π2 −

− 2(n − 2)(n + 20)
Ls2(π/3)√

3
− 4(n − 2)G − 5n − 12

2
π +

2n2 − 3n− 1
2

.

(12)

For the anomalous dimension (3) we have

ĉ(1) = 1, (13)

ĉ(2) =
1
2
π, (14)

ĉ(3) =
n + 9
24

π2 − n − 2
2

, (15)

ĉ(4) =
(n − 2)(127n− 121)

24
ζ3 +

(n − 2)(n + 1)
16

(2π)3K − 4n − 11
24

π3 +

+ 5(n − 2)π
Ls2(π/3)√

3
− 10(n− 2)πG − 3n3 − 11n + 2

6
π2 +

+ (n − 2)(7n + 8)
Ls2(π/3)√

3
+ (2n − 4)G +

13(n − 2)
4

π−

− (n − 2)(10n − 21)
2

. (16)

In conclusion, we expressed RG functions within the lattice regularization
in terms of six irrational constants given by (7). The algebraic structure of the
above results suggests that there should exist a method of algebraic reduction of
diagrams to a set of a few master intergrals. As is mentioned at the beginning
of the paper, such a method exists in continuum ˇeld theory and is based on
the integration by parts [5] in the momentum space. On the lattice, however,
reduction algorithms are not so obvious. In the simplest case of vacuum one-loop
bubble diagrams algebraic method was discussed in [15]. In more complicated
cases, only few investigations have been done in this direction (see, e.g., [16]).
The development of algebraic methods is desirable and they could be very useful
tools for higher loop computations on the lattice.
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Appendix
INTEGRALS

In this appendix we present separately our analytical results for the integrals
that enter RG functions. They are given in [3] and [14] numerically. So our
results for these integrals read

(2π)2G1 =
1
2
ζ2 + 1, (17)

(2π)2R =
Ls2(π/3)√

3
, (18)

(2π)3J = −24ζ2π + 96ζ2, (19)

(2π)3L1 = −7
2
ζ3 + 3ζ2, (20)

(2π)3V1 =
7
2
ζ3, (21)

(2π)3V2 =
14
3

ζ3 − 4ζ2 + 8
Ls2(π/3)√

3
− 4, (22)

(2π)3V3 =
56
3

ζ3 − 16ζ2 + 24
Ls2(π/3)√

3
− 16 + (2π)3K, (23)

(2π)3V4 = −13
24

ζ3, (24)

(2π)3V5 =
19
2

ζ3 − 3πζ2 + 4ζ2, (25)

(2π)3V6 =
14
3

ζ3 − 8ζ2 +
1
2
(2π)3K, (26)

(2π)2W1 = −1
2

Ls2(π/3)√
3

, (27)

(2π)3Ŵ2 =
1
2
ζ3 +

3
2
π

Ls2(π/3)√
3

− 5
2
πG +

1
2
ζ2 +

11
2

Ls2(π/3)√
3

+
1
2
G − 1

2
.

(28)

And according to [6]

W2 = Ŵ2 +
85

2304π3
ζ3. (29)
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