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Following the guidelines of previous works of the author, the geometrical analysis of a new type
of Uniˇed Field Theoretical models (UFT) is presented. These new uniˇed theoretical models are
characterized by an underlying hypercomplex structure, zero nonmetricity; and the geometrical action
is determined fundamentally by the curvature provenient of the breaking of symmetry of a group
manifold in higher dimensions. This mechanism of the CartanÄMacDowellÄMansouri type permits us
to construct geometrical actions of determinantal type leading to a nontopological physical Lagrangian
due to the splitting of a reductive geometry. Our goal is to take advantage of the geometrical and
topological properties of this theory in order to determine the minimal group structure of the resultant
spaceÄtime manifold able to support a fermionic structure. From this fact, the relation between
antisymmetric torsion and Dirac structure of the spaceÄtime is determined, and the existence of an
important contribution of the torsion to the gyromagnetic factor of the fermions is shown. Also we
resume and analyze previous cosmological solutions in this new UFT, where, as in our work [3] for the
non-Abelian BornÄInfeld model, the Hosoya and Ogura ansatz is introduced for the important cases
of tratorial, totally antisymmetric and general torsion ˇelds. In the case of spaceÄtime with torsion,
the real meaning of the spin-frame alignment is found and the question of the minimal coupling is
discussed.
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´μ£μ É¨¶ , ¶·¨¢μ¤ÖÐ¨¥ ± ´¥Éμ¶μ²μ£¨Î¥¸±μ³Ê Ë¨§¨Î¥¸±μ³Ê ² £· ´¦¨ ´Ê ¡² £μ¤ ·Ö ·¥¤Ê±É¨¢´μ°
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´ ²¨Î¨¥ ¢ ¦´μ£μ ¢±² ¤  Éμ·¸¨μ´  ¢ £¨·μ³ £´¨É´Ò° Ë ±Éμ· ¤²Ö Ë¥·³¨μ´μ¢. ’ ±¦¥ § ´μ¢μ ¶¥·¥-
¸³ É·¨¢ ¥É¸Ö  ´ ²¨§ ¶·¥¤Ò¤ÊÐ¨Ì ±μ¸³μ²μ£¨Î¥¸±¨Ì ·¥Ï¥´¨° ¢ ¶·¥¤²μ¦¥´´μ° ´μ¢μ° ¥¤¨´μ° É¥-
μ·¨¨ ¶μ²Ö, £¤¥, ± ± ¨ ¢ ´ Ï¥° · ¡μÉ¥ [3] ¤²Ö ´¥ ¡¥²¥¢μ° ³μ¤¥²¨ 	μ·´ Äˆ´Ë¥²Ó¤ , ¢¢μ¤¨É¸Ö
 ´§ Í •μ¸μÖ ¨ �£Ê·  ¤²Ö ¢ ¦´ÒÌ ¸²ÊÎ ¥¢ ¶μ²´μ¸ÉÓÕ  ¸¨³³¥É·¨Î´μ£μ ¨ μ¡μ¡Ð¥´´μ£μ Éμ·¸¨-
μ´´μ£μ ¶μ²¥°. ‚ ¸²ÊÎ ¥ ¶·μ¸É· ´¸É¢ -¢·¥³¥´¨ ¸ Éμ·¸¨μ´μ³ Ê¸É ´ ¢²¨¢ ¥É¸Ö ·¥ ²Ó´μ¥ §´ Î¥´¨¥
¢Ò¸É· ¨¢ ´¨Ö ¸¶¨´μ¢μ° ¸É·Ê±ÉÊ·Ò ¨ μ¡¸Ê¦¤ ¥É¸Ö ¶·μ¡²¥³  ³¨´¨³ ²Ó´μ° ¸¢Ö§¨.

PACS: 04.20.Cv; 04.20.Jb; 04.20.Gz

1. MOTIVATION AND SUMMARY OF THE RESULTS

For a long time in the history of the modern theoretical physics, the pos-
sibility of the uniˇcation of all fundamental forces has been treated from the
mathematical and theoretical point of view. Several models, formulations and
sophisticated mathematical tools were used in order to solve the intricate puzzle
of conciliating the gravity with the other fundamental forces of the nature: elec-
tromagnetic, weak and strong. Although many attempts were made, this issue is
still without concrete solution: the string theory is a typical case. In the string the-
ory, the claiming is common on the consistent solution of the uniˇcation trouble;
but, beside particular formulations, the theoretical and conceptual environment
joined with an obscure mathematical basis put certainly in doubt the afˇrmative
acceptation of such a claim.

As was pointed out by us in the later works [1, 2], the cornerstone of the
problem is where to start to conceptually reformulate the theoretical arena where
the fundamental uniˇed theory will be placed, and where the geometry is the
unifying essence. According to Mach, spaceÄtime does not exist without matter.
Then, two basic ideas immediately arise how to fulˇll the observation given by
Mach: the concept of dualistic or nondualistic theories. In the ˇrst one, the sim-
plest and economical description can be formulated in terms of the gravitational
ˇeld without torsion plus the energy momentum tensor that, however, is added
®by hand¯ in order to cover the lack of knowledge of a fundamental structure
of the spaceÄtime giving the matter plus energy distribution. In the second one,
there are not prescriptions for the interaction of gravity with the ®matter¯ ˇelds
because they are arising from the same fundamental geometrical structure.

In our previous works, we presented a new model of a nondualistic uniˇed
theory. The idea that we introduced ˇrst in our preliminary model in [1] is
absolutely consistent from the mathematical and geometrical point of view and
is based on a manifold equipped with an underlying hypercomplex structure and
zero nonmetricity. It leads to the important fact that the torsion of the spaceÄtime
structure turns out to be totally antisymmetric. As is well known, in the particular
case of totally antisymmetric torsion tensor, the afˇne geometrical framework has
the geodesic and the minimal length equations that are equivalent, and the most
important is that it is the only case when the equivalence principle is fulˇlled as
was shown in [9, 10] and we demonstrate it here also.
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The other goal that we introduce as the main ingredient in [1, 2] and here,
is that the speciˇc form of our action is determined by the curvature from the
breaking of symmetry of a group manifold in higher dimensions via the CartanÄ
MacDowellÄMansouri mechanism [1, 2]. This mechanism permits us to construct
geometrical actions of determinantal type which due to the splitting of a reductive
geometry (as is the case of the group manifold treated here) via the breaking of
a higher dimensional group (i.e., as is the typical case SO(1, 4) → SO(1, 3) ⊕
M1,3), leads to a nontopological physical Lagrangian.

Following the guidelines of our last works [1Ä3], in this paper we complete
the previous analysis considering the same fundamental model of UFT. The
organization of the paper with the corresponding results is as follows: in Sec. 2,
the geometrical framework is introduced, and the theoretical basis of the model,
based on a geometrical action that takes physical meaning through a breaking of
symmetry, is described. In Sec. 3, the dynamic equations are analyzed, and the
geometrical and physical meaning is elucidated.

In Sec. 4, we resume and analyze previous cosmological solutions in the new
UFT: as in our work [3] for the non-Abelian BornÄInfeld model, the Hosoya
and Ogura ansatz is introduced for the important cases of tratorial and totally
antisymmetric torsion. The real meaning of the spin-frame alignment in the case
with torsion is found. Also, we explicitly show that, contrary to the case of
the Poincare theory of gravitation (see [4]), the possibility in our theory of the
co-existence of both types of torsion in cosmological spaceÄtimes certainly exists.

Section 5 is the most important in the sense that the fermionic structure of the
spaceÄtime is described, and the possibility of geometrical uniˇcation is realized:
a uniˇed theory of QED and GR can be derived from P (G, M), the Principal
ˇber bundle of frames over the 4D spaceÄtime manifold with G as its structure
group. In the subsections, the action of the UFT is analyzed from the group-
theoretical point of view considering the G-symmetry of the model. In Sec. 6, the
derivation of the Dirac equation from the G-manifold, the relation between the
electromagnetic ˇeld/fermionic structure of the spaceÄtime, and the contribution
of the torsion to the gyromagnetic factor are explicitly shown. However, the
physical consequences are explained. Finally, Sec. 7 is devoted to discussion
of the cohomological interplay between the ˇelds involved in the spaceÄtime
structure, and in Sec. 8 the concluding remarks are given.

2. THE SPACEÄTIME MANIFOLD AND THE GEOMETRICAL ACTION

The starting point is a hypercomplex construction of the (metric compatible)
spaceÄtime manifold [1]

M, gμν ≡ eμ · eν , (1)

where for each point ∈ M there exists a local space afˇne A. The connection
over A, Γ̃ deˇnes a generalized afˇne connection Γ on M speciˇed by (∇, K),
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where K is an invertible (1, 1) tensor over M . We will demand that the connec-
tion is compatible and rectilinear

∇K = KT, ∇g = 0, (2)

where T is the torsion, and g (the spaceÄtime metric, used to raise and to lower
indices and determines the geodesics) is preserved under parallel transport. This
generalized compatibility condition ensures that the afˇne generalized connec-
tion Γ maps autoparallels of Γ on M in straight lines over the afˇne space A
(locally). The ˇrst equation is equal to the condition determining the connec-
tion in terms of the fundamental ˇeld in the nonsymmetric UFT. For instance,
K can be identiˇed with the fundamental tensor in the nonsymmetric fundamental
theory. This fact gives us the possibility of restricting the connection with an
(anti)Hermitian theory.

The covariant derivative of a vector with respect to the generalized afˇne
connection is given by

Aμ
;ν ≡ Aμ,ν +Γμ

ανAα,

Aμ;ν ≡ Aμ,ν −Γα
μνAα.

(3)

The generalized compatibility condition (2) determines the 64 components of the
connection by the 64 equations as follows:

Kμν;α = KμρT
ρ
να, where T ρ

να ≡ 2Γρ
[αν]. (4)

Notice that by contraction of indices ν and α in the ˇrst equation of (4), an
additional condition for this hypothetic fundamental (nonsymmetric) tensor K is
obtained

Kμα;α = 0,

that, geometrically speaking, is

d∗K = 0,

this is a current-free condition for the tensor K that can be exempliˇed nicely
with the prototype of nonsymmetric fundamental tensor Kμν = gμν + fμν :

d∗K = d∗g + d∗f ⇒ d∗f = 0 (current-free e.o.m.),

with, however, gμν playing the role of spaceÄtime metric; and fμν , the role of
electromagnetic ˇeld.

The metric is uniquely determined by the metricity condition that puts 40 re-
strictions on the partial derivatives of the metric

gμν,ρ = 2Γ(μν)ρ. (5)
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The spaceÄtime curvature tensor, that is deˇned in the usual way, has two possible
contractions: the Ricci tensor Rλ

μλν = Rμν and the second contraction Rλ
λμν =

2Γλ
λ[ν,μ], which is identically zero due to the metricity condition (2). In order to

ˇnd a symmetry of the torsion tensor, if we denote the inverse of K by K̂, K̂ is
uniquely speciˇed by K̂αρ Kασ = Kαρ K̂ασ = δρ

σ . As was pointed out in [1],
inserting explicitly the torsion tensor as the antisymmetric part of the connection
in (4) and multiplying by K̂αν/2, result after straighforward computations in

(ln
√
−K),μ −Γν

(μν) = 0, (6)

where K = det (Kμρ). Notice that from expression (6) we arrive at the following
condition between the determinants K and g: K/g = const. Now we can write

Γν
αν,β − Γν

βν,α = Γν
νβ,α − Γν

να,β , (7)

due to the fact that the ˇrst term of (7) is the derivative of a scalar. Then, the
torsion tensor has the symmetry

T ν
ν[β,α] = T ν

ν[α,β] = 0. (8)

That means that the trace of the torsion tensor deˇned as T ν
να, is the gradient

of a scalar
Tα = ∇αφ.

The second important point is the following: let us consider [1] the extended
curvature [8]

Rab
μν = Rab

μν + Σab
μν (9)

with

Rab
μν = ∂μωab

ν − ∂νωab
μ + ωac

μ ωb
νc − ωac

ν ωb
μc,

(10)
Σab

μν = −(ea
μeb

ν − ea
νeb

μ).

We assume that ωab
ν is the SO(d − 1, 1) connection, and ea

μ is the vierbein ˇeld.
Equations (9) and (10) can be obtained, for example, using the formulation that
was pioneering introduced in seminal works by E. Cartan long time ago [1]. It is
well known that in such a formalism the gravitational ˇeld is represented as a
connection 1-form associated with some group which contains the Lorentz group
as subgroup. The typical example is provided by the SO(d, 1) de Sitter gauge
theory of gravity. In this speciˇc case, the SO(d, 1) gravitational gauge ˇeld
ωAB

μ = −ωBA
μ is broken into the SO(d− 1, 1) connection ωab

μ and the ωda
μ = ea

μ

vierbein ˇeld. Then, the de Sitter (anti-de Sitter) curvature

RAB
μν = ∂μωAB

ν − ∂νωAB
μ + ωAC

μ ωB
νC − ωAC

ν ωB
μC (11)
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splits in the curvature (9). At this point, our goal is to enlarge the group structure
of the spaceÄtime manifold in such a manner that the curvature (11), obviously
after the breaking of symmetry, permits us to deˇne the geometrical Lagrangian
of the theory as

Lg =
√

detRa
μRaν =

√
detGμν , (12a)

where we have deˇned the following geometrical object:

Ra
μ = λ(ea

μ + fa
μ) + Ra

μ (Ma
μ ≡ eaνMνμ), (12b)

where fa
μ (in sharp contrast to ea

μ) carries the following symmetry:

eaμfa
ν = fμν = −fνμ.

The action will contain, as usual, R = det (Ra
μ) as the geometrical object

that deˇnes the dynamics of the theory. The particularly convenient deˇnition
of Ra

μ makes easy to establish the equivalent expression in the spirit of the
uniˇed theories developed long ago by Eddington, Einstein and Born, and Infeld,
for example:√

detRa
μRaν =

√
det [λ2(gμν + fa

μfaν) + 2λR(μν) + 2λfa
μR[aν] + Ra

μRaν ],
(13)

where Rμν = R(μν) + R[μν].

The important point to be considered in this simple Cartan inspired model is
that, although a cosmological constant λ is required, the expansion of the action
in four dimensions leads automatically to the HilbertÄEinstein part when fa

μ = 0.
Explicitly (R = gαβRαβ)

S =
∫

d4x(e + f)
{

λ4 + λ3(R + fa
μRμ

a)+

+
λ2

2!
[
R2 − RμνRμν + (fa

μRμ
a)2 − fμνfρσRμρRνσ

]
+

+
λ

3!
[
R3 − 3RRμνRμν + 2RμαRαβRβ

μ + (fa
μRμ

a)3 −

−3(fa
μRμ

a)fμνfρσRμρRνσ + 2fμνRα
μRαβRβ

ν

]
+ det (Rμν)

}
. (14)

Notice that the tetrad property was used here. In the remaining part of the work,
this property will be used or not, wherever the case.
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3. THE DYNAMICAL EQUATIONS

In this case, the variation with respect to the metric remains the same as in
the previous works (see [1], Eq. (9)), e.g.,

δg

√
G =

√
G

2
(G−1)μνδgG = 0.

The variation with respect to the connection gives immediately

δ
√

G

δΓω
μν

= {−∇σ[
√

G(G−1)ανRσ
α]δμ

ω +

+ ∇ω[
√

G(G−1)ανRμ
α] +

√
G(G−1)ανRσ

αΓμ
[σω]}, (15)

where the general form of Palatini's identity has been used and

Gμν ≡ Ra
μRaν ,

with the Ra
μ from Eq. (12b). Deˇning Σνσ ≡

√
G(G−1)ανRσ

α, the above equation
can be written in a more suggestive form but due to the variation with respect to
the metric it is identically zero (due to the lack of energy momentum tensor) and
the only information, till known in our disposal is through the antisymmetric part
of the variation with respect to the metric (see (12) of [1])

Rμν =−λ(gμν + fμν) ⇒ R[μν] = (∇α + 2Tα)(T α
μν + Tνδα

μ − Tμδα
ν ) =−2λfμν ,

(16)

with Tα being the trace of the torsion tensor. Now we have to explore the role
played by fμν :

i) If fμν plays the role of the electromagnetic ˇeld, then we have a one-form
vector potential fμν which is derived. Notice the important fact that such an
existence not necessarily can follow ®a priori¯ from the deˇnition of fρτ . This
fact leads to the usual EulerÄLagrange equations, where the variation is made
with respect to the electromagnetic potential aτ

δ
√

G

δaτ
= ∇ρ

(
∂
√

G

∂fρτ

)
≡ ∇ρF

ρτ = 0. (17)

Explicitly

∇ρ

[
λ2Nμν(δσ

μfρ
ν + δσ

ν fρ
μ)

2R

]
= 0, (18)
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where Nμν is given by expression (32) of [1]. The set of equations to solve for
this particular case is

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −λgμν , (19a)

R[μν] = (∇α + 2Tα)(T α
μν + Tνδα

μ − Tμδα
ν ) = −λfμν , (19b)

∇ρ

[
λ2Nμν(δσ

μfρ
ν + δσ

ν fρ
μ)

2R

]
= 0, (19c)

where the quantities with a little circle ®◦¯ are deˇned from the Christoffel
connection (as in general relativity). From Eqs. (19), the link between T and f
will be determined.

ii) The fμν has only the role to be the antisymmetric part of a fundamen-
tal (nonsymmetric) tensor K , i.e., fμν closed but not necessarily exact. Then,
the variation of the geometrical Lagrangian δf

√
G gives the same information

that δg

√
G. That means that the remaining equations are

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −λgμν , (20a)

R[μν] = (∇α + 2Tα)(T α
μν + Tνδα

μ − Tμδα
ν ) = −λfμν . (20b)

3.1. Analysis and Reduction of the Dynamical Equations. One important
equation, that appears in the two sets recently described (independently of the
speciˇc role of the antisymmetric tensor fμν ) brings us a lot of information
about the link between T and f (Eqs. (19b) and (20b)). Precisely, this equation
R[μν] = −λfμν plus the condition ∇αT α

μν = 0 lead immediately to

∇μTν −∇νTμ = −(λfμν + 2TαT α
μν), (21)

then, the quantity that naturally appears in the r.h.s. is the ®deˇnition¯ in the
current literature of the minimal coupling electromagnetic tensor Fμν in a spaceÄ
time with torsion. Notice the important fact that ∇αT α

μν = 0 is equivalent to

d∗T = 0,

the torsion is current free. Two cases naturally arise:
i) If we assume the existence of the potential vector, we have

∇μTν −∇νTμ ≡ Fμν = −λ

( fμν︷ ︸︸ ︷
∂μaν − ∂νaμ

)
− 2TαT α

μν , (22)

a link between aν and Tν clearly appears: Tν = −λaν . The important fact to
remark here is that, although in [11] the link between the trace of the torsion and
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the vector potential of the electromagnetic ˇeld was proposed, but in the theory
presented in this paper this relation is derived automatically from its geometrical
basis. Beside this point, note that Fμν = Fμν +Bμν , with Bμν being such a type
of ®background¯ ˇeld generated by the spaceÄtime torsion.

ii) If fμν has only the role to be the antisymmetric part of a fundamental
(nonsymmetric) tensor K , it acquires a potential automatically, being in this
manner an exact form, where Tν takes the role of potential vector. Clearly,
now f cannot be a potential for the torsion from this point of view (in a nontrivial
topology, it can be, of course).

From above statements over the ®trace¯ of the torsion, it is clearly seen that
two ansatz appear as candidates for the torsion tensor structure: the ®tratorial¯
structure T α

μν ∼ (δα
μaν − δα

ν aμ) and the ®product¯ structure T α
μν = kαfμν , where

the vector kα is the eigenvector of the antisymmetric tensor fμν , in general (notice
that torsion tensor with this ®product structure¯ also has the possibility to be fully
antisymmetric).

The other possibility is to take ∇αT α
μν = −λfμν , then ∇μTν − ∇νTμ =

−2TαT α
μν , but their interpretation is not so clean as before. Even more, it brings

us to a ®product structure¯, with the torsion tensor being not fully antisymmetric.
3.2. A Potential for the Torsion. As was shown in [1], if we impose the re-

striction Tαβγ = T[αβγ] (e.g., totally antisymmetric torsion tensor), from Eq. (2),
for example, we note that only the antisymmetric part of the fundamental ten-
sor Kαβ determines fully the torsion tensor. Then, due to the assumption of a
torsion tensor to be completely antisymmetric, the potential torsion fμν exists and
arises in a natural form (the ∇ for the covariant derivative with respect the full
connection Γ). This potential torsion has the following properties:

fμν = fμν = −fνμ ∈ HC,

∇[ρfμν] = Tμνρ, (23)

= εμνρσhσ,

with the last equality coming from the full antisymmetry of the torsion ˇeld.
Immediately we can see, as a consequence of the above statements, the following:

i) The torsion is the dual of an axial vector hσ.
ii) From i), the existence in the spaceÄtime of a completely antisymmetric

tensor is covariantly constant εμνρσ(∇ε = 0).
Notice the choice for the real nature of the metric and the pure hypercomplex

potential tensor coming from the Hermitian nature of the theory, as was clearly
explained in [1].

For expression (13) of [1], we have a highly nonlinear dynamical (propagat-
ing) equation for the torsion ˇeld, where the variation was performed with respect
to their potential fμν and has a nonlinear term proportional to fμν playing the
role of current for the Tρστ . Then, 2-form potential is associated nonlinearly to
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the torsion ˇeld in a similar manner as the electromagnetic ˇeld and the spin in
particle physics.

For the expression (12) of [1], ˇrstly, it is useful to split the equation into
the symmetric and the antisymmetric parts using Rμν explicitly as before

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −2λgμν , (24)

R[μν] =
◦
∇αT α

μν = −2λfμν , (25)

= ∇αT α
μν

(the last equality coming from the total antisymmetry of the torsion).
Notice the important fact that −2λfμν is the ®current¯ for the torsion ˇeld,

as the terms proportional to the 1-form potential vector aμ act as current of the
electromagnetic ˇeld fμν in the equation of motion for the electromagnetic ˇeld
in the standard theory: ∇αfα

μ = Jμ (constants absorbed into the Jμ).
The symmetric part (24) can be written in a ®GR¯ suggestive fashion

◦
Rμν = −2λgμν + T α

μρT
ρ
αν ; (26)

we can advertise that the equation has the aspect of the Einstein equations with
the cosmological term modiˇed by the torsion symmetric term T α

μρT
ρ
αν . This can

be interpreted, as was shown in [1], by the energy of the gravitational ˇeld itself.
The second antisymmetric part (25) is more involved. In order to under-

stand it, it will be necessary to use the language of differential forms to rewrite
them, that, beside their symbolic and conceptual simplicity, permits us to check
consistency and covariance step by step

∇αT α
μν = −2λfμν ,

(27)
d∗T = −2λ∗f.

Now, using T = ∗h

dh = −2λ∗f ⇒ ∗f = − 1
2λ

dh (28)

in more familiar form

∇μhν −∇νhμ = −2λ∗fμν , (29)

it follows, using again T = df = ∗h and Eq. (27), that

d∗f = 0, (30)

and fundamentally

df = − 1
2λ

d∗dh = T = ∗h, (31)

d∗dh = −2λ∗h. (32)
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We can recognize the LaplaceÄde Rham operator that helps us to write the wave
covariant equation

[(dδ + δd) + 2λ]∗h = 0, (Δ + 2λ)∗h = 0. (33)

Starting with the potential, it is not difˇcult to see that equivalent equation can
be found

(Δ + 2λ)∗f = 0. (34)

Notice that equation (33) comes from (28) and is a consequence of the Tfh-
relation (T = df = ∗h), but (34) comes directly from (27). The geometric
interplay is the following∗:

T∫
↙↗

d
↘

(−1)d+1 ∗

∗
↖

f −1
∗
d/2λ

←−−−−−−−−−−−−−−→
−2λ

∫ ∗

h

(35)

4. EXACT SOLUTIONS IN THE NEW UFT THEORY

The main motivation in this Section is clear: we must equip our ®theoretical
arena¯ by studying wormhole solutions beyond the Einstein equations coupled
to possible matter ˇelds. Then, let us construct wormhole solutions from the
viewpoint of the UFT model introduced here. The action in four dimensions is
given by

S = − 1
16πG

∫
d4x
√

det |Gμν |, (36)

R ≡
√

γ4 − γ2

2
G

2 − γ

3
G

3
+

1
8
(
G

2)2 − 1
4
G

4
. (37)

4.1. Totally Antisymmetric Torsion. Scalar curvature R and the torsion
2-form ˇeld T a

μν with a SU(2) YangÄMills structure are deˇned in terms of the

afˇne connection Γλ
μν and the SU(2) potential torsion fa

μ by

R = gμνRμν , Rμν = Rλ
μλν , Rλ

μλν = ∂νΓλ
μρ − ∂ρΓλ

μν + . . . ,
(38)

T a
μν = ∂μfa

ν − ∂νfa
μ + εa

bcf
b
μf c

ν ,

∗In order to be consistent with the action of the Hodge operator (∗), in this subsection, we
assume an even number of dimensions [2].
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G and Λ are the Newton gravitational constant and the cosmological constant,
respectively. Notice the important fact that from the last equation for the torsion
2-form, the potential fa

μ must be proportional to the antisymmetric part of the

afˇne connection Γλ
μν as in the StraussÄEinstein UFT. As in the case of EinsteinÄ

YangÄMills systems, for our new UFT model, it can be interpreted as a prototype
of gauge theories interacting with gravity (e.g., QCD, GUTs, etc.). Upon varying
the action, we obtain the gravitational ®EinsteinÄEddington-like¯ equation

Rμν = −2λ(gμν + fμν) (39)

and the ˇeld equation for the torsion 2-form in differential form

d∗Ta +
1
2
εabc(fb ∧∗

Tc − ∗
Tb ∧ fc) = F

a, (40)

where we deˇne as usual

T
a
bc ≡ ∂LG

∂T bc
a

, F
a
bc ≡ ∂LG

∂Fa
.

We are going to seek for a classical solution of Eqs. (39) and (40) with the
following spherically symmetric ansatz for the metric and gauge connection:

ds2 = dτ2 + a2(τ)σi ⊗ σi ≡ dτ2 + ei ⊗ ei. (41)

Here τ is the Euclidean time and the dreibein is deˇned by ei ≡ a(τ)σi. The
gauge connection is

fa ≡ fa
μdxμ = hσa (42)

for a = 1, 2, 3, and for a = 0 it is

f0 ≡ f0
μdxμ = sσ0. (43)

This choice for the potential torsion is the most general and consistent from the
physical and mathematical point of view due to the symmetries involved in the
problem, as we will show soon.

The σi 1-form satisˇes the SU(2) MaurerÄCartan structure equation

dσa + εa
bcσ

b ∧ σc = 0. (44)

Notice that in the ansatz, the frame and isospin indexes are identiˇed as for the
case with the NBI Lagrangian of [3]. The torsion 2-form

T γ =
1
2
T γ

μνdxμ ∧ dxν (45)
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becomes

T a = dfa +
1
2
εa

bcf
b ∧ f c,

=
(
−h +

1
2
h2

)
εa

bcσ
b ∧ σc.

(46)

Notice that f0 plays no role here because we take simply ds = 0 (the U(1)
component of SU(2), in principle, does not form a part of the space spherical
symmetry), and the expression for the torsion is analogous to the non-Abelian
2-form strength ˇeld of [3]. It is important to note that, when we go from the
Lorentzian to Euclidean gravitational regime, then it → τ , and the torsion passes
from the ˇeld of the Hypercomplex to the Complex numbers. Geometrically,
multiplication of hypercomplex numbers preserves the (square) Minkowski norm
(x2 − y2) in the same way that multiplication of complex numbers preserves the
(square) Euclidean norm (x2 +y2). Inserting T a from Eq. (46) into the dynamical
equation (40) we obtain

d∗Ta +
1
2
εabc(fb ∧∗

Tc − ∗
Tb ∧ fc) = ∗

F
a,

(47)
(−2h + h2)(1 − h) dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec,

where

∗
T

a ≡ λ
√
|g|√
3

hA(−2h + h2) dτ ∧ ea

a2
, (48)

∗
F

a = −2λ2
√
|g|√

3
hA

dτ ∧ eb ∧ ec

a3
, (49)

A ≡ λ4
[
(1 + α)2 +

α

2

]
, (50)

and

α =
1
2
(s2 + 3h2); (51)

from expression (47) we have an algebraic cubic equation for h

(−2h + h2)(1 − h) + 2λ = 0. (52)

We can see that, in contrast with our previous work with a dualistic theory [3],
where the energy-momentum tensor of BornÄInfeld was considered, for h there
exist three nontrivial solutions depending on the cosmological constant λ. But,
at this preliminary analysis of the problem, only the values of h that make the
quantity (−h + (1/2)h2) ∈ R are relevant for our proposals: due to the pure
imaginary character of T in the Euclidean framework and mainly to comparison
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with the NABI wormhole solution of our previous work (the question of the
h ∈ C will be the focus of a further paper [5]). As the value of h ∈ R is −1 and
in 4 spaceÄtime dimensions λ = |1 − d| = 3, then

T a
bc|h1 =

3
2

εa
bc

a2
, T a

0c = 0. (53)

Namely, only the magnetic ˇeld is nonvanishing while the electric ˇeld vanishes.
An analogous feature can be seen in the solution of Giddings and Strominger and
in our previous paper [3]. Substituting the expression for the torsion 2-form (53)
into the symmetric part of the variational equation, namely∗,

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −2λgμν , (54)

we reduce equation (24) to an ordinary differential equation for the scale factor a,[(
ȧ

a

)2

− 1
a2

]
=

2λ

3
− 9

2a4
, (55)

ln [1 + 4a2 + 2
√
−9 + 2a2 + 4a4]

2
√

2
= τ − τ0, (56)

T α
μρT

ρ
αν =

(
−h +

1
2
h2

)2

a4
2δμν ,

=
9

2a4
δμν .

(57)

There are two values for the scale factor a: max. and min., respectively, namely,

a = ∓e−
√

2(τ−τ0)
√

37 − 2 e2
√

2(τ−τ0) + e4
√

2(τ−τ0)

2
√

2
. (58)

Expression (58) for the scale factor a is described in Fig. 1 for the real value of h.
As is easily seen from (58), the scale factor has an exponentially growing

behavior, in sharp contrast to the wormhole solution from our previous work with
the ®dualistic¯ non-Abelian BI theory (Fig. 4). Also, for this particular value
of the torsion, the wormhole tunneling interpretation (in the sense of Coleman's

∗In the tetrad:
◦
R00 = −3

··
a

a
,

◦
Rab = −

⎡
⎣ ··

a

a
+ 2

( ·
a

a

)2

− 2

a2

⎤
⎦.
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Fig. 1. Shape of the wormhole solution for values of the Euclidean time and torsion τ0 = 1
and T a

bc = (3/2)εa
bc, respectively

mechanism) is fulˇlled. Now we need to see what happens with equation (27)
in this particular case under consideration: equation (27) takes the following form:

d∗T a +
1
2
εabc(fb ∧∗ Tc −∗ Tb ∧ fc) = −2λ∗fa,

(59)
(−2h + h2)(1 − h) dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec,

∗T a ≡ h(−2h + h2) dτ ∧ ea

a2
, (60)

∗fa = −h
dτ ∧ eb ∧ ec

a3
. (61)

Then we arrive to the same equation for λ as it was given in (52), corroborating
the self-consistency of the procedure.

4.2. ®Tratorial¯ Torsion. To begin with, let us consider the problem in-
volving the set of Eq. (19) with the usual deˇnition for the SU(2) electromagnetic
ˇeld strength

fγ =
1
2
fγ

μν dxμ ∧ dxν , (62)

and, as before, we are going to seek for a classical solution of Eqs. (19) with the
following spherically symmetric ansatz for the metric and gauge connection:

ds2 = dτ2 + a2(τ)σi ⊗ σi ≡ dτ2 + ei ⊗ ei, (63)

here τ is the Euclidean time and the dreibein is deˇned by ei ≡ a(τ)σi. However,
in the case of the set (19), we assume that the 2-form fγ comes from the 1-form
potential A where, as in the non-Abelian BornÄInfeld model of [3], it is deˇned
as Aa ≡ Aa

μdxμ = hσa.
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The extremely important fact in this case is that we know that σi 1-form
satisˇes the SU(2) MaurerÄCartan structure equation, as fundamental geometrical
structure of the non-Abelian electromagnetic ˇeld

dsu(2)σ
a + εa

bcσ
b ∧ σc = 0, (64)

but now due to the identiˇcation assumed in (63):

ei ≡ a(τ)σi, (65)

⇒ dea = T a − ea
b ∧ σb. (66)

Here we make the difference between the exterior derivatives in the spaceÄtime
with torsion and in the SU(2) group manifold. It is clearly seen that a question of
compatibility involving the identiˇcation of the gauge group with the geometrical
structure of the spaceÄtime with torsion certainly exists. From (64)Ä(66), we
see that

∂τa dτ ∧ σa − aεa
bcσ

b ∧ σc = T a − ea
b ∧ σb. (67)

If

ea
b = −εa

bcσ
c (68)

and

T a = δa
b (∂τa) dτ ∧ σb (69)

the spaceÄtime and gauge group are fully compatible, then

dσa + εa
bcσ

b ∧ σc = 0 (70)

is restored. Hence, the general form assumed for the torsion ˇeld, due to the
symmetry conditions prescribed above, is

T α
βγ = ξ(δα

β uγ − δα
γ uβ) + ςhδε

δα
βγ (ξ, ς : const). (71)

Notice that the condition of compatibility, that imposes such a type of ®trator¯
form for the torsion tensor in order to restore the behaviour of the volume form of
the spaceÄtime with respect to the covariant derivative, here appears in a natural
manner without introducing any extra scalar ˇeld (dilaton) or passing to other
frame (i.e., Jordan, Einstein, etc.). Moreover, if we continue without making the
correspondences to (68), (69), the equations of motion for the electromagnetic
ˇeld itself bring automatically these conditions.
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Notice that in the HO ansatz, the frame and isospin indexes are identiˇed as
for the case with the NBI Lagrangian of [3]. The electromagnetic ˇeld 2-form is

fa = dAa +
1
2
εa

bcA
b ∧ Ac,

= hδa
b (∂τ ln a) dτ ∧ σb + h

T a

a
−
(
−h +

1
2
h2

)
εa

bcσ
b ∧ σc, (72)

=
(
−h +

1
2
h2

)
εa

bcσ
b ∧ σc,

where in the last equality conditions (68), (69) have been assumed. The dynamical
equations are

F
a
bc ≡ ∂LG

∂Fa
⇒

(73)
∗
F

a≡λ
√
|g|√
3

hA(−2h + h2) dτ ∧ ea

a2
≡ Mh(−2h + h2) dτ ∧ ea

a2
.

Inserting it in the YangÄMills-type ˇeld equation (19c) we obtain

d∗Fa +
1
2
εabc(Ab ∧∗

Fc −∗
Fb ∧ Ac) = 0,

= Mh dτ ∧ σb ∧ σc(−2h + h2)(h − 1), (74)

A ≡ λ4[(1 + α)2 + α/2].

Then, there exists a nontrivial solution: h = 1 (with s = 0 in A as before in [1]).
The electromagnetic ˇeld is immediately determined. It is the same form as in
the non-Abelian BornÄInfeld model considered in [3], namely,

fa
bc = −εa

bc

a2
, fa

0c = 0, (75)

we have only magnetic ˇeld.
Now considering only a ®trator¯ form for the torsion, Eq. (16b) is identically

null due to the magnetic character of fa and the particular form of the symmetric
coefˇcients of the connection. Inserting the torsion Eq. (69) into Eq. (19a), as in
the previous section, we obtain[(

ȧ

a

)2

− 1
a2

]
=

λ

3
. (76)

Integration of this last expression immediately leads to

a(τ) =
(

λ

3

)−1/2

sinh

[(
λ

3

)1/2

(τ − τ0)

]
. (77)
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Fig. 2. Shape of the cosmological solution for values of |λ| = 3, d = 4, and the Euclidean
time τ > 0

Then it is quite evident that this particular case does not lead to wormhole con-
ˇgurations because there exists only eternal expansion with a(τ0) = 0 (the origin
of the Euclidean time, Fig. 2).

Now considering only the product form for the torsion, Eq. (19c) does not
change but Eq. (19b) takes the form of a wave equation for the scale factor

[�a + (∂0a)(∂0a)] = λ

due to T α
βγ = ςkαεβγ → εab(∂0a). It is not difˇcult to see that the su(2) structure

of the electromagnetic tensor is in some manner transferred to the structure of the
torsion. But here we enter in con
ict because the system of Eqs. (19) turns out to
be overdetermined: probably we need more freedom in the ansatz for fa

bc (s �= 0,
or h = h(τ)). This fact will be studied in the near future [5].

4.3. General Case. Let us assume the full form (71) for T a

∗
F

a ≡ Mh

{
hδa

d(∂τ ln a)εd0
edσe ∧ σd +

h

a
[ξ(δa

i uj − δa
j ui)+

+ ςhδε
δa
ji ]εij

klω
k ∧ ωl + (−2h + h2)εa

bcε
bc
0d dτ ∧ σa

}
. (78)

Here, in order to avoid the cumbersome expression in the second term due to the
standard orthonormal splitting, ij = 0, a, b, c and the ωk are the corresponding
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1-forms (dτ, σa . . .) wherever the case. The YM-type equation can be written as

d∗F
a +

1
2
εabc(Ab ∧∗

Fc −∗
Fb ∧ Ac) = Mh

{[
hδa

b (∂τ∂τ ln a)+

+ ∂τ

(
h

a
(ξ(δa

b u0 − δa
0ub) + ςhcε

ca
b0)
)]

εb0
edd τ ∧ σe ∧ σd+

+
[
hδa

b (∂τ ln a) +
h

a
(ξ(δa

b u0 − δa
0ub) + ςhcε

ca
b0)
]
2d(σe ∧ σd)

}
+

+ M

[
h

a
(ξ(δa

b u0 − δa
0ub) + ςhcε

ca
b0) + (−2h + h2)

]
(h − 1) dτ ∧ σb ∧ σc = 0.

(79)

From the above equation we obtain information about the determination of the
f ˇeld and of the torsion ˇeld as in the previous cases: the ˇrst term[

hδa
b (∂τ∂τ ln a) + ∂τ

(
h

a
(ξ(δa

b u0 − δa
0ub) + ςhcε

ca
b0)
)]

= 0 (80)

leads immediately to

[ηab∂0a + (ξ(ηabu0 − ηa0ub) + ςhcε
ca
b0)] = ΞA

ab0 + Ξs
ab0 ⇒

⇒ ςhcε
c
ab0 ≡ ΞA

ab0 ⇒ ηab∂0a + ξ(ηabu0 − ηa0ub) = ΞS
ab0, (81)

where the tensor
Ξab0 = ΞA

ab0 + ΞS
ab0

is independent of the time, and the superscripts A and S indicate the totally
antisymmetric part of the other nontotally antisymmetric one. Then, the second
and third equalities above follow. It is not difˇcult to see, that contracting indices,
tracing and considering the symmetries involved, we obtain explicitly

T a
b0 = δa

[b∂0]a − aΞ̃Sa
b0 + ΞA

ab0, (82)

T a
bc = −aΞ̃Sa

bc + ςh0ε
0a
bc , (83)

T 0
bc = −aΞ̃S0

bc + ςhcε
c0
bc , (84)

where the integration tensors (independent of time) are related with ui and
Ξ̃Sj

kl (ij . . . = 0, a, b, c) as follows:

uc = −aΞS
c

2ξ
, u0 = − 1

2ξ
(3∂0a + aΞS

c ), ΞS
c ≡ ΞSj

cj , ΞS
0 ≡ ΞSj

0j

and Ξ̃Sj
kl ≡ −1

2
(δj

kΞS
l − δj

l Ξ
S
k ).
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The last term, however, indicates that there exists the simplest solution with
h = 1, as in the previous case for the non-Abelian f . Then

fa
bc = −εa

bc

a2
, fa

b0 = 0

again, and the second equation is identically zero due to the symmetry of the
torsion 2-form with respect to the tetrad deˇned by (63). Now the question is
whether the system of equations is overdetermined or not. To this end, we put
expressions (82)Ä(84) to Eq. (19b). Now, again, from the equations

∇iT
i
ab + 2TiT

i
ab = −λf c

abec, (85)

∇iT
i
ao + 2TiT

i
a0 = 0 (86)

we ˇx the torsion tensor components as

T a
b0 = δa

[b∂0]a, (87)

T a
bc = −aΞ̃Sa

bc + ςh0ε
0a
bc , (88)

T 0
bc = 0. (89)

Expression (86) turns to a null identity, and from (85) we get

4TiT
i
ab = 4aΞ̃S

c

T a
bc︷ ︸︸ ︷

(−aΞ̃Sa
bc + ςh0ε

0a
bc ) = −λf c

abec ⇒
⇒ 4(a2Ξ̃S

c Ξ̃Sc
ab − aΞ̃S

c ςh0ε
0cεab) = −λf c

abec,

(90)
aΞ̃S

c ςh0ε
0cεab = −λf c

abec =
λεc

ab

a2
ec,

Ξ̃S
c ςh0ε

0cεab =
λεc

ab

a2
σc,

where in the last line we use the property Ξ̃S
c Ξ̃Sc

ab = ΞS
c (δc

aΞS
b − δc

bΞ
S
a ) ≡ 0

(see deˇnitions above).
It is easily seen, that by squaring both sides of (90) and from (89), we obtain

h0 =
λσ0

a2|Ξ̃S
c |2ς

, hc =
λ|Ξ̃S

c |aσc

2ς
,

and analogously to the previous cases, from Eqs. (19a) the equation to integrate
takes the form

da

dτ
= ±4

5

[
1 +

λ

3
a2 +

2
3
a4|Ξ̃S

c |2 +
3
8

(
λ

|Ξ̃S
c |a

)2 ]1/2

.
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Fig. 3. Shape of the cosmological solution for values of |λ| = 3, d = 4

One interesting case when the above equation can be integrated exactly is precisely
when d = 4. This condition, besides improving the integrability condition of the
equation, ˇxes |Ξ̃S

c |2 > 3/2. The scale factor a(τ) takes the following form:

a(τ) =

√
B + (A − B) tanh2

[
(τ − τ0)

√
(A − B)

2

]
,

where A and B are nonlinear functions of the norm square |Ξ̃S
c |2. The explicit

form of these functions is not crucial: only the bound for |Ξ̃S
c |2 > 3/2 needs

to be preserved (also through the normalization of A and B into the graphic
representation, see Figs. 3 and 4). Notice that the spaceÄtime is asymptotically
Minkowskian with a wormhole a(τ0) =

√
B (however the values of the constants

have been selected according to the previous remarks). Other possibilities not
enumerated here, lead spaceÄtimes with cyclic singularities due to transcendental

Fig. 4. Shape of the instantonÄwormhole solution for r0 = 70, a = 40
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functions into the denominator of the expression for the scale factor a(τ). This
issue is a focus of a future discussion somewhere [5].

4.4. Coexistence of Both Types of Torsion in Cosmological SpaceÄTimes.
It is interesting to note that in [4] the ˇeld equations of vacuum Quadratic Poincare
Gauge Field Theory (QPGFT) were solved for purely null tratorial torsion. The
author there expressed the contortion tensor for such a case as

Kλμν = −2(gλμaν − gλνaμ).

However, the important thing is that the author has discussed the relationship
between this class (tratorial) and a similar class of solutions with null axial vector
torsion, arriving to the conclusion that cosmological solutions with different types
of torsion are forbidden. The main reason of this situation can have two origins:
the speciˇc theory and action (QPGFT), or the NewmanÄPenrose method used
in the computations that works, as is well known, with null geometric quantities.
Here we show that this problem does not arise in our theory.

5. THE UNDERLYING DIRAC STRUCTURE
OF THE SPACEÄTIME MANIFOLD

The real structure of the Dirac equation in the form

(γ0p0 − iγ · p)u = mv, (91)

(γ0p0 + iγ · p)v = mu, (92)

with

γ0 =
(

σ0 0
0 σ0

)
, γ =

(
0 −σ
σ 0

)
, (93)

where σ are the Pauli matrices and p = (p̂1, p̂2, p̂3), determines a 4D real vector
space with G as its automorphism, such that G ⊂ L(4). This real vector space
can coincide with the tangent space to the spaceÄtime manifold M , this being
the idea. The principal ˇber bundle (PFB) P (G, M) with the structural group G
determines the (Dirac) geometry of the spaceÄtime. We suppose now G with the
general form

G =
(

A B
−B A

)
, G+G = I4, (94)

where A and B are 2 × 2 matrices. Also there exists a fundamental tensor
Jλ

μJν
λ = δν

μ invariant under G with structure

J =
(

0 σ0

−σ0 0

)
, (95)
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where, however, the Lorentz metric gλμ is also invariant under G due to its
general form (94). Finally, the third fundamental tensor σλμ is also invariant
under G, where the following relations between the fundamental tensors are

Jν
λ = σλμgλν , gμν = σλμJλ

ν , σλμ = Jν
λgμν , (96)

where

gλν =
∂g

∂gλν
(g ≡ det (gμν)). (97)

Then, the necessary fundamental structure is given by

G = L(4) ∩ Sp (4) ∩ K(4), (98)

which leaves concurrently invariant the three fundamental forms

ds2 = gμν dxμ dxν , (99)

σ = σλμ dxλ ∧ dxμ, (100)

φ = Jλ
ν wνvλ, (101)

where wν are components of a vector wν ∈ V ∗: Å the dual vector space. In
expression (98), L(4) is the Lorentz group in 4D, Sp (4) is the symplectic group
in 4D real vector space, and K(4) denotes the almost complex group that leaves φ
invariant [6].

For instance, G leaves the geometric product invariant [7]

γμγν =
1
2
(γμγν−γνγμ)+

1
2
(γμγν +γνγμ) = γμγν−γμ∧γν = gμν +σμν , (102)

where they are now regarded as a set of orthonormal basis vector in such a
manner that any vector can be represented as v = vλγλ and

εαβγδ ≡ γα ∧ γβ ∧ γγ ∧ γδ. (103)

In resume, the fundamental structure of the spaceÄtime is then represented
by P (G, M), where G is given by (98), which leaves invariant the fundamental
forms (99)Ä(101), implying that

∇λgμν = 0, (104)

∇νσλμ = 0, (105)

∇λJλ
ν = 0, (106)

where ∇λ denotes the covariant derivative of the G connection. It is interesting
to note that it is only necessary to consider two of above three equations: the
third follows automatically. Then, we will consider (104), (105) because, in some
sense, they represent the boson and fermion symmetry, respectively.
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5.1. Field Equations and Group Structure. It is necessary to introduce
now other antisymmetric tensor σ′

μν which is not helical, that means that it
differs from σμν of (102) but also is invariant with respect to the generalized
connection G: ∇νσλμ = 0. For instance, we can construct also the antisymmetric
tensor ϑμν ≡ σ′

μν−σλμ �= 0, that obeys ∇νϑμν = 0 and obviously (1/6)(∂μϑνλ+
∂νϑλμ + ∂λϑμν) = T ρ

νμϑρλ due to the completely antisymmetric nature of T .

5.2. Antisymmetric Torsion and Fermionic Structure of the SpaceÄTime.
We know that [8]

Γρ
μλ = {ρ

μλ} + gρν(Tμλν + Tλνμ + Tνμλ), (107)

where Γρ
μλ are the coefˇcients of the G-connection and {ρ

μλ} denotes the coefˇ-

cients of the Levi-Civita connection whose covariant derivative is denoted by
◦
∇λ.

From (105), we make the link between the fermionic structure of the fundamental
geometry of the manifold and the torsion tensor

∇[νσλμ] = 0 ⇒ (108)

⇒ 1
2
∂[νσλμ] = T ρ

[νμσρλ]. (109)

The most simple solution for T arises when the torsion tensor is totally antisym-
metric [9]

Tμλν = T[μλν] (110)

in order that the equivalence principle be obeyed [5, 9, 10]. In this case, as we
have shown already in [1, 2, 9], we have

Tμλν = εμλνρh
ρ, (111)

where the axial vector hρ is still to be determined. As will be clear soon, it is
useful to put for d dimensions [9]

hρ =
1√
w

Jρ
λPλ, (112)

where Pλ is the generalized momentum vector; if d = 4, w = 6.
Expression (109) can be simpliˇed taking account of the symmetries of Tμλν

and the contraction with the fundamental tensor Jλ
τ

Tλμν =
1
w

Jρ
λ∂[νσρμ]. (113)
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5.3. About the Equivalence Principle (EP) and the Antisymmetry of the
Torsion Tensor: A Theorem. As is well known, in order the experimental
evidence to form the foundation of the theory, the PE has to be imposed as well
as the foregoing symmetry principles.

Because the G-connection contains a torsion tensor by speciˇc requirements,
it is currently suspected that due to this fact, the EP can be violated. Then, a good
question naturally arises: what is the implication of PE as deˇned (or better
described in this context) by the G-geometry? Let us analyze speciˇcally the
question:

i) The PE implies that the tangent space Mp is to be a Minkowski space,
then at Mp we have

(gμν)p = ημν and (∂ρgμν)p = 0, (114)

where ημν is the Minkowski metric.
ii) The coefˇcients of the afˇne general connection are given by (17)

[8, p. 141]

Γρ
μλ = {ρ

μλ} +

≡Sρ
μλ︷ ︸︸ ︷

gρν(Tμλν + Tλνμ + Tνμλ), (115)

where Tνμλ is the torsion tensor and Sρ
μλ is the contortion.

iii) From
∇g = 0

we have, however,

∇λgαβ =
◦
∇λgαβ − T ρ

λαgρβ − T ρ
λβgαρ = 0, (116)

which is valid at p also.
iv) From (114) and (116) we obtain

[Tβλα + Tαλβ ]p = 0 (117)

since (114) said [ ◦
∇λgαβ

]
p

= 0. (118)

v) The above relations have tensorial character, for instance, they are valid
in all coordinate systems (and in all points p), then

Tβλα = −Tαλβ (119)

and
◦
∇λgαβ = 0. (120)
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These equations show geometrically that the imposition of the PE implies the
following equivalence:

[∇λgαβ = 0 and PE] ⇐⇒ (Eqs. (119) and (120)). (121)

vi) But, from (119) and (120) we have that the torsion tensor has the full
antisymmetric property

Tαλβ = T[αλβ]. (122)

With this Proof we conclude that: the full antisymmetry for the torsion tensor
is the result of imposition of the Equivalence Principle (EP) on the spaceÄtime
structure. It is not the result of a priori assumptions concerning the hypothetic
or possible physical meaning of the torsion tensor.

5.4. The G-Invariance of the Action. As is well known, the Palatini principle
has a double role that is the determining of the connection required for the spaceÄ
time symmetry as the ˇeld equations. By means of this principle, we were able
to construct the action integral S. This action S necessarily needs to yield the
G-invariant conditions (104)Ä(106) without prior assumption; and, the Einstein,
Dirac and Maxwell equations need to arise from S as a causally connected closed
system. This equations will be generalized inevitably, so that causal connections
between them can be established. Our action fulˇlls the above requirements,
having account that the role of fμν , that enters symmetrically with gμν in S, is
linked with the fundamental tensor ϑμν of the previous Subsec. 5.3 denoting the
dual of ϑμν by

fμν ≡ 1
2
εμνρσϑρσ = ∗ϑμν

(where ϑμν is the inverse tensor to ϑμν ).

The usual EulerÄLagrange equations from the action with the explicit compu-
tation of the determinant in (d = 4) of expression (8), that will help us to compare
the unitarian model introduced here (in the sense of Eddington (see [1, 2]) with
the dualistic non-Abelian BornÄInfeld model of [3], take the familiar form [1Ä3]

S =
b2

4π

∫ √
−g dx4

⎧⎨⎩
≡R︷ ︸︸ ︷√

γ4 − γ2

2
G

2 − γ

3
G

3
+

1
8
(G

2
)2 − 1

4
G

4

⎫⎬⎭ , (123)

Gμν ≡ [λ2(gμν + fa
μfaν) + 2λR(μν) + 2λfa

μR[aν] + Ra
μRaν ], (124)

Gν
ν ≡ [λ2(d + fμνfμν) + 2λ(RS + RA) + (R2

S + R2
A)] (125)
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with (the upper bar on the tensorial quantities indicates traceless condition)

RS ≡ gμνR(μν), RA ≡ fμνR[μν], γ ≡ Gν
ν

d
,

Gμν ≡ Gμν − gμν

4
Gν

ν , G
ν

ρG
ρ

ν ≡ G
2
, G

ν

λG
λ

ρG
ρ

ν ≡ G
3
, (126)

(G
ν

ρG
ρ

ν)2 ≡ (G
2
)2, G

ν

μG
μ

λG
λ

ρG
ρ

ν ≡ G
4
,

where the variation was made with respect to the electromagnetic potential aτ

as follows:
δ
√

G

δaτ
= ∇ρ

(
∂
√

G

∂fρτ

)
≡ ∇ρF

ρτ = 0. (127)

Explicitly

∇ρ

[
λ2Nμν(δσ

μfρ
ν + δσ

ν fρ
μ)

2R

]
= 0, (128)

where Nμν is given by

Nμν = g

[
−γ2Gμν − γ(G2)μν +

(G2)μ
μGμν

2
− (G3)μν+

+
4γ3gμν

d
−

γ(G2)μ
μgμν

d
−

(G3)μ
μgμν

3d

]
. (129)

The set of equations to solve from the action (13) in this particular case is

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −λgμν , (19a)

R[μν] = ∇αT α
μν = −λfμν , (19b)

∇ρ

[
λ2Nμν(δσ

μfρ
ν + δσ

ν fρ
μ)

2R

]
= 0, (19c)

from this set, the link between T and f will be determined (f is not a priori
potential for the torsion T ).

The key point now is Eq. (112)

◦
Rμν = −λgμν + T α

μρT
ρ
αν , (130)

= −λgμν + whμhν = −λgμν + PμPν , (131)

then we can obtain, as in the mass shell condition

P 2 = m2 ⇒ m = ±
√

◦
R + λd. (132)
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Notice that there exists a link between the dimension of the spaceÄtime and the

scalar ®Einstenian¯ curvature
◦
R. Moreover, the curvature is constrained to take

deˇnite values ∈ N Å the natural number characteristic of the dimension. On the
other hand, knowing that |λ| = d − 1 and accepting that the parameter m ∈ R,

the limiting condition on the physical values for the mass is
◦
R � (1 − d)d.

Introducing the geometric product in the above equation (e.g., γμγνPμPν =
m2) plus the quantum condition: Pμ → P̂μ − eÂμ, we have[

γμγν
(
P̂μ − eÂμ

)(
P̂ν − eÂν

)
− m2

]
Ψ = 0, (133)

where Ψ = u + iv are given in (91), (92). That is[
γμ
(
P̂μ − eÂμ

)
+ m

][
γν
(
P̂ν − eÂν

)
− m

]
uλ = 0 (134)

which leads to the Dirac equation[
γμ
(
P̂μ − eÂμ

)
+ m

]
uλ = 0 (135)

with m given by (132). Notice that this condition, in the Dirac case, not only
passes from classical variables to quantum operators, but in the case that the
action does not contain explicitly Âμ, hμ remains without speciˇcation due to the
gauge freedom in the momentum. Applying the geometric product to (133), it is
not difˇcult to see that[(

P̂μ − eÂμ

)2 − m2 − 1
2
eσμνFμν

]
uλ +

1
2
σμνRλ

ρ[μν]u
ρ−

− 1
2
eσμν

(
ÂμP̂ν − Âν P̂μ

)
uλ = 0. (136)

It is interesting to see that:
i) The above formula is absolutely general for the type of geometrical

Lagrangians involved containing the generalized Ricci tensor inside.
ii) For instance, the variation of the action will carry the symmetric contrac-

tion of components of the torsion tensor (i.e., Eq. (130)) and then the arising of
terms as hμhν .

iii) The only thing that changes is the mass (132) and the explicit form of
the tensors involved as Rλ

ρ[μν], Fμν , etc., without variation of the Dirac general
structure of the equation under consideration,

iv) Equation (136) differs from that obtained by Landau and Lifshitz by the
appearance of the last two terms: the term involving the curvature tensor is due
to the spin interaction with the gravitational ˇeld (due to torsion term in Rλ

ρ[μν])
and the last term is the spin interaction with the electromagnetic and mechanical
momenta.



THE MATHEMATICAL AND GEOMETRICAL STRUCTURE OF THE SPACEÄTIME 1653

v) Expression (136) is valid for another vector vλ, then it is valid for
a bispinor of the form Ψ = u + iv.

vi) The meaning for a quantum measurement of the spaceÄtime curvature is
mainly due to the term in (136) involving explicitly the curvature tensor.

The important point here is that the spin-gravity interaction term is so easily
derived as the spinors are represented as spaceÄtime vectors whose covariant
derivatives are deˇned in terms of the G-(afˇne) connection. In their original
form the Dirac equations would have, in curved spaceÄtime, their momentum
operators replaced by covariant derivatives in terms of ®spin-connection¯ whose
relation is not immediately apparent.

6. DIRAC STRUCTURE, ELECTROMAGNETIC FIELD
AND ANOMALOUS GYROMAGNETIC FACTOR

The interesting point now is based on the observation that if we introduce
expression (19b) in (136), then[(

P̂μ − eÂμ

)2 − m2 − 1
2
eσμνFμν

]
uλ − λ

d

1
2
σμνf[μν]u

λ−

− 1
2
eσμν

(
ÂμP̂ν − Âν P̂μ

)
uλ = 0, (137)[(

P̂μ − eÂμ

)2 − m2 − 1
2
σμν

(
eFμν +

λ

d
fμν

)]
uλ−

− e

2
σμν
(
ÂμP̂ν − Âν P̂μ

)
uλ = 0, (138)

we can see clearly that if Âμ = jaμ (with j arbitrary constant), Fμν = jfμν ,
the last expression takes the suggestive form[(

P̂μ − eÂμ

)2 − m2 − 1
2

(
ej +

λ

d

)
σμνfμν

]
uλ−

− e

2
σμν
(
ÂμP̂ν − ÂνP̂μ

)
uλ = 0 (139)

with the result that the gyromagnetic factor has been modiˇed to 2/(j + λ/ed).
Notice that in a uniˇed theory with the characteristics introduced here, it is
reasonable the identiˇcation introduced in the previous step (F � f ) in order
that the ˇelds arise from the same geometrical structure.

The concrete implications about this important contribution of the torsion
to the gyromagnetic factor will be given elsewhere with more details on the
dynamical property of the torsion ˇeld. We remark only the following:

i) There exists an important contribution of the torsion to the gyromagnetic
factor that can have implications to the problem of the anomalous momentum of
the fermionic particles.
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ii) This contribution appears (taking the second equality of expression (19b)
as a modiˇcation on the vertex of interaction, almost from the effective point
of view.

iii) It is quite evident that this contribution will justify probably the appear-
ance of the torsion at great scale, because we can bound the torsion due to the
other well-known contributions to the anomalous momenta of the elementary
particles (QED, weak, hadronic contribution, etc.).

iv) The form of the spin-geometric structure coupling coming from the ˇrst
principles, such as the Dirac equation.

v) Then, from iii) the work of the covariant derivative in presence of torsion
is determined by the G structure of the spaceÄtime.

vi) The Dirac equation (137) (where the second part of the equivalence (19b)
coming from the equation of motion was introduced), shows that the vertex was
modiˇed without a dynamical function of propagation. Then, other way to see
the problem treated in this paragraph is to introduce the propagator for the torsion
corresponding to the ˇrst part of the equivalence (19b). This important possibility
will be studied elsewhere [5].

7. SPACEÄTIME AND STRUCTURAL COHOMOLOGIES

As is well know from the physical and mathematical point of view, the
cohomological interplay between the ˇelds involved in any well-possessed geo-
metrical and uniˇed theory is crucial. The importance of this fact arises as
a consequence of the logical (and causal) structure of the physical ˇelds (sources,
ˇelds, conserved quantities) and not only as a mathematical toy. In the theory
presented here, there exist two cohomological structures: spaceÄtime cohomology
and structural cohomology.

The difference between them is that in the spaceÄtime cohomology the Dirac
(fermionic) structure of the spaceÄtime is not involved directly in the relations
between the ˇelds involved. The main equations necessary for the construction are

∇αT α
μν = −λfμν , d∗T = −λ∗f = dh, (140)

the interplay being schematically as

T
A−
↙↗

A+

↘
B−

B+

↖

f
C+

�
C−

h ,

(141)



THE MATHEMATICAL AND GEOMETRICAL STRUCTURE OF THE SPACEÄTIME 1655

where the operators are

A− ≡ (−1)d+1(−λ) ∗
∫
∗, A+ ≡ (−λ)−1 ∗ d∗,

B− ≡ (−1)d+1∗, B+ ≡ ∗,
C− ≡ −λ

∫ ∗
, C+ ≡ [(−1)d+1(−λ)]−1 ∗ d,

(142)

D− ≡ (−1)d+1 ∗ d, D+ ≡ (−1)d+1 ∗
∫

,

E− ≡ d, E+ ≡
∫

,

G− ≡ [(−1)d+1(−λ)]−1∗, G+ ≡ −λ ∗ .

The structural cohomology, in contrast, involves directly the fermionic structure
of the spaceÄtime due to that in the basic formulas ϑμν enters directly into the
cohomological game, as is easily seen below

a
E− ↙↗E+ D+ ↖↘D−

f
B−−−→←−
B+

ϑ

C+ ↖↘C− A− ↙↗A+

h

G− ↑↓G+

a

.
(143)

Notice the important thing: in this case it is clear that the degree of the relations
between the quantities involved is more fundamental than in the previous case
(jerarquical sense).

8. CONCLUDING REMARKS

In this paper we make an exhaustive analysis of the model based on the
theory developed in early papers of the author. The simplest structure of the
spaceÄtime described by this new theory makes, beside the connection between
curvature and matter, the link between the torsion and the spin.

As was well explained through all this paper, the mechanism of rupture of
symmetry is responsible for that the geometrical Lagrangian can be written in a
suggestive EddingtonÄBornÄInfeld-like form. Three cases were treated from the
point of view of the solutions, depending on the form of torsion used: totally
antisymmetric (with torsion potential), not totally antisymmetric (®tratorial¯ type),
and with a torsion tensor with both characteristics. In all the cases, they were
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compared from the point of view of the obtained solutions with the nondualistic
model of reference [3], namely, the non-Abelian BornÄInfeld model.

In all these cases, the (nondualistic) uniˇed model proposed here differs
deeply from the dualistic non-Abelian BornÄInfeld model of our early refer-
ence [3].

The ˇrst obvious difference comes from a conceptual framework: the geo-
metrical action will provide, besides the spaceÄtime structure, the matter-energy
spin distribution. This fact is the same basis of the uniˇcation: all the (apparently
disconnected) theories and interactions of the natural world appear naturally as a
consequence of the intrinsic spaceÄtime geometry.

For the case of totally antisymmetric tensor torsion with torsion potential,
several points were answered and elucidated:

i) As to the Hosoya and Ogura ansatz, the natural question arising was: Why
does the identiˇcation of the isospin structure of the YangÄMills ˇeld with the
space frame lead to a similar physical situation as with a nondualistic uniˇed
theory with torsion? The answer is: because at once such identiˇcation is imple-
mented, a potential torsion is introduced and the solution of the set of equations
is the consistency between the deˇnition of the torsion tensor from the potential
and the Cartan structure equations [1, 2].

ii) As to the obtained solutions for the scale factor, the difference with our
previous work is precisely the particular form of the energy-momentum tensor in
the NABI case (in the UFT model presented here, there is not energy-momentum
tensor, of course): both solutions describe a wormhole-instanton but the ˇnal
form of the differential equations for the scale factor is different: then, the
scale factor here has an exponentially growing behavior, in sharp contrast to
the wormhole solution from our previous work with the ®dualistic¯ non-Abelian
BI theory. Also, for this particular value of the torsion, the wormhole tunneling
interpretation (in the sense of Coleman's mechanism) is fulˇlled.

The contact point between the compared models, however, are the dynamical
equations that are very similar although the existence of a ®current term¯ in the
UFT model (cf. (45)) that does not appear in the NABI case. This fact was
pointed out in a slightly different context by N. Chernikov.

For the case of nontotally antisymmetric torison (tratorial type), the spaceÄ
time structure was analyzed from the point of view of the interacting ˇelds
arising from the same geometry of the spaceÄtime and relaxing now the condition
of a totally antisymmetric torsion. Then, one also neglects the condition of the
prior existence of an antisymmetric 2-form potential for it. The precise results
can be easily enumerated as:

(i) From its SL(2C) underlying structure: the notion of minimal coupling has
been elucidated and has come naturally from the compatibility condition between
the gauge ˇeld structure of the antisymmetric part of the fundamental tensor and
the SL(2, C) structure of the base manifold.
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(ii) Through exact cosmological solutions from this model, where the geo-
metry is Euclidean R ⊗ O(3) ∼ R ⊗ SU(2), the relation between the spaceÄtime
geometry and the structure of the gauge group was explicitly shown.

(iii) This relation is directly connected with the relation of the spin and torsion
ˇelds.

From the point of view of the obtained solutions, a solution of this model
was explicitly compared with our previous ones and we ˇnd that:

(i) The torsion is not identiˇed directly with the YangÄMills type strength
ˇeld.

(ii) There exists a compatibility condition connected with the identiˇcation of
the gauge group with the geometric structure of the spaceÄtime: this fact leads to
the identiˇcation between derivatives of the scale factor a with the components
of the torsion in order to allow the HosoyaÄOgura ansatz (namely, the alignment
of the isospin with the frame geometry of the spaceÄtime).

(iii) This compatibility condition precisely marks the fact that local gauge
covariance, coordinate independence and arbitrary spaceÄtime geometries are har-
monious concepts and

(iv) of two possible structures of the torsion, the ®tratorial¯ form forbids
wormhole conˇgurations, leading only to cosmological instanton spaceÄtime in
eternal expansion.

For the general case, i.e., with torsion with totally antisymmetric and tratorial
parts, the full analysis was given in a clear manner in Sec. 4. Here we point out
that the Hosoya and Ogura ansatz can be implemented as in the previous cases,
and, the most important is the fact that wormhole solutions can be obtained for
some particular cases. The solutions are asymptotically 
at, where appear vector
and tensor integration constants that are constrained in norm to bring physical
consistency to the solution.

As to the problem of the possibility of coexistence of the trace of the torsion
due to the tratorial part and the axial vector from the totally antisymmetric part
of the torsion, we saw here that there is no problem in the new theory: there are
tratorial and antisymmetric torsion ˇelds without contradictions.

The fact that in [4] the ˇeld equations of vacuum quadratic Poincare gauge
ˇeld theory (QPGFT) were solved for purely null tratorial torsion, will permit
one to express the contortion tensor for such a case as (tratorial form, with
notation of [4])

Kλμν = −2(gλμaν − gλνaμ),

then it does not permit the coexistence with an axial torsion vector, as was clearly
shown by Singh in the beautiful paper [4]. The two points that lead to such a
discrepancy are

i) because the described theories are fundamentally different, one is unitarian
and the other [4] is dualistic



1658 CIRILO-LOMBARDO D. J.

ii) and the fact that the NewmanÄPenrose formulation that was used in [4],
works in a null tetrad.

8.1. On the Geometrical Structure. From the point of view of the concrete
structure able to explain the content of the bosonic and fermionic matter of the
Universe, the present paper is left open-ended as many physical consequences
need to be explored. Some words concerning the realization and the choice of the
correct group structure of the tangent space to M is that G = L(4)∩Sp (4)∩K(4)
preserves the boson and fermion symmetry simultaneously without implying su-
persymmetry of the model. As we would like to show in a future work, the
supergravitational extension of the model will be discussed in connection with
the problem of its quantization, where the key point will be precisely the group
structure of the tangent space to the spaceÄtime manifold M . Here we con-
clude enumerating the main results concerning the basic structure of the manifold
supporting a uniˇed ˇeld theoretical model:

i) The simplest geometrical structure able to support the fermionic ˇelds was
constructed based on a tangent space with a group structure G = L(4)∩ Sp (4)∩
K(4).

ii) Then, the explicit link of the fermionic structure with the torsion ˇeld
was realized and the Dirac-type equation was obtained from the same spaceÄtime
manifold.

iii) Notice that the matter was not included in the geometrical Lagrangian of
the uniˇed theory presented here: only symmetry arguments (that will lead to the
correct dynamical equations for the material ˇelds arising from the same manifold)
are needed to allow the appearance of matter and this fact is not the essence of
the uniˇcation, of course (several references trying to include matter into the
Eddington-®type¯ theories by hand without physical and symmetry principles).

8.2. On the Energy Concept. 1) About the equation

◦
Rμν = −λgμν + T α

μρT
ρ
αν

notice that the concept, here, of the terms that arise as ®energy-momentum¯ part
coming from the symmetric contraction of the torsion components is different in
essence to the concept coming from the inclusion of the energy-momentum tensor
in the Einstein theory. The conceptual framework that ®matter and energy curve
the spaceÄtime¯ implicitly carries the idea of some ®embedding-like¯ situation
where the matter and energy are put on some Minkowskian 
exible carpet and
you see how it is curved under the ®weight¯ of the ®ball¯ (matter + energy).
Here, in the theory presented, the situation is that the torsion terms (contributing
as ®energy momentum¯ in above equation) arise from the same geometry, then
we have the picture as a unique entity: the interplay ˇelds-spaceÄtime; the idea
is the same as the solitonic vortex in the water.
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This fact can be also interpreted as that the concept of force is introduced due
to the torsion in the uniˇed model, thing that is lost in the Einstein theory [10],
where the concept is that there is no force, but curvature only.

2) Some remarks on the general HodgeÄde Rham decomposition of
h = hαdxα.

Theorem 1. If h = hαdxα /∈ F ′(M) is a 1-form on M , then there exist a
zero-form Ω, a 2-form α = A[μν] dxμ ∧ dxν and a harmonic 1-form q = qα dxα

on M that

h = dΩ + δα + q → hα = ∇αΩ + εβγδ
α ∇βAγδ + qα.

Notice that if h is not harmonic and assuming that qα is a polar vector, then
an axial vector can be added and above expression takes the form

hα = ∇αΩ + εβγδ
α ∇βAγδ + εβγδ

α Mβγδ + qα,

where Mβγδ is a completely antisymmetric tensor.
3) Notice the important fact that when the torsion is totally antisymmetric

tensor ˇeld, −2λfμν takes the role of ®current¯ for the torsion ˇeld, as usual,
the terms proportional to the 1-form potential vector aμ act as the current of
the electromagnetic ˇeld fμν in the equation of motion for the electromagnetic
ˇeld in the standard theory: ∇αfα

μ = Jμ (constants absorbed into the Jμ). The
interpretation and implications of this question will be analyzed concretely in [5].
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