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The evolution of the Universe ˇlled with dark energy (DE) with or without perfect �uid is
discussed. In doing so, we consider a number of cosmological models, namely Bianchi type I, III,
V, VI0, VI, and FRW one. For the anisotropic cosmological models we have used proportionality
condition as an additional constraint. The exact solutions to the ˇeld equations in quadrature are
found in the case of a BVI model. It was found that the proportionality condition used here imposed
severe restriction on the energyÄmomentum tensor, namely, it leads to isotropic distribution of matter.

Anisotropic BVI0, BV, BIII, and BI DE models with variable EoS parameter ω have been
investigated by using a law of variation for the Hubble parameter. In this case the matter distribution
remains anisotropic, though, depending on the concrete model, there appear different restrictions on
the components of energyÄmomentum tensor. That is why we need an extra assumption such as a
variational law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter ω
is positive, i.e., the Universe was matter-dominated at the early stage but at later time the Universe
is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS
parameter ω whose range is in good agreement with the acceptable range by the recent observations.

A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I spaceÄtime
ˇlled with perfect �uid and anisotropic DE possessing dynamical energy density is studied. In the
derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving
with negative sign which may be attributed to the current accelerated expansion of Universe. The
distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for
high red-shift value which in turn implies that the derived model is physically realistic.

A system of two �uids within the scope of a spatially �at and isotropic FRW model is studied.
The role of the two �uids, either minimally or directly coupled in the evolution of the dark energy
parameter, has been investigated. In doing so, we have used three different ansatzs regarding the scale
factor that gives rise to a variable decelerating parameter. It is observed that, in the noninteracting
case, both the open and the �at Universes can cross the phantom region whereas in the interacting
case only the open Universe can cross the phantom region. The stability and acceptability of the
obtained solution are also investigated.

�¡¸Ê¦¤ ¥É¸Ö Ô¢μ²ÕÍ¨Ö ‚¸¥²¥´´μ°, ´ ¶μ²´¥´´μ° É¥³´μ° Ô´¥·£¨¥° ¸ ¨¤¥ ²Ó´μ° ¦¨¤±μ¸ÉÓÕ
¨²¨ ¡¥§ ´¥¥. ŒÒ · ¸¸³μÉ·¨³ ´¥¸±μ²Ó±μ ±μ¸³μ²μ£¨Î¥¸±¨Ì ³μ¤¥²¥°,   ¨³¥´´μ ³μ¤¥²¨ É¨¶  
¨ ´±¨
I, III, V, VI0, VI ¨ ³μ¤¥²Ó ”·¨¤³ ´ Ä�μ¡¥·É¸μ´ Ä“μ±¥·  (FRW). „²Ö  ´¨§μÉ·μ¶´ÒÌ ³μ¤¥²¥° ¢
± Î¥¸É¢¥ ¤μ¶μ²´¨É¥²Ó´μ£μ Ê¸²μ¢¨Ö ¨¸¶μ²Ó§μ¢ ´μ Ê¸²μ¢¨¥ ¶·μ¶μ·Í¨μ´ ²Ó´μ¸É¨. ‚ ¸²ÊÎ ¥ 
¨ ´±¨
É¨¶  VI ´ °¤¥´μ ÉμÎ´μ¥ ·¥Ï¥´¨¥ ¶μ²¥¢ÒÌ Ê· ¢´¥´¨° ¢ ±¢ ¤· ÉÊ· Ì. �μ± § ´μ, ÎÉμ Ê¸²μ¢¨¥
¶·μ¶μ·Í¨μ´ ²Ó´μ¸É¨ ¢ ÔÉμ³ ¸²ÊÎ ¥ ´ ² £ ¥É ¦¥¸É±μ¥ μ£· ´¨Î¥´¨¥ ´  É¥´§μ· Ô´¥·£¨¨-¨³¶Ê²Ó¸  Å
μ´μ ¶·¨¢μ¤¨É ± ¨§μÉ·μ¶´μ³Ê · ¸¶·¥¤¥²¥´¨Õ ¢¥Ð¥¸É¢ .

∗E-mail: bijan@jinr.ru; http://bijansaha.narod.ru
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�´¨§μÉ·μ¶´Ò¥ ³μ¤¥²¨ É¥³´μ° Ô´¥·£¨¨ É¨¶  
¨ ´±¨ VI0, V, III ¨ I ¸ ¶¥·¥³¥´´Ò³ ¶ · ³¥É·μ³
Ê· ¢´¥´¨Ö ¸μ¸ÉμÖ´¨Ö ω ¡Ò²¨ ¨§ÊÎ¥´Ò ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¢ ·¨ Í¨μ´´μ£μ ¶·¨´Í¨¶  ¤²Ö ¶ · ³¥É· 
• ¡¡² . ‚ ÔÉ¨Ì ³μ¤¥²ÖÌ · ¸¶·¥¤¥²¥´¨¥ ¢¥Ð¥¸É¢  μ¸É ¥É¸Ö  ´¨§μÉ·μ¶´Ò³, ´μ ¢ § ¢¨¸¨³μ¸É¨ μÉ
±μ´±·¥É´μ° ³μ¤¥²¨ ¢μ§´¨± ÕÉ · §²¨Î´Ò¥ μ£· ´¨Î¥´¨Ö ´  ±μ³¶μ´¥´ÉÒ Ô´¥·£¨¨-¨³¶Ê²Ó¸ . �μ ÔÉμ°
¶·¨Î¨´¥ ¨ ¶μ´ ¤μ¡¨É¸Ö ¤μ¶μ²´¨É¥²Ó´μ¥ Ê¸²μ¢¨¥ É¨¶  ¢ ·¨ Í¨μ´´μ£μ ¶·¨´Í¨¶  ¤²Ö ¶ · ³¥É· 
• ¡¡² . 
Ò²μ μ¡´ ·Ê¦¥´μ, ÎÉμ ¢ ´ Î ²Ó´μ° ¸É ¤¨¨ Ô¢μ²ÕÍ¨¨ ¶ · ³¥É· Ê· ¢´¥´¨Ö ¸μ¸ÉμÖ´¨Ö
ω ¶μ²μ¦¨É¥²¥´, É. ¥. ´  ÔÉμ° ¸É ¤¨¨ ‚¸¥²¥´´ Ö ¶·¥¨³ÊÐ¥¸É¢¥´´μ § ¶μ²´¥´  ¢¥Ð¥¸É¢μ³,   ´ 
¶μ§¤´¥° ¸É ¤¨¨ Ô¢μ²ÕÍ¨¨ ¶ · ³¥É· ω ¸É ´μ¢¨É¸Ö μÉ·¨Í É¥²Ó´Ò³, ÎÉμ ¸μμÉ¢¥É¸É¢Ê¥É ´ ¸ÉμÖÐ¥°
Ô¶μÌ¥. Œμ¤¥²Ó É¥³´μ° Ô´¥·£¨¨ ¶μ± §Ò¢ ¥É ¤¨´ ³¨±Ê ¶ · ³¥É·  ω, μ¡² ¸ÉÓ ¨§³¥´¥´¨Ö ±μÉμ·μ£μ
´ Ìμ¤¨É¸Ö ¢ Ìμ·μÏ¥³ ¸μμÉ¢¥É¸É¢¨¨ ¸ ´ ¡²Õ¤¥´¨Ö³¨.

ˆ§ÊÎ¥´μ ¶·μ¸É· ´¸É¢¥´´μ-μ¤´μ·μ¤´μ¥ ¨  ´¨§μÉ·μ¶´μ¥ ²μ± ²Ó´μ ¢· Ð É¥²Ó´μ-¸¨³³¥É·¨Î´μ¥
¶·μ¸É· ´¸É¢μ-¢·¥³Ö É¨¶  
¨ ´±¨ I, § ¶μ²´¥´´μ¥ ¨¤¥ ²Ó´μ° ¦¨¤±μ¸ÉÓÕ ¨  ´¨§μÉ·μ¶´μ° É¥³´μ°
Ô´¥·£¨¥° ¸ ³¥´ÖÕÐ¥°¸Ö ¶²μÉ´μ¸ÉÓÕ. ‚ ÔÉμ° ³μ¤¥²¨ ¶ · ³¥É· Ê· ¢´¥´¨Ö ¸μ¸ÉμÖ´¨Ö (ω(de))
³¥´Ö¥É¸Ö ¸μ ¢·¥³¥´¥³ ¨ Ô¢μ²ÕÍ¨μ´¨·Ê¥É ¸ μÉ·¨Í É¥²Ó´Ò³ §´ ±μ³, ÎÉμ ³μ¦¥É ¡ÒÉÓ ¸¢Ö§ ´μ ¸
Ê¸±μ·¥´´Ò³ · ¸Ï¨·¥´¨¥³ ‚¸¥²¥´´μ°. �μ²ÊÎ¥´´Ò¥ ·¥§Ê²ÓÉ ÉÒ ´ Ìμ¤ÖÉ¸Ö ¢ ¡μ²ÓÏμ³ ¸μμÉ¢¥É¸É¢¨¨
¸ ´ ¡²Õ¤ É¥²Ó´Ò³¨ ¤ ´´Ò³¨.

‚ · ³± Ì ¶·μ¸É· ´¸É¢¥´´μ ¶²μ¸±μ° ¨ ¨§μÉ·μ¶´μ° ³μ¤¥²¨ FRW ¨§ÊÎ¥´  ¸¨¸É¥³  ¤¢ÊÌ ¦¨¤-
±μ¸É¥°. ‚ÒÖ¸´¥´  ¨Ì ·μ²Ó ¶·¨ ¶·Ö³μ° ¨²¨ ³¨´¨³ ²Ó´μ° ¸¢Ö§¨ ¢ Ô¢μ²ÕÍ¨¨ ¶ · ³¥É·  É¥³´μ°
Ô´¥·£¨¨. �·¨ ÔÉμ³ ¸¤¥² ´Ò É·¨ ¶·¥¤¶μ²μ¦¥´¨Ö μÉ´μ¸¨É¥²Ó´μ ³ ¸ÏÉ ¡´μ£μ Ë ±Éμ· , ±μÉμ·Ò¥ ¶μ-
·μ¦¤ ÕÉ ¶ · ³¥É· § ³¥¤²¥´¨Ö, § ¢¨¸ÖÐ¨° μÉ ¢·¥³¥´¨. �μ± § ´μ, ÎÉμ ¢ ¸²ÊÎ ¥ ³¨´¨³ ²Ó´μ° ¸¢Ö§¨
μÉ±·ÒÉÒ¥ ¨ ¶²μ¸±¨¥ ³μ¤¥²¨ ³μ£ÊÉ ¶¥·¥¸¥± ÉÓ Ë ´Éμ³´ÊÕ μ¡² ¸ÉÓ, Éμ£¤  ± ± ¢ ¸²ÊÎ ¥ ¶·Ö³μ£μ
¢§ ¨³μ¤¥°¸É¢¨Ö Éμ²Ó±μ μÉ±·ÒÉ Ö ³μ¤¥²Ó ³μ¦¥É ¸¤¥² ÉÓ ÔÉμ. ’ ±¦¥ ¡Ò²¨ ¨§ÊÎ¥´Ò ¤μ¶Ê¸É¨³μ¸ÉÓ
¨ Ê¸Éμ°Î¨¢μ¸ÉÓ ¶μ²ÊÎ¥´´ÒÌ ·¥Ï¥´¨°.

PACS: 98.80.Cq

INTRODUCTION

Cosmology is a discipline to understand the nature of origin, evolution, large
scale structure, and ultimate fate of the Universe. Being that, it is perhaps the
oldest discipline of the world. From the very beginning of mankind, looking at
the sky people were eager to know, where do they come from and who is behind
these all. Many leaves it with God, while a few goes forward to get a logical
answer. In their quest for knowledge they modeled the Universe in accord with
the information they have at hand.

The start of scientiˇc cosmology took place as early as in 1543 with Nicholas
Copernicus suggesting the heliocentric model of the Universe. Further develop-
ment of scientiˇc cosmology is connected with the scientists like Galileo Galilei
and Johannes Kepler, who provided both observational and theoretical support
to this cause. The Isaac Newton took this mission forward. But the biggest
boost for cosmology came in the 1920s with the theoretical works by A. Einstein,
A. Friedmann, W. de Sitter and observations by E.Hubble.

Nevertheless, only after World War II ended, it moved from a speculative
science to the much ˇrmer ground of prediction, observation and veriˇcation.
And it is because only then astronomers and astrophysicists took advantage of
a powerful array of new tools and technologies. For the ˇrst time, astronomers
began to make comprehensive studies of the sky at wavelengths other than the
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visible. At the same time, they began to use rockets to lift their instruments
far above the Earth surface. Eventually, they succeeded in placing instruments
in space that brought dramatic conˇrmation of the Big Bang hypothesis Å and
pointed to yet stranger features of the Universe. And each of new ˇndings,
every single discovery of astrophysics poses an even greater challenge to the
cosmologists to give theoretical explanation of these observations.

In this review, we plan to discuss the problem of late time acceleration and its
possible solutions within the scope of both isotropic and anisotropic cosmological
models.

The review is organized as follows: in Sec. 1, we give a brief review of
dark energy; in Sec. 2, dark energy models are discussed; in Sec. 3, a short
description of cosmological models is given; in Sec. 4, we study the Bianchi
type-VI cosmological model; in Sec. 5, Bianchi type-VI0 cosmological model
ˇlled with dark energy is investigated; in Sec. 6, Bianchi type-V model is studied;
in Sec. 7, we study the Bianchi type-III dark energy model; in Sec. 8, the Bianchi
type-I cosmological models are studied; in Sec. 9, we consider the isotropic and
homogeneous FRW models and in Sec. 10, we give concluding remarks of the
results obtained.

1. DARK ENERGY

In the early 20th century the common world-view held that the Universe
is static Å more or less the same throughout eternity. Even Albert Einstein
supported this long-standing idea, and in order to get the steady state Universe
he introduced cosmological constant in his famous system. So, when in 1922 the
Russian meteorologist and mathematician Alexander Friedmann had published a
set of possible mathematical solutions that gave a nonstatic Universe [68, 69],
Einstein rejected it noting that this model was indeed a mathematically possible
solution to the ˇeld equations. This model has gained big popularity only after
the works of Robertson and Walker and became known as FRW model. This
model describes a homogeneous and isotropic Universe. By homogeneity we
mean that space has the same metric properties (measures) in all points, whereas
by isotropy we mean that the space has the same measures in all directions. This
idea of expanding Universe suggested the presence of an initial singularity, which
means the ˇniteness of time.

Though the idea of an expanding Universe was supported both theoretically
and experimentally, it was strongly believed that the Universe is expanding with
deceleration. So, in 1998, when it was found that the Universe is expand-
ing with acceleration, it comes like a bolt from the blue. The observations of
type Ia supernova (SNeIa) in 1998 established that our Universe is currently ac-
celerating [112, 113, 120] and recent observations of SNeIa of high conˇdence
level [43,121,189] have further conˇrmed this. In addition, measurements of the
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Fig. 1. Expansion of the Universe in the presence of a dark energy (Credit: Nasa;
http://science.nasa.gov)

cosmic microwave background (CMB) [16] and large scale structure (LSS) [185]
strongly indicate that our Universe is dominated by a component with negative
pressure, dubbed as dark energy. In Fig. 1, the expansion of the Universe in the
presence of a dark energy is shown.

Dark energy is a form of matter (energy) not observable in laboratory and it
does not interact with electromagnetic radiation. These facts played decisive role
in naming this object. In contrast to dark matter

Å dark energy is uniformly distributed over the space;
Å it does not intertwine under the in�uence of gravity in all scales;
Å it has a strong negative pressure of the order of energy density.
Based on these properties, cosmologists have suggested a number of dark

energy models, those are able to explain the current accelerated phase of expansion
of the Universe.

What Dark Energy is? More is unknown than is known. We know how much
dark energy there is because we know how it affects the Universe expansion.
Other than that, it is a complete mystery. But it is an important mystery.

The Wilkinson Microwave Anisotropy Probe (WMAP) measures the compo-
sition of the Universe. The top chart shows a pie chart of the relative constituents
today. A similar chart (bottom) shows the composition at 380,000 years old
(13.7 billion years ago) when the light WMAP observes emanated. The compo-
sition varies as the Universe expands: the dark matter and atoms become less
dense as the Universe expands, like an ordinary gas, but the photon and neu-
trino particles also lose energy as the Universe expands, so their energy density
decreases faster than the matter. They formed a larger fraction of the Universe
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Fig. 2. Expansion of the Universe
in the presence of a dark energy
(Credit: Nasa/WMAP Science Team;
http://www.gsfc.nasa.gov)

13.7 billion years ago. It appears that the
dark energy density does not decrease at
all, so it now dominates the Universe
even though it was a tiny contributor
13.7 billion years ago.

WMAP satellite experiment suggests
73% content of the Universe in the form
of dark energy, 23% in the form of non-
baryonic dark matter and the rest 4% in
the form of the usual baryonic matter as
well as radiation. The corresponding pic-
ture is given in Fig. 2.

Figure 3 shows the present acceler-
ated mode of expansion and the future
fate of the Universe depending on which
way it evolves.

Thus, we see that the dark energy
is really a very important component of
the Universe and needs to be explained
theoretically.

One explanation for dark energy is
that it is a property of space. Albert Ein-
stein was the ˇrst to realize that empty
space is not nothing. Space has amazing
properties, many of which are just begin-

Fig. 3. The present day acceleration and future fate of the Universe (Credit: Wikipedia)
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ning to be understood. The ˇrst property that Einstein discovered is that it is
possible for more space to come into existence. Then one version of Einstein's
gravity theory, the version that contains a cosmological constant, makes a second
prediction: empty space can possess its own energy. Because this energy is a
property of space itself, it would not be diluted as space expands. As more
space comes into existence, more of this energy-of-space would appear. As a
result, this form of energy would cause the Universe to expand faster and faster.
Unfortunately, no one understands why the cosmological constant should even be
there, much less why it would have exactly the right value to cause the observed
acceleration of the Universe.

Another explanation for how space acquires energy comes from the quantum
theory of matter. In this theory, empty space is actually full of temporary (virtual)
particles that continually form and then disappear. But when physicists tried to
calculate how much energy this fact would give empty space, the answer came
out wrong Å wrong by a lot. The number came out 10120 times too big. It is
hard to get an answer to be so bad. So the mystery continues.

The third explanation for dark energy is that it is a new kind of dynamical
energy �uid or ˇeld, something that ˇlls all of space but something whose effect
on the expansion of the Universe is the opposite of that of matter and normal
energy. Some theorists have named this quintessence, after the ˇfth element of
the Greek philosophers. But, if quintessence is the answer, we still do not know
what it is like, what it interacts with, or why it exists. So the mystery continues.

Another possibility is that Einstein's theory of gravity is not correct. That
would not only affect the expansion of the Universe, but it would also affect the
way that normal matter in galaxies and clusters of galaxies behaved. This fact
would provide a way to decide if the solution to the dark energy problem is a new
gravity theory or not: we could observe how galaxies come together in clusters.
But if it does turn out that a new theory of gravity is needed, what kind of theory
would it be? How could it correctly describe the motion of the bodies in the
Solar System, as Einstein's theory is known to do, and still give us the different
prediction for the Universe that we need? There are candidate theories, but none
are compelling. So the mystery continues.

2. DARK ENERGY MODELS

Given the fact that dark energy ˇlls almost 3/4 of the Universe and there is no
unambiguous answer to the question what dark energy is, cosmologists propose
dark energy models in regular intervals. At present there are several candidates
to explain this phenomenon of late time acceleration. In what follows we review
a few of them.
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2.1. Λ-Term. To ensure the sustainable cosmological solution to the grav-
itational ˇeld equations, Einstein introduced a fundamental constant, known as
the cosmological constant, or Λ-term in the system [54, 55]. After Hubble ex-
perimentally conˇrmed that the Universe is expanding, Einstein returned to the
original form equation, saying at the same time that the modiˇcation, which he
did, was the biggest blunder of his life. The Λ-term made a temporary comeback
in the late 60s of last century. Finally after the pioneer paper by A.Guth [78]
on in�ationary cosmology, researchers began to study the models with Λ-term
with growing interest. An excellent overview of the cosmological constant can
be found in [109].

With its introduction, the Einstein ˇeld equations take the form

Gν
μ = Rν

μ − 1
2
δν
μR = −κT ν

μ − δν
μΛ. (2.1)

In 1998, two groups [112, 120] independently showed that our Universe
expands with acceleration conˇrming the existence of dark energy. The simplest
form of dark energy is a positive cosmological constant. Introduction of a positive
Λ-term corresponding to a universal repulsive force, leads to the present mode
of the accelerated expansion. But it is accompanied by such theoretical problems
as the ˇne-tuning, and coincidence problem [197] which states why the density
of dark energy and dust matter density is currently comparable to, or why the
Universe began to expand rapidly only right now. Another problem, which
is associated with accelerated expansion, is a problem of eternal acceleration.
Introduction of a negative Λ-term corresponding to an additional gravitational
force can solve this problem [34]. Models with Λ-terms of the opposite sign
were considered in [128,137,154].

2.2. Quintessence. The discovery that the expansion of the Universe is
accelerating has promoted the search for new types of matter that can behave
like a cosmological constant by combining positive energy density and negative
pressure. Quintessence is a hypothetical form of dark energy, which is thought
to be the ˇfth fundamental force. While the cosmological constant stays con-
stant throughout time, quintessence changes over time due its dynamic character
which is given by the equation of state. This is the most common type of dark
energy [32,138,168,210] with equation of state

pq = wqεq, (2.2)

with this ratio being a constant. Such an equation of state is well known, namely,
when w ∈ [0, 1], it describes a perfect �uid. With w = −1, it describes a
typical cosmological constant (Λ-term) [109,137,167]. So if the Universe, ˇlled
with mostly similar substance, expands with acceleration, the condition w <
−1/3 must be held. Usually, the constant w varies between −1 and −1/3, i.e.,
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w ∈ [−1, −1/3]. This limitation is attributed to the following fact. The rigorous
deˇnition of w (both for the equilibrium state and for small perturbations) implies
that when w < 1 the propagation velocity of small perturbations (for instance,
the sound) in quintessence exceeds the speed of light and, hence, the inequality
leads to violation of the causality principle. Many quintessence models behave
like a tracker ˇeld that partially solves the cosmological constant problem [210].
In these models, the quintessence ˇeld has a density which closely tracks (but
is less than) the radiation density until matter-radiation equality, which triggers
quintessence to start having characteristics similar to dark energy, eventually
dominating the Universe.

2.3. k-Essence. A key challenge for theoretical physics is to address the
cosmic consequence problem: why does the dark energy component have a tiny
energy density compared to the expectation based on the quantum ˇeld theory
and why does the cosmic acceleration begin at such a late stage in the evolution
of the Universe? Most dark energy candidates require extraordinary ˇne-tuning
of the initial energy.

The purpose of introducing k-essence is to provide a dynamical explanation
which does not require the ˇne-tuning of initial condition or mass parameters and
which is decidedly nonanthropic.

A further property of k-essence is that, because of the dynamical attractor
behavior, cosmic evolution is insensitive to initial conditions.

The k-essence component has the property that it only behaves as a negative
pressure component after the matter-radiation equality, so that it can only overtake
the matter density and induce cosmic acceleration after the matter has dominated
the Universe for certain period. In general, k-essence is deˇned as a scalar ˇeld
with noncanonical kinetic energy and can be given by the Lagrangian

Lk = K(φ)p(X), X =
1
2
∇μφ∇μφ, (2.3)

where K(φ) > 0.
2.4. Chaplygin Gas. In order to combine these two different physical con-

cepts as dark matter and dark energy, and thus reduce the two physical parameters
in one, a rather exotic equation of state [91] was proposed

pch = − A

εch
. (2.4)

In this paper, the authors described the transition of a Universe ˇlled with dust
in the rapidly expanding Universe. The model proposed in [91], was generalized
in the works [17,25]. Generalized Chaplygin gas model is given by the equation
of state

pch = − A

εα
ch

, (2.5)
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where A is a positive constant and 0 < α � 1. Note that the original Chaplygin
gas was introduced into aerodynamics [37]. There are quite a good number of
works on this model [2,11,12,15,18,19,22,24,27,44,48,58,59,73,75,76,79,80,
88,96,105,107,136,170,182].

2.5. Modiˇed Chaplygin Gas. Modiˇed Chaplygin gas (MCG) is the general-
ization of generalized Chaplygin gas p = −B/εγ with the addition of a barotropic
term p = Aε and given by the EoS

p = Aε − B

εα
, (2.6)

where A and B are the positive constants, and 0 � α � 1. The MCG parameters
α and B have been constrained by the cosmic microwave background (CMB)
data. The MCG is able to explain the cosmic accelerated expansion, and the EoS
of MCG is valid from radiation era to Λ-CDM model.

2.6. Phantom-Type Dark Energy. Until recently it was assumed that the
standard cosmological source of dark energy must have a small negative pressure,
such that −ε < p < 0, and under no condition the pressure should exceed the
mysterious barrier p = −ε = −Λ, which corresponds to cosmological constant.
In this case only strong energy condition may be violated:

ε + 3p > 0, ε + p > 0, (2.7)

and the subsequent could follow one of the two scenarios: the Asymptotic Empti-
ness and the Big Crunch.

The phantom is dark energy with a strong negative pressure. It can be
modeled by a scalar ˇeld with a negative kinetic energy given by the Lagrangian

L =
k

2
∂μϕ∂μϕ − V (ϕ), (2.8)

where k = −1 corresponds to the phantom; while k = 1, to the standard scalar
ˇeld. Here V (ϕ) is a potential. The most striking result that is attributed to
the phantom is that the energy density grows proportionally to the scale factor.
Thus, in contrast to the standard sources, when the increase of the energy density
corresponds to the reduction of the scale factor, in this case the energy density's
increase is accompanied by the Universe expansion. This leads to the appearance
of singularities in the future known as Big Rip. In this case the Universe becomes
inˇnite during a ˇnite time [46,51]. Note that, in case of w < −1, Eq. (2.2) too
gives rise to a phantom matter.

2.7. Oscillating Dark Energy. The discovery of positive accelerations gives
rise to a number of problems. One of the most baf�ing of those is the problem
of eternal acceleration [125]. A positive Λ-term, as well as the most dark energy
models proposed so far, leads to the regime of eternal acceleration. In [181],
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the authors proposed a cosmological model of a cyclic Universe experiencing
periodical expansions and contractions. Every cycle begins with a Big Bang,
terminates with a Big Crunch only to begin with a Big Bang again. The expansion
phase of each cycle contains the eras of radiation, matter and quintessence. The
last one corresponds to the modern accelerated mode of expansion.

In the paper [62], a cosmological model has been investigated, where the
effective potential V (φ) might be negative for some values of φ. In this case
the cyclic model of the Universe is realized. One of the simplest way to achieve
cyclic models is to introduce a negative Λ-term together with some potential to
the system [34, 128, 154]. Note that the models considered in [128, 154, 161]
give both cyclic (also known as nonperiodic solutions, as the volume scale is
strictly positive and when the volume scale tends to zero, there occurs a physical
singularity, though the solution can be mathematically continued and enter into a

Fig. 4. Energy density and pressure of a
quintessence with a modiˇed equation of
state oscillate

new cycle) and oscillatory (positive in
each space-time point) solutions. We have
also proposed a model of quintessence
with modiˇed equation of state [138]

p = W (ε − εcr), W ∈ (−1, 0), (2.9)

with εcr being some critical energy den-
sity. The model gives rise to cyclic or
oscillatory Universe. Setting εcr = 0,
one obtains ordinary quintessence. As one
sees from (2.9), the pressure is negative
as long as ε > εcr. Since with the expan-
sion of the Universe the energy density
decreases, at some moment of time ε be-
comes less than εcr, i.e., ε < εcr. This
leads to the positive pressure and the con-

traction of the Universe. The corresponding behavior of energy density and
pressure is given in Fig. 4.

Oscillating dark energy with a periodic equation of state in two equivalent
formulations was considered in [106]. It was shown that such a model assumes a
natural uniˇcation of initial in�ation with modern accelerating mode of expansion.
Model with oscillating dark energy was also studied in [101].

2.8. Model with Interaction between Dark Energy and Dark Matter.
Experimental checks conducted within the solar system impose strict constraints
on the possibility of nonminimal interaction between dark energy and dark mat-
ter [200]. Nevertheless, a possibility of additional (nongravitational) interaction
between them without a contradiction with the experimental data, appears due to
the unknown nature of the dark matter as the main fraction of that background.
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Moreover, it was established that the models with interacting dark energy are in
good agreement with the modern observation data [108,110]. It leads to the ap-
pearance of a number of papers offering the models with interacting dark matter
and dark energy [42,74].

2.9. ScalarÄTensor Models of Dark Energy. ScalarÄtensor theory of grav-
itation is an alternative to or generalization of Einstein's theory of gravitation,
where a scalar ˇeld is present in addition to the tensor ˇeld. It was proposed al-
most half a century ago in a series of papers [28,64,90], and even at present time
remains important for explaining the accelerating expansion phase, especially in
the in�ation and quintessence scenarios. The main assumption of this theory is a
connection between the matter and the scalar and gravitational ˇelds ϕ and gμν

via some effective metrics g̃μν = A2(ϕ)gμν . In the paper [70], a scalarÄtensor
model of dark energy with a new degree of physical freedom has been consid-
ered. It is argued that the scalar ˇeld ϕ of graviton is responsible for the change
of gravitational one. ScalarÄtensor models of ordinary and phantom matter were
studied in [71]. Similar models for Bianchi type-I spaceÄtime were constructed
in [61]. In that paper dynamical behavior of metric functions was described for
three different interactions.

2.10. Models with Tachyon Matter. The idea of tachyon is not new, and
after a series of works [171, 172] the tachyon models found their application in
cosmology. They were not observed experimentally and a few of them, rolling
tachyon, for example, posses a very interesting equation of state, where the
tachyon parameters exhibit smooth variations within the interval (−1, 0). This
very fact makes the tachyon one of the candidates for dark energy [35, 45, 174,
175,180]. There are a number of tachyon dark energy models. One of the most
effective models was proposed in [169]. It is deˇned by using cosmological
diagnostic pairs (r, s) called the stateˇnders:

r =
∂3a/∂t3

aH3
, s =

r − 1
3(q − 1/2)

, (2.10)

where q is the deceleration parameter, and a is the scale factor of FRW spaceÄtime.
Since different cosmological models related to the dark energy yield qualitatively
different trajectories on the r − s plane, the proposed diagnostics can help to
distinguish between these models.

2.11. Quintom Models of Dark Energy. In order to understand the behavior
of dark energy state equation (2.2) with w > −1 in the past and with w < −1 at
present, quintom model of dark energy was proposed [63]. Quintom model is a
dynamic model of dark energy and compared to the other models of dark energy
it deˇnes the cosmic evolution in a different way. One of the characteristics of
quintom model is the fact that its equation of state can smoothly pass the value
of w = −1 [30]. In contrast to (2.2), where w is a constant, in quintom model it
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depends on time and can be given by the EoS

w(t) = −r − s

t2
, (2.11)

where r and s are some parameters. Many authors have used quintom model in
order to generate a bouncing Universe. Spinor description of quintom model was
given in [31].

2.12. The WeylÄEddingtonÄEinstein Afˇne Gravity. Recently the WeylÄ
EddingtonÄEinstein afˇne gravity proposed by Weyl [199], Eddington [52, 53],
and Einstein [56, 57] was further developed by Filippov and coauthors [47, 65Ä
67]. In these papers the authors, based on the ideas of Weyl, Eddington, and
Einstein, proposed an afˇne theory of gravity for D-dimensional spaceÄtime
with symmetric connections. It was shown that such a theory can predict dark
energy (the cosmological constant as a ˇrst approximation), a neutral massive
(or tachyonic) vector ˇeld, and massive (or tachyonic) scalar ˇelds. It was also
shown that these ˇelds couple only to gravity and may generate dark matter
and/or in�aton. Further details of the theory, such as the nature of the scalar and
vector ˇelds, can describe massive particle, tachyon and phantom, depending on
the concrete choice of the geometric Lagrangian.

2.13. EoS Parameter as Dark Energy. In addition to the models mentioned
above recently attempt to describe dark energy by using a time-dependent para-
meter of equation of state [4, 5, 114, 115, 153, 166, 201] has been taken. In some
of these models, it is assumed that the deceleration parameter is a constant. This
yields two types of solutions Å one of which is in the form of power function;
while the second, exponential. These solutions describe the expanding nonsin-
gular and singular Universes, respectively. The range of values for the equation
of state w in both cases is in good agreement with recent observational data,
namely: (i) SNe Ia data in 2003 [93], (ii) SNe Ia data collaborated with CMBR
anisotropy and galaxy clustering statistics in 2004 [185], and (iii) a combination
of cosmological datasets coming from CMB anisotropies, luminosity distances of
high red-shift-type Ia supernovae and galaxy clustering 2009 [82,94].

2.14. Models with Spinor Field. Recently, cosmological models with spinor
ˇeld are widely studied by various authors [6,127,128,154,159,160,190]. One of
the main objectives of [127,128,154,159,160] was to ˇnd regular solutions of the
equations. In some cases, especially in the presence of a negative cosmological
constant (Λ-term), which plays the role of the additional gravitational ˇeld, we
were able to obtain regular solutions. It was also found that the introduction of
a nonlinear spinor ˇeld leads to a rapid expansion of the Universe. This very
fact allows us to consider the spinor ˇeld as a possible candidate for explaining
the accelerated expansion phase. In connection with this, there appear a number
of works [119, 139Ä141], where the spinor ˇeld is considered as an alternative
model of dark energy.
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Thus, it can be concluded that a suitable choice of spinor ˇeld nonlinearity
(i) accelerates the isotropization process [128,131,154];
(ii) gives rise to a singularity-free Universe [128,129,131,154];
(iii) generates late-time acceleration [119,139Ä142,179].
Given the role that spinor ˇeld can play in the evolution of the Universe,

question that naturally pops up is: if the spinor ˇeld can redraw the picture of
evolution caused by perfect �uid and dark energy, then is it possible to simulate
perfect �uid and dark energy by means of a spinor ˇeld? Afˇrmative answer to
this question was given in a number of papers [95, 143Ä146]. In those papers,
the authors have shown that different types of perfect �uid and dark energy can
be described by nonlinear spinor ˇeld.

In [143], two types of nonlinearity were used, one occurs as a result of self-
action and the other resulted from the interaction between the spinor and scalar
ˇelds. It was shown that the case with induced nonlinearity is the partial one
and can be derived from the case with self-action. The description of generalized
Chaplygin gas and modiˇed quintessence in terms of spinor ˇeld and the study of
the evolution of the Universe ˇlled with nonlinear spinor ˇeld within the scope
of a Bianchi type-I and FRW cosmological model were given in [144Ä146].

It was found that the spinor ˇeld Lagrangian

Lsp =
i

2
[
Ψγμ∇μΨ −∇μΨ̄γμΨ

]
− νS1+W (2.12)

simulates various types of matter depending on the value of W , namely:

W = 0 (dust), (2.13a)

W = 1/3 (radiation), (2.13b)

W ∈ (1/3, 1) (hard Universe), (2.13c)

W = 1, (stiff matter), (2.13d)

W ∈ (−1/3, −1) (quintessence), (2.13e)

W = −1 (cosmological constant), (2.13f)

W < −1 (phantom matter), (2.13g)

W > 1 (ekpyrotic matter). (2.13h)

Spinor ˇeld Lagrangian that describes a Chaplygin gas is given by (2.5).
In account of it the spinor ˇeld Lagrangian now reads

Lsp =
i

2
[
Ψγμ∇μΨ −∇μΨ̄γμΨ

]
− (A + λK(1+γ)/2)1/(1+γ). (2.14)

In Figs. 5 and 6 the evolution of the Universe caused by the spinor ˇeld given
by (2.12) and (2.14) is illustrated.
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Fig. 5. Evolution of the Universe ˇlled
with dark energy

Fig. 6. Evolution of the Universe ˇlled
with perfect �uid

It should be noted that the speciˇc behavior of spinor ˇeld in curve spaceÄ
time with the exception of FRW model almost always gives rise to nontrivial
nondiagonal components of the energyÄmomentum tensor. This nontriviality of
nondiagonal components of the energyÄmomentum tensor imposes some severe
restrictions either on the spinor ˇeld or on the metric functions. Within the BI
spaceÄtime it is found that there exist two possibilities [151,152]. In one scenario,
the initially anisotropic Universe evolves into an isotropic one asymptotically, but
in this case the spinor ˇeld itself undergoes some severe restrictions. In the second
scenario, the isotropization takes places almost at the beginning of the process.

3. COSMOLOGICAL MODELS

One of the principal goals of cosmological models is to describe the different
phases of evolution of the Universe. The ˇrst epoch is that of rapid expansion
of the Universe, also known as in�ationary period. Most of the theories describe
this phase by means of a scalar ˇeld related to the hypothetic in�aton. The next
phase corresponds to the deceleration when the matter and radiation dominate
over the scalar ˇeld. The present era is characterized by the accelerated mode of
expansion where dark matter and dark energy play the dominating role. By this
acceleration we understand the acceleration that we observe at present time.

Cosmological models, considered in literature, can be divided in a few
groups [104].

3.1. Spatially Homogeneous and Isotropic Models. The simplest models of
expanding Universe are the spatially homogeneous and isotropic ones. These are
FriedmannÄLemiterÄRobertsonÄWalker (FLRW) models and the Standard Model.
These models were ˇrst studied by Friedmann [68], Robertson [122, 123], and
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Walker [194]. Though the spatially homogeneous and isotropic FLRW models
are widely used as a good approximation of present and early stages of evolu-
tion of the Universe, the large-scale distribution of matter in the observational
Universe, mainly presented in the form of discrete structure, does not show the
homogeneousness in higher order. Contrary to that, the cosmic microwave back-
ground radiation is signiˇcantly homogeneous. In the de Cartesian coordinates
this distribution is given by

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2], (3.1)

where a(t) is the scale factor. The most used version of this model is given by
spherical coordinates and takes the form

ds2 = dt2 − R2(t)
[

dr2

1 − kr2
+ r2(dθ2 + sin2(θ) dφ2)

]
, (3.2)

where R(t) is some unknown function of time, and k is some constant, taking
the value +1, 0,−1. For k = −1 or k = 0 the space comes out to be inˇnity
(open). For k = 0 the space is �at, while k = +1 space is ˇnite (closed), though
not limited.

3.2. Spatially Homogeneous and Anisotropic Models. Experimental studies
of the isotropy of the cosmic microwave background radiation and re�ection of
the amount of helium formed in the initial stages of the evolution of the Universe,
stimulated theoretical study of anisotropic cosmological models. At present stage
of evolution, the Universe is spherically symmetric and the distribution of matter
in it is generally isotropic and homogeneous. But in the early stages of evolution,
the picture might not be as smooth as near the Big Bang singularity, the assump-
tion of spherical symmetry, as well as that of isotropy could not be strictly valid.
The anisotropy of the cosmic expansion, which is supposed to disappear with
time, is a very important quantity. Recent experimental data as well as theoretical
arguments support the existence of anisotropic expansion phase, which evolves
into an isotropic one. This very fact forces one to study evolution of the Universe
with the anisotropic background.

Cosmologists use the term to describe the uneven temperature distribution of
the cosmic microwave background radiation. There is evidence for the so-called
Axis of Evil in the early Universe that is at odds with the currently favored theory
of rapid expansion after the Big Bang. Cosmic anisotropy has also been seen in
the alignment of the galaxies' rotation axes and polarization angles of quasars.

In Fig. 3.2, the cosmic microwave temperature �uctuations from the 5-year
WMAP data are seen over the full sky. The average temperature is 2.725 K, and
the colors represent the tiny temperature �uctuations, as in a weather map. Red
regions are warmer and blue regions are colder by about 0.0002 K.
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Fig. 7 (color online). The 5-year WMAP image of background cosmic radiation (2010)
(Credit NASA/WMAP Science Team; http://www.gsfc.nasa.gov)

Fig. 8. The 5-year WMAP image of background cosmic radiation (2010) (Credit
NASA/WMAP Science Team; http://www.gsfc.nasa.gov)

Figure 8 illustrates how much the temperature �uctuates on different angular
sizes in the map of Fig. 3.2. Very large angles are on the left, and smaller angles
are on the right. Note that there is the large ˇrst peak, illustrating a preferred spot
size in the map. This means that there is a preferred length for the sound waves
in the early Universe, just as a guitar string length produces a speciˇc note. The
second and third peaks are the harmonic overtones of the ˇrst peak. The third
overtone is now clearly captured in the new 5-year WMAP data. It helps provide
evidence for the proportion of neutrinos in the early Universe.

The ˇrst anisotropic model to study the realistic cosmological problems was
used by Lemaitre [99]. The aim of his work was to clarify whether the Big Bang
singularity, that appears in the FRW model, is simply the consequence of the pro-
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posed symmetry. By the end of 1960s, three different paradigms of astrophysical
studies deˇned the interest towards homogeneous but anisotropic models [188]:
discussing the probability of a primordial magnetic ˇeld Zel'dovich [208] and
Thorne [187] considered the anisotropic models; studying the factors that can
affect the quantity of primordial helium in the Bing Bang cosmology, Hawking
and Tayler [81] considered the anisotropic models; Kristian and Sachs [97], as
well as Kantowski and Sachs [92], considered the anisotropic models in order to
study the degree of isotropy of our Universe. Zel'dovich was the ˇrst to propose
that the early isotropization process of cosmic expansion could occur as a result
of quantum effect of particle creation near singularity [209]. This assumption
was farther supported by different authors [84,85,103].

Here we give a short description of Bianchi models as well as a few others.
The ˇrst group of Bianchi models can be given by [129,130]

ds2 = dt2 − a2
1 e−2m1z dx2 − a2

2 e2m2z dy2 − a2
3 dz2, (3.3)

with a1, a2, a3 being the functions of time only. Here m, n are some arbitrary
constants and the velocity of light is taken to be unity. The metric (3.3) is known
as Bianchi type-VI model. A suitable choice of m1, m2 as well as of the metric
functions a1, a2, a3 in the BVI given by (3.3) evokes the following Bianchi-type
Universes. Thus

• for m1 = m2, the BVI metric transforms to a Bianchi-type VI0 (BVI0)
one, i.e., m1 = m2, BVI=⇒BVI0 ∈ open FRW with the line elements

ds2 = dt2 − a2
1 e−2m1z dx2 − a2

2 e2m1z dy2 − a2
3 dz2; (3.4)

• for m1 = −m2, the BVI metric transforms to a Bianchi-type V (BV) one,
i.e., m1 = −m2, BVI=⇒BV ∈ open FRW with the line elements

ds2 = dt2 − a2
1 e2m1z dx2 − a2

2 e2m1z dy2 − a2
3 dz2; (3.5)

• for m2 = 0, the BVI metric transforms to a Bianchi-type III (BIII) one,
i.e., m2 = 0, BVI=⇒BIII with the line elements

ds2 = dt2 − a2
1 e−2m1z dx2 − a2

2 dy2 − a2
3 dz2; (3.6)

• for m1 = m2 = 0, the BVI metric transforms to a Bianchi-type I (BI) one,
i.e., m1 = m2 = 0, BVI=⇒BI with the line elements

ds2 = dt2 − a2
1 dx2 − a2

2 dy2 − a2
3 dz2; (3.7)

• for m1 = m2 = 0 and equal scale factor in all three directions, the
BVI metric transforms to a FriedmannÄRobertsonÄWalker (FRW) Universe, i.e.,
m1 = m2 = 0 and a = b = c, BVI =⇒ FRW with the line elements

ds2 = dt2 − a2(dx2 + dy2 + dz2). (3.8)
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The anisotropic nondiagonal Bianchi spaceÄtimes take the form [147,148]

ds2 = dt2 − a2
1(t) dx2

1 −
[
h2(x3)a2

1(t) + f2(x3)a2
2(t)

]
dx2

2−
− a2

3(t) dx2
3 + 2a2

1(t)h(x3) dx1 dx2, (3.9)

with a1, a2, a3 being the functions of t; and h, f , functions of x3 only. Deˇning

δ = − 1
f

∂2f

∂x2
3

(3.10)

from (3.9) we ˇnd BII, BVIII, and BIX models, respectively, as follows:

δ = 0 corresponds to BII model, (3.11a)

δ = −1 corresponds to BVIII model, (3.11b)

δ = 1 corresponds to BIX model. (3.11c)

The KantowskiÄSachs models can be deˇned as [83]

ds2 = −dτ2 − H(τ) dr2 − R2(τ)(dθ2 + sin2(θ) dφ2), (3.12)

where τ is cosmological time.
3.3. Isotropic but Spatially Inhomogeneous Models. These are the spheri-

cally symmetric models of TolmanÄBondi, which were ˇrst discussed by
Lemaitre [99]. In general, the spherically symmetric metric takes the form

ds2 = Y 2
[(

dθ2 + sin2(θ)dφ2
)]

+ e2λdr2 − e2νdt2, (3.13)

where Y = Y (r, t), λ = λ(r, t), and ν = ν(r, t).
The TolmanÄBondi metric is given by [72]

ds2 = −dt2 +
Y ′2

1 − kr2
dr2 + Y 2

(
dθ2 + sin2(θ) dφ2

)
, (3.14)

where Y = Y (r, t). Here stroke denotes differentiation with respect to r. The
indices k = 0, ±1 correspond to �at, closed, and open geometry.

3.4. Models with Two Ignorable Coordinates. Models with two ignorable
coordinates usually have two commuting Killing vectors. It might be plane-
symmetric or cylindrically-symmetric models. The plane-symmetric models are
given by [162Ä164,183,184]

ds2 = e2χdt2 − e2α dx2 − e2β(dy2 + dz2), (3.15)

where the velocity of light c is taken to be unity, and χ, α, β are the functions
of x and t.
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The cylindrically-symmetric models take the form [29,126,176]

ds2 = e2γdt2 − e2αdx2 − e2βdy2 − e2μdz2, (3.16)

where the metric functions depend on x only. Sometimes, it is convenient to use
the harmonic coordinates, satisfying the coordinate condition

α = γ + β + μ. (3.17)

In the sections to follow, we consider the dark energy models within the
scope of different Bianchi models as well as FRW one. In doing so, we only
consider the cases, when the energyÄmomentum tensor has only nontrivial diag-
onal elements, i.e.,

T β
α = diag [T 0

0 , T 1
1 , T 2

2 , T 3
3 ]. (3.18)

4. BIANCHI TYPE-VI MODELS
WITH A VARIABLE DECELERATION PARAMETER

A Bianchi type-VI model describes an anisotropic but homogeneous Universe.
This model was studied by several authors [87,129,130,165,178,195,207], spe-
cially due to the existence of magnetic ˇelds in galaxies, which was proved by a
number of astrophysical observations. A spinor description of dark energy within
the scope of a BVI model was given in [146].

Bianchi type-VI model is given by [129,130]

ds2 = dt2 − a2
1 e−2m1z dx2 − a2

2 e2m2z dy2 − a2
3 dz2, (4.1)

with a1, a2, a3 being the functions of time only. Here m, n are some arbitrary
constants and the velocity of light is taken to be unity. The metric (4.1) is known
as Bianchi type-VI model. A suitable choice of m, n as well as of the metric
functions a1, a2, a3 in the BVI given by (4.1) evokes Bianchi-type VI0, V, III, I
and FRW Universes.

The Einstein ˇeld equations for the metric (4.1) on account of (3.18) have
the form [129]

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
− m2

2

a2
3

= κT 1
1 , (4.2a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
− m2

1

a2
3

= κT 2
2 , (4.2b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
+

m1m2

a2
3

= κT 3
3 , (4.2c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
− m2

1 − m1m2 + m2
2

a2
3

= κT 0
0 , (4.2d)

m1
ȧ1

a1
− m2

ȧ2

a2
− (m1 − m2)

ȧ3

a3
= 0. (4.2e)
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We deˇne the spatial volume of the model (4.1) as

V = a1a2a3, (4.3)

and the average scale factor as

a = V 1/3 = (a1a2a3)1/3. (4.4)

Let us now ˇnd expansion and shear for BVI metric. The expansion is
given by

ϑ = uμ
;μ = uμ

μ + Γμ
μαuα, (4.5)

and the shear is given by

σ2 =
1
2
σμνσμν , (4.6)

with

σμν =
1
2
[
uμ;αPα

ν + uν;αPα
μ

]
− 1

3
ϑPμν , (4.7)

where the projection vector P is

P 2 = P, Pμν = gμν − uμuν, Pμ
ν = δμ

ν − uμuν . (4.8)

In comoving system we have uμ = (1, 0, 0, 0). In this case one ˇnds

ϑ =
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
=

V̇

V
(4.9)

and

σ1
1 = −1

3

(
−2

ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
=

ȧ1

a1
− 1

3
ϑ, (4.10)

σ2
2 = −1

3

(
−2

ȧ2

a2
+

ȧ3

a3
+

ȧ1

a1

)
=

ȧ2

a2
− 1

3
ϑ, (4.11)

σ3
3 = −1

3

(
−2

ȧ3

a3
+

ȧ1

a1
+

ȧ2

a2

)
=

ȧ3

a3
− 1

3
ϑ. (4.12)

One then ˇnds

σ2 =
1
2

[
3∑

i=1

(
ȧi

ai

)2

− 1
3
ϑ2

]
=

1
2

[
3∑

i=1

H2
i − 1

3
ϑ2

]
. (4.13)

As one sees, neither the expansion nor the components of shear tensor depend
on m or n, hence the Bianchi cosmological models of type VI, VI0, V, III, and
I have the same expansion and shear tensor.

The Hubble constant of the model is deˇned by

H =
ȧ

a
=

1
3

(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
=

1
3

V̇

V
. (4.14)
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The deceleration parameter q and the average anisotropy parameter Am are de-
ˇned by

q = −aä

ȧ2
= 2 − 3

V V̈

V̇ 2
, (4.15)

Am =
1
3

3∑
i=1

(
Hi

H
− 1

)2

, (4.16)

where Hi are the directional Hubble constants:

H1 =
ȧ1

a1
, H2 =

ȧ2

a2
, H3 =

ȧ3

a3
. (4.17)

Note that, none of the above-deˇned quantities depends on m or n, hence it
will be valid not only for BVI, but also for BVI0, BV, BIII, and BI.

4.1. Solution to the Field Equations. From (4.2e) immediately follows(
a1

a3

)m1

= k1

(
a2

a3

)m2

, k1 = const. (4.18)

We also impose to use the proportionality condition, widely used in literature,
demanding that the expansion is proportion to a component of the shear tensor,
namely:

ϑ = N3σ
3
3 . (4.19)

The motivation behind assuming this condition is explained with reference to
Thorne [188], the observations of the velocity-red-shift relation for extragalactic
sources suggest that Hubble expansion of the Universe is isotropic today within
≈ 30% [92,97]. To put more precisely, red-shift studies place the limit

σ

H
� 0.3 (4.20)

on the ratio of shear σ to Hubble constant H in the neighborhood of our Galaxy
today. Collins et al. (1980) have pointed out that for spatially homogeneous
metric, the normal congruence to the homogeneous expansion satisˇes that the
condition σ/θ is constant.

On account of (4.9) and (4.12) we ˇnd

a3 = N0V
1
3+ 1

N3 , N0 = const. (4.21)

In view of (4.3) and (4.21) from (4.18) we ˇnd [149]

a1 = k
1

m1+m2
1 N

m1−2m2
m1+m2

0 V
1
3+

m1−2m2
3N3(m1+m2) , (4.22)

a2 = k
− 1

m1+m2
1 N

m2−2m1
m1+m2

0 V
1
3 +

m2−2m1
3N3(m1+m2) . (4.23)
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Thus, we have derived metric functions in terms of V . In order to ˇnd the
equation for V , we take the following steps. Subtractions of (4.2a) from (4.2b),
(4.2c) from (4.2c), and (4.2c) from (4.2a) on account of (4.22), (4.23)
and (4.21) give

V̈

V
− N3(m1 + m2)2

3N2
0 V 2/3+2/N3

= κ
T 2

2 − T 1
1

X12
, (4.24a)

V̈

V
− N3(m1 + m2)2

3N2
0 V 2/3+2/N3

= κ
T 3

3 − T 2
2

X23
, (4.24b)

V̈

V
− N3(m1 + m2)2

3N2
0 V 2/3+2/N3

= κ
T 1

1 − T 3
3

X31
, (4.24c)

where X12 = 3(m1 − m2)/N3(m1 + m2), X23 = −3m1/N3(m1 + m2), and
X31 = 3n2/N3(m1 + m2). From (4.24) immediately follows

T 2
2 − T 1

1

X12
=

T 3
3 − T 2

2

X23
=

T 1
1 − T 3

3

X31
. (4.25)

After a little manipulation, it could be established that

T 1
1 = T 2

2 = T 3
3 ≡ −p. (4.26)

Thus we conclude that under the proportionality condition, the energy-mo-
mentum distribution of the model should be strictly isotropic. Let us now go

Fig. 9. Evolution of the Universe given
by a BVI cosmological model

back to the equation for V that now reads

V̈ − A0V
(N3−6)/3N3 = 0,

(4.27)

A0 =
N3(m1 + m2)2

3N2
0

,

which allows the solution in quadrature∫
dV√

A1V (4N3−6)/3N3 + C0

= t + t0,

(4.28)

A1 =
3N3A0

(2N3 − 3)
, t0 = const.

Thus we have the solution to the cor-
responding equation in quadrature. The
system was further studied numerically.
In doing so, we have used the following

values for the problem parameters: κ = 1, N0 = 0.01, C0 = −1, N3 = 3,
m1 = 0.1, m2 = 0.3, V (0) = 1.0E − 6 and V̇ (0) = 0.

Figure 9 shows the evolution of the Universe. As one sees, it is an expand-
ing one.
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4.2. Physical Aspects of Dark Energy Model. Let us now ˇnd the expres-
sions for physical quantities.

Inserting (4.28) into (4.14) and (4.15) one ˇnds the expression for expansion
ϑ, Hubble parameter H :

ϑ = 3H =
√

A1V −(2N3+6)/3N3 + C0/V 2, (4.29)

and deceleration parameter

q = 2 − 3A0V
−(2N3+6)/3N3

A1V −(2N3+6)/3N3 + C0/V 2
. (4.30)

The anisotropy parameter Am has the expression

Am =
54(m2

1 − m1m2 + m2
2)

N2
3 (m1 + m2)2

. (4.31)

The directional Hubble parameters are

H1 =
[
1
3
− 2m2 − m1

N3(m1 + m2)

]
V̇

V
,

(4.32)

H2 =
[
1
3
− 2m1 − m2

N3(m1 + m2)

]
V̇

V
, H3 =

[
1
3

+
1

N3

]
V̇

V
.

Figures 10 and 11 show the behavior of the Hubble parameter and decel-
eration parameter, respectively. It should be noted that we have conˇned to
that interval of time, which shows the most interesting behavior of the physical
quantities in question.

Fig. 10. Evolution of the Hubble parameter Fig. 11. Evolution of the deceleration pa-
rameter
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From (4.2d) we ˇnd the expression for energy density

ε = T 0
0 =

1
κ

[
X1V

−2 − X2V
−(2N3+6)/3N3

]
, (4.33)

where

X1 =
[
1
3
− 3

m2
1 − m1m2 + m2

2

N2
3 (m1 + m2)2

]
C0, X2 =

m2
1 − m1m2 + m2

2

N2
0

− X1A1

C0
.

Further we obtain

ω =
p

ε
= −X1 − X4V

(4N3−6)/3N3

X1 − X2V (4N3−6)/3N3
, (4.34)

where

X4 =
2N3 − 3

3N3
A0 +

m1m2

N2
0

− X1A1

C0
.

Figures 12 and 13 show the behavior of the energy density and EoS parameter,
respectively. As we see, energy density is a decreasing function of time, while
the EoS parameter changes its sign.

Fig. 12. Evolution of the energy density Fig. 13. Evolution of the EoS parameter

From equation (4.34), it is observed that the equation of state parameter ω is
time-dependent, it can be a function of red-shift z or scale factor a as well. The
red-shift dependence of ω can be linear-like

ω(z) = ω0 + ω′z, (4.35)
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with ω′ =
dω

dz

∣∣∣
z=0

(see [86,198] or nonlinear as [38,100]

ω(z) = ω0 +
ω1z

1 + z
. (4.36)

So, as far as the scale factor dependence of ω is concerned, the parameterization

ω(a) = ω0 + ωa(1 − a), (4.37)

where ω0 is the present value (a = 1) and ωa is the measure of the time variation
ω′, is widely used in the literature [102].

So, if the present work is compared with experimental results obtained in [82,
93,94,186], then one can conclude that the limit of ω provided by equation (4.34)
may accommodate with the acceptable range of EoS parameter. Also it is observed
that for V = Vc, ω vanishes, where Vc is a critical volume given by

Vc =
(

X1

X4

)3N3/(4N3−6)

. (4.38)

Thus, for this particular volume, our model represents a dusty Universe. We also
note that the earlier real matter at V � Vc, where ω � 0, later on at V > Vc,
where ω < 0, is converted to the dark energy dominated phase of Universe.

For the value of ω to be consistent with observation [93], we have the
following general condition:

V1 < V < V2, (4.39)

where

V1 =
(

X1 + 1.67X1

X4 + 1.67X2

)3N3/(4N3−6)

(4.40)

and

V2 =
(

X1 + 0.62X1

X4 + 0.62X2

)3N3/(4N3−6)

. (4.41)

For this constraint, we obtain −1.67 < ω < −0.62, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [93].

For the value of ω to be consistent with observation [186], we have the
following general condition:

V3 < V < V4, (4.42)

where

V3 =
(

X1 + 1.33X1

X4 + 1.33X2

)3N3/(4N3−6)

, (4.43)
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and

V4 =
(

X1 + 0.79X1

X4 + 0.79X2

)3N3/(4N3−6)

. (4.44)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [186].

For the value of ω to be consistent with observation [82, 94], we have the
following general condition:

V5 < V < V6, (4.45)

where

V5 =
(

X1 + 1.44X1

X4 + 1.44X2

)3N3/(4N3−6)

(4.46)

and

V6 =
(

X1 + 0.92X1

X4 + 0.92X2

)3N3/(4N3−6)

. (4.47)

For this constraint, we obtain −1.44 < ω < −0.92, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [82,94].

We also observed that if

V0 =
(

2X1

X4 + X2

)3N3/(4N3−6)

, (4.48)

then for V = V0 we have ω = −1, i.e., we have Universe with cosmological
constant. If V < V0, then we have ω > −1 that corresponds to quintessence,
while for V > V0 we have ω < −1, i.e., Universe with phantom matter [33].

From (4.33) we found that the energy density is a decreasing function of time
and ε � 0 when

V �
(

X1

X2

)3N3/(4N3−6)

. (4.49)

In absence of any curvature, matter energy density Ωm and dark energy
density ΩΛ are related by the equation

Ωm + ΩΛ =
ε

3H2
+

Λ
3H2

= 1. (4.50)

Inserting (4.29) and (4.33) into (4.50) we ˇnd the cosmological constant as

Λ =
[
3C2

0 −
(

X1

κ

)]
V −2 +

[
3A1 −

X2

κ

]
V −2(N3+3)/3N3 . (4.51)
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As we see, the cosmological function is a decreasing function of time and it is
always positive when

V �
(

X1/κ − 3C0

3A1 − X2/κ

)3N3/(4N3−6)

. (4.52)

Recent cosmological observations suggest the existence of a positive cosmo-
logical constant Λ with the magnitude Λ(G�/c3) ≈ 10−123. These observations
on magnitude and red-shift of type Ia supernova suggest that our Universe may be
an accelerating one with induced cosmological density through the cosmological
Λ-term. Thus, the nature of Λ in our derived DE model is supported by recent
observations. Figure 14 shows the evolution of the cosmological constant. As is
seen, it is a decreasing function of time.

For the stability of corresponding solutions, we should check that our models
are physically acceptable. For this, the velocity of sound is less than that of
light, i.e.,

0 � vs =
dp

dε
< 1. (4.53)

In this case, we ˇnd

vs =
dp

dε
= −X1 − [(N3 + 3)X4/3N3]V (4N3−6)/3N3

X1 − [(N3 + 3)X2/3N3]V (4N3−6)/3N3
. (4.54)

Fig. 14. Evolution of the cosmological
constant

Fig. 15. Speed of sound with respect to
cosmic time

Figure 15 shows the behavior of the velocity of sound vs in time. As one sees,
there are regions, where the solution is stable. Choosing the problem parameters,
such as m1, m2, N3 we can obtain the stable solutions.
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5. BIANCHI TYPE-VI0 MODELS WITH A VARIABLE EoS

A Bianchi type-VI0 spaceÄtime, describes an anisotropic spaceÄtime and
generates particular interest among physicists. Weaver [196], Ib�aænez et al. [87],
Socorro and Medina [178], and Bali et al. [8] have studied B-VI0 spaceÄtime in
connection with massive strings. Recently, Belinchon [14] studied several cos-
mological models with B-VI0 & III symmetries under the self-similar approach.
Given the growing interest of cosmologists, here we study the evolution of the
Universe within the framework of a B-VI0 cosmological model. It should be
noted that unlike B-I spaceÄtime in the case considered, the two of the three
metric functions are rigidly connected to each other. A spinor description of dark
energy within the scope of a BVI0 model was given in [146].

Let us now consider the Bianchi type-VI0 spaceÄtime given by (3.4). We
generalize the EoS parameter in the following way [4]:

T β
α = diag [ε, −px, −py, −pz],

= diag [1, −ωx, −ωy, −ωz]ε, (5.1)

= diag [1, −(ω + δ), −(ω + γ), −ω]ε.

It should be noted that cosmological evolution of matter sources with small
anisotropic pressures was studied in [9, 10].

Setting m1 = m2, we ˇnd the Einstein system of equations for BVI0. In
this case, as well as in those for BV and BIII, we have only one parameter m1

instead of two, i.e., m1 and m2. For simplicity, we set m1 = m. The Einstein
ˇeld equations then read

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
− m2

a2
3

= −κ(ω + δ)ε, (5.2a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
− m2

a2
3

= −κ(ω + γ)ε, (5.2b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
+

m2

a2
3

= −κωε, (5.2c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
− m2

a2
3

= κε, (5.2d)

ȧ1

a1
− ȧ2

a2
= 0. (5.2e)

5.1. Solution to the Field Equations. From (5.2e) immediately follows

a1 = �a2. (5.3)

Moreover, in view of (5.2e) from (5.2a) and (5.2b), one concludes that

δ = γ, (5.4)
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i.e., in case of a Bianchi type-VI0 given by (3.4), the nondiagonal component of
the Einstein ˇeld equation leads to

T 1
1 = T 2

2 , (5.5)

allowing an anisotropic distribution of matter.
The system (5.2) now reduces to

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
− m2

a2
3

= −κ(ω + γ)ε, (5.6a)

2
ä2

a2
+

ȧ2
2

a2
2

+
m2

a2
3

= −κωε, (5.6b)

ȧ2
2

a2
2

+ 2
ȧ2

a2

ȧ3

a3
− m2

a2
3

= κε. (5.6c)

Thus we now have three linearly independent equations with ˇve unknowns,
namely a2, a3, ω, ε, and γ. Two additional constraints relating these parameters
are required to obtain explicit solutions of the system.

Firstly, we apply the law of variation for Hubble parameter given by [20]
which yields a constant value of deceleration parameter. Here, the law reads as

H = Da−n = DV −n/3, (5.7)

where D > 0 and n � 0 are constants. Such a type of relations have ˇrstly
been considered by [20, 21] for solving FRW models. Latter on, many authors
have used this law to study FRW and Bianchi-type models. In view of (4.14)
and (5.7), we ˇnd

V̇

V
= 3DV −n/3, (5.8)

with the solution

V = (nDt + C1)3/n, n �= 0, C1 = const. (5.9)

The value of deceleration parameter is found to be

q = n − 1, (5.10)

which is a constant. The sign of q indicates whether the model in�ates or not.
The positive sign of q, i.e., (n > 1), corresponds to ®standard¯ decelerating
model, whereas the negative sign of q, i.e., 0 � n < 1 indicates in�ation. It is
remarkable to mention here that though the current observations of SNe Ia and
CMBR favour accelerating models (q < 0), but both do not altogether rule out
the decelerating ones, which are also consistent with these observations [191].
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Fig. 16. Evolution of the Universe in
power-law expansion. The dashed line
corresponds to q > 0, while the dash-
dotted line corresponds to q < 0

Fig. 17. Evolution of the Hubble parame-
ter in power-law expansion. The dashed
line corresponds to q > 0, while the dash-
dotted line corresponds to q < 0

Figures 16 and 17 show the evolution of the Universe and the Hubble para-
meter for a positive and negative DP, respectively.

Secondly, we assume that the component σ3
3 of the shear tensor σj

i is
proportional to the expansion scalar (ϑ) given by (4.19). In this case we come to
the same conclusion as for BVI. Hence we ˇnd

a1 =
√

�

N0
(nDt + C1)(2N3−3)/2nN3 , (5.11a)

a2 =
√

1
�N0

(nDt + C1)(2N3−3)/2nN3 , (5.11b)

a3 = N0(nDt + C1)(N3+3)/nN3 . (5.11c)

5.2. Physical Aspects of Dark Energy Model. The directional Hubble para-
meters in this case have the form

H1 = H2 =
(2N3 − 3)D

2N3(nDt + C1)
=

(
1 − 3

2N3

)
H,

(5.12)

H3 =
(N3 + 3)D

N3(nDt + C1)
=

(
1 +

3
N3

)
H.

The expressions for the Hubble parameter H , scalar of expansion ϑ, shear
scalar σ, and the average anisotropy parameter Am for the model (5.11) are
given by

ϑ = 3H =
3D

nDt + C1
, (5.13)
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σ2 =
3
2

(
3D

N3

)2 1
(nDt + C1)2

, (5.14)

Am =
9

2N2
3

. (5.15)

From (5.6c) we ˇnd

ε =
(

X1

κ

)
(nDt + C1)−2 −

(
m2

κN2
0

)
(nDt + C1)−2(N3+3)/nN3 , (5.16)

where X1 = 3D2(4N2
3 −9)/4N2

3 . The EoS parameter ω can be found from (5.6b)
and (5.6c) as

ω =
X2(nDt + C1)−2 − (m2/N2

0 )(nDt + C1)−2(N3+3)/nN3

X1(nDt + C1)−2 − (m2/N2
0 )(nDt + C1)−2(N3+3)/nN3

, (5.17)

where X2 = D2(2N3 − 3)[4nN3 − 3(2N3 − 3)]/4N2
3 . The skewness parameters,

δ or γ, i.e., deviations of ω along x-axis and y-axis, are found to be

δ = γ = −X3(nDt + C1)−2 − 2(m2/N2
0 )(nDt + C1)−2(N3+3)/nN3

X1(nDt + C1)−2 − (m2/N2
0 )(nDt + C1)−2(N3+3)/nN3

, (5.18)

where X3 = 9D2(n − 6)/2N3.
Figures 18 and 19 show the evolution of the energy density and the EoS

parameter for a positive and negative DP, respectively. As was expected in the

Fig. 18. Evolution of the energy density
in power-law expansion. The dashed line
corresponds to q > 0, while the dash-
dotted line corresponds to q < 0

Fig. 19. Evolution of the EoS parameter
in power-law expansion. The dashed line
corresponds to q > 0, while the dash-
dotted line corresponds to q < 0
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case of a negative DP, the expansion of the Universe is rather rapid. In this
section, we set the following values for the parameters: D = 1, C1 = 1, N3 = 6,
m = 1, N0 = 1, κ = 1, n = 1.1 (for q > 0) and n = 0.5 (for q < 0).

So, if the present work is compared with experimental results obtained in [82,
93,94,186], then one can conclude that the limit of ω provided by equation (5.17)
may accommodated with the acceptable range of EoS parameter. Also it is
observed that at t = tc, ω vanishes, where tc is a critical time given by

tc =
1

nD

[(
X2N

2
0

m2

)nN3/2(n−N3−3)

− C1

]
. (5.19)

Thus, for this particular time, our model represents a dusty Universe. We also
note that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where
ω < 0, converted to the dark energy dominated phase of Universe.

For the value of ω to be consistent with observation [93], we have the
following general condition:

t1 < t < t2, (5.20)

where

t1 =
1

nD

[(
N2

0 (X2 + 1.67X1)
2.67m2

)nN3/2(n−N3−3)

− C1

]
(5.21)

and

t2 =
1

nD

[(
N2

0 (X2 + 0.62X1)
1.62m2

)nN3/2(n−N3−3)

− C1

]
. (5.22)

For this constraint, we obtain −1.67 < ω < −0.62, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data [93].

For the value of ω to be consistent with observation [186], we have the
following general condition:

t3 < t < t4, (5.23)

where

t3 =
1

nD

[(
N2

0 (X2 + 1.33X1)
2.33m2

)nN3/2(n−N3−3)

− C1

]
(5.24)

and

t4 =
1

nD

[(
N2

0 (X2 + 0.79X1)
1.79m2

)nN3/2(n−N3−3)

− C1

]
. (5.25)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [186].
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For the value of ω to be consistent with observation [82, 94], we have the
following general condition:

t5 < t < t6, (5.26)

where

t5 =
1

nD

[(
N2

0 (X2 + 1.44X1)
2.44m2

)nN3/2(n−N3−3)

− C1

]
(5.27)

and

t6 =
1

nD

[(
N2

0 (X2 + 0.92X1)
1.92m2

)nN3/2(n−N3−3)

− C1

]
. (5.28)

For this constraint, we obtain −1.44 < ω < −0.92, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [82,94].

We also observed that if

t0 =
1

nD

[(
N2

0 (X2 + X1)
2m2

)nN3/2(n−N3−3)

− C1

]
, (5.29)

then for t = t0 we have ω = −1, i.e., we have Universe with cosmological
constant. If t < t0, then we have ω > −1 that corresponds to quintessence, while
for t > t0 we have ω > −1, i.e., Universe with phantom matter [33].

From (5.16) we found that the energy density is a decreasing function of time
and ε � 0 when

t � 1
nD

[(
N2

0 X1

m2

)nN3/2(n−N3−3)

− C1

]
. (5.30)

Inserting (5.13) and (5.16) into (4.50) we ˇnd the cosmological constant as

Λ =
[
3D2 −

(
X1

κ

)]
(nDt+C1)−2+

(
m2

κN2
0

)
(nDt+C1)−2(N3+3)/nN3 . (5.31)

As we see, the cosmological function is a decreasing function of time and it is
always positive when

t � 1
nD

[(
m2

N2
0 (X1 − 3κD2)

)nN3/2(N3+3−n)

− C1

]
. (5.32)

Recent cosmological observations suggest the existence of a positive cosmo-
logical constant Λ with the magnitude Λ(G�/c3) ≈ 10−123. These observations
on magnitude and red-shift of type Ia supernova suggest that our Universe may



618 SAHA B.

be an accelerating one with induced cosmological density through the cosmolog-
ical Λ-term. Thus, the nature of Λ in our derived DE model is supported by
recent observations.

The velocity of sound in this case is found to be

vs =
dp

dε
=

X2 − [m2(N3 + 3)/nN2
0N3](nDt + C1)2(n−N3−3)/nN3

X1 − [m2(N3 + 3)/nN2
0N3](nDt + C1)2(n−N3−3)/nN3

. (5.33)

Figures 20 and 21 show the evolution of the cosmological constant and the
sound velocity for a positive and negative DP, respectively.

Fig. 20. Evolution of the cosmological
constant in power-law expansion. The
dashed line corresponds to q > 0, while
the dash-dotted line corresponds to q < 0

Fig. 21. Evolution of the sound velocity
in power-law expansion. The dashed line
corresponds to q > 0, while the dash-
dotted line corresponds to q < 0

As one sees, cosmological constant remains the same for both positive and
negative DP. As far as sound velocity is concerned, in both cases the system
becomes stable at the later stage of the evolution.

6. BIANCHI TYPE-V SPACEÄTIME
WITH VARIABLE EoS PARAMETER

Let us now consider the case with Bianchi type-V spaceÄtime. Some
dark energy model within the scope of a BV cosmology was studied in [204].
Bianchi type-V spaceÄtime with variable EoS parameter was studied in [150].
A spinor description of dark energy within the scope of a BV model was given
in [146]. Bianchi type-V cosmological models in BransÄDicke theory were stu-
died in [36,39].
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Einstein ˇeld equations for the metric (3.5) on account of (3.18) have the
form [150]

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
− m2

a2
3

= κT 1
1 , (6.1a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
− m2

a2
3

= κT 2
2 , (6.1b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
− m2

a2
3

= κT 3
3 , (6.1c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
− 3

m2

a2
3

= κT 0
0 , (6.1d)

ȧ1

a1
+

ȧ2

a2
− 2

ȧ3

a3
= 0. (6.1e)

As we have already mentioned, the physically observable variables in this case
coincide with those of Bianchi type-VI model.

6.1. Solution to the Field Equations. From (6.1e) immediately follows

a1a2 = k1a
2
3, k1 = const. (6.2)

We also impose to use the proportionality condition, widely used in literature,
demanding that the expansion is proportion to a component of the shear tensor,
namely:

ϑ = N1σ
1
1 . (6.3)

On account of (4.9) and (4.12) we ˇnd

a1 = N0V
1
3+ 1

N1 , N0 = const. (6.4)

In view of (4.3) and (4.21) from (4.18) we ˇnd

a2 =
k

1/3
1

N0
V

1
3−

1
N1 , (6.5)

a3 =
1

k
1/3
1

V
1
3 . (6.6)

Thus, we have derived metric functions in terms of V . In order to ˇnd the
equation for V , we take the following steps. Subtractions of (6.1a) from (6.1b),
(6.1b) from (6.1c), and (6.1c) from (6.1a) on account of (6.4), (6.5) and (6.6) give

V̈

V
=

κN1

2
[T 2

2 − T 1
1 ], (6.7a)

V̈

V
= −κN1[T 3

3 − T 2
2 ], (6.7b)

V̈

V
= −κN1[T 1

1 − T 3
3 ]. (6.7c)
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From (4.24) immediately follows [150]

1
2
[T 2

2 − T 1
1 ] == [T 3

3 − T 2
2 ] == [T 1

1 − T 3
3 ]. (6.8)

After a little manipulation, it could be established that

T 1
1 + T 2

2 = 2T 3
3 . (6.9)

Hence, the energyÄmomentum tensor can be taken as

T β
α = diag [ε, −px, −py, −pz],

= diag [1, −ωx, −ωy, −ωz]ε, (6.10)

= diag [1, −(ω + δ), −(ω − δ), −ω]ε.

Thus we conclude that under the proportionality condition, the energyÄ
momentum distribution of the model should obey (6.8), and the matter distribution
in this case may be anisotropic.

As one sees, in order to ˇnd V we have to impose some additional condition.
Let us apply the law of variation for Hubble parameter given by (5.7) which yields
a constant value of deceleration parameter. In this case we ˇnd the expression
for V given by

V = (nDt + C1)3/n, n �= 0, C1 = const. (6.11)

In view of (6.11) for the metric functions, we ˇnd

a1 = N0(nDt + C1)(N1+3)/nN1 , (6.12a)

a2 =
k

1/3
1

N0
(nDt + C1)(N1−3)/nN1 , (6.12b)

a3 =
1

k
1/3
1

(nDt + C1)1/n. (6.12c)

The Universe in this case is an expanding one and coincides with that illus-
trated in Fig. 16.

6.2. Physical Aspects of Dark Energy Model. The DP in this case is a
constant and has the form given by (5.10). Directional Hubble parameters in
this case read

H1 =
(

1
3

+
1

N1

)
3D

nDt + C1
,

(6.13)

H2 =
(

1
3
− 1

N1

)
3D

nDt + C1
, H3 =

D

nDt + C1
.



ISOTROPIC AND ANISOTROPIC DARK ENERGY MODELS 621

In this case the expression for expansion ϑ and Hubble parameter H read

ϑ = 3H =
3D

nDt + C1
. (6.14)

The evolution of the Hubble parameter in this case is similar to that given
in Fig. 17. As one sees, it is a decreasing function of time.

The value of deceleration parameter is found to be

q = n − 1, (6.15)

and the anisotropy parameter Am has the expression

Am =
6

N2
1

. (6.16)

For energy density in this case we have

ε =
X1

(nDt + C1)2
− 3m2C2

1

(nDt + C1)2/n
, (6.17)

where X1 = 3D2(N2
1 − 3)/N2

1 ). The EoS parameter in this case has the form

ω =
X2/(nDt + C1)2 + m2C2

1/(nDt + C1)2/n

X1/(nDt + C1)2 − 3m2C2
1/(nDt + C1)2/n

, (6.18)

where X2 = X1 − 2D2(3 − n). From Eq. (6.18), it is observed that the equation
of state parameter ω is time-dependent.

The corresponding expressions were investigated numerically for the follow-
ing values of parameters: D = 1, C1 = 0.1, N1 = 2, m = 3, κ = 1, n = 2 (for
q > 0) and n = 0.4 (for q < 0).

Figure 22 shows the evolution of energy density for a positive and negative
DP, respectively. As one sees, for a positive DP, energy density is a decreasing
function of time, and beginning from some moment of time it may be negative
as well. Where as for a negative DP, it is an increasing function of time, which
is a negative one at the initial stage of evolution.

Figure 23 shows the evolution of the EoS parameter. As one sees, it is a time
varying function and changes its sign in the course of evolution.

Let us now compare our results with the experimental results obtained in [82,
93, 94, 186]. It enables us to conclude that the limit of ω provided by Eq. (6.18)
may accommodated with the acceptable range of EoS parameter. Also it is
observed that at t = tc, ω vanishes, where tc is a critical time given by

tc =
1

nD

[(
X2

m2C2
1

)n/2(n−1)

− C1

]
. (6.19)
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Fig. 22. Evolution of energy density. The
dashed line corresponds to q > 0, while
the dash-dotted line corresponds to q < 0

Fig. 23. Evolution of the EoS parameter.
The dashed line corresponds to q > 0, while
the dash-dotted line corresponds to q < 0

Thus, for this particular time, our model represents a dusty Universe. We also
note that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where
ω < 0, is converted to the dark energy dominated phase of Universe.

For the value of ω to be consistent with observation [93], we have the
following general condition:

t1 < t < t2, (6.20)

where

t1 =
1

nD

[(
X2 + 1.67X1

−4.01m2C2
1

)n/2(n−1)

− C1

]
(6.21)

and

t1 =
1

nD

[(
X2 + 0.62X1

−0.86m2C2
1

)n/2(n−1)

− C1

]
. (6.22)

For this constraint, we obtain −1.67 < ω < −0.62, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [93].

For the value of ω to be consistent with observation [186], we have the
following general condition:

t3 < t < t4, (6.23)

where

t1 =
1

nD

[(
X2 + 1.33X1

−2.99m2C2
1

)n/2(n−1)

− C1

]
(6.24)
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and

t1 =
1

nD

[(
X2 + 0.79X1

−1.37m2C2
1

)n/2(n−1)

− C1

]
. (6.25)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [186].

For the value of ω to be consistent with observation [82, 94], we have the
following general condition:

t5 < t < t6, (6.26)

where

t1 =
1

nD

[(
X2 + 1.44X1

−3.32m2C2
1

)n/2(n−1)

− C1

]
(6.27)

and

t1 =
1

nD

[(
X2 + 0.92X1

−1.76m2C2
1

)n/2(n−1)

− C1

]
. (6.28)

For this constraint, we obtain −1.44 < ω < −0.92, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [82,94].

We also observed that if

t1 =
1

nD

[(
X2 + X1

−2m2C2
1

)n/2(n−1)

− C1

]
, (6.29)

then for t = t0 we have ω = −1, i.e., we have Universe with cosmological
constant. If t < t0, then we have ω > −1 that corresponds to quintessence, while
for t > t0 we have ω > −1, i.e., Universe with phantom matter [33].

From (6.17) we found that the energy density is a decreasing function of time
and ε � 0 when

t � 1
nD

[(
− X1

m2C2
1

)n/2(n−1)

− C1

]
. (6.30)

Inserting (5.13) and (6.17) into (4.50) we ˇnd the cosmological constant as

Λ =
3D2 − X1

(nDt + C1)2
+

3m2C2
1

(nDt + C1)2/n
. (6.31)

As we see, the cosmological function is a decreasing function of time and it is
always positive when

t � 1
nD

[(
X1 − 3D2

3m2C2
1

)n/2(n−1)

− C1

]
. (6.32)
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Figure 24 shows the evolution of the cosmological constant. As one sees, it
is a time varying function and decreases with time.

Recent cosmological observations suggest the existence of a positive cosmo-
logical constant Λ with the magnitude Λ(G�/c3) ≈ 10−123. These observations
on magnitude and red-shift of type Ia supernova suggest that our Universe may be
an accelerating one with induced cosmological density through the cosmological
Λ-term. Thus, the nature of Λ in our derived DE model is supported by recent
observations.

The velocity of sound in this case is found to be

vs =
dp

dε
=

nX2 + m2C2
1 (nDt + C1)2−2/n

nX1 − 3m2C2
1 (nDt + C1)2−2/n

. (6.33)

Figure 25 shows the behavior of vs in time.

Fig. 24. Evolution of the Λ-term. The
dashed line corresponds to q > 0, while
the dash-dotted line corresponds to q < 0

Fig. 25. Speed of sound with respect to
cosmic time. The dashed line corresponds
to q > 0, while the dash-dotted line corre-
sponds to q < 0

As one sees, there are regions, where the solution is stable. Figure 25
shows that the solution becomes unstable during the transition from deceleration
to acceleration phase of evolution. Choosing the problem parameters, such as
n, D, we can obtain the stable solutions before or after the transition.

7. BIANCHI TYPE-III SPACEÄTIME
WITH VARIABLE EoS PARAMETER

Spatially homogeneous and anisotropic cosmological models play a signiˇ-
cant role in the description of large scale behavior of Universe and such models
have been widely studied in the framework of General Relativity in the search
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for a realistic picture of the Universe in its early stages. Yadav et al. [205], Prad-
han et al. [116,117] have recently studied homogeneous and anisotropic Bianchi
type-III spaceÄtime in the context of massive strings. Recently, Yadav [206]
has obtained Bianchi type-III anisotropic DE models with constant deceleration
parameter. In this paper, we have investigated a new anisotropic Bianchi type-III
DE model with variable ω without assuming constant deceleration parameter. A
spinor description of dark energy within the scope of a BIII model was given
in [146].

Let us now consider the Bianchi type-III spaceÄtime given by (3.6). We
consider the case when the energyÄmomentum tensor is given by (5.1). Einstein
system of equations in this case reads

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
= −κ(ω + δ)ε, (7.1a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
− m2

a2
3

= −κ(ω + γ)ε, (7.1b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= −κωε, (7.1c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
− m2

a2
3

= κε, (7.1d)

ȧ1

a1
− ȧ3

a3
= 0. (7.1e)

As we have already mentioned, the physically observable variables in this
case coincide with those of Bianchi type-VI model.

7.1. Solution to the Field Equations. In view of (7.1e) from (7.1a) and (7.1c)
immediately follows

δ = 0. (7.2)
Moreover, from (7.1e) we ˇnd

a1 = �a3, (7.3)

i.e., in case of a Bianchi type-III given by (3.6), the nondiagonal component of
the Einstein ˇeld equation leads to

T 1
1 = T 3

3 , (7.4)

allowing an anisotropic distribution of matter.
Hence we have the following system of equations:

2
ä3

a3
+

ȧ2
3

a2
3

− m2

a2
3

= −κ(ω + γ)ε, (7.5a)

ä3

a3
+

ä2

a2
+

ȧ2

a2

ȧ3

a3
= −κωε, (7.5b)

2
ȧ2

a2

ȧ3

a3
+

ȧ2
3

a2
3

− m2

a2
3

= κε. (7.5c)
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Thus, we now have three linearly independent equations with ˇve unknowns,
namely a2, a3, ω, ε, and γ. Two additional constraints relating these parameters
are required to obtain explicit solutions of the system.

Let us ˇrst consider the proportionality condition demanding

ϑ = N3σ
2
2 , (7.6)

which together with (4.3) and (7.3) immediately gives

a1 =
√

�

N0
V (2N3−3)/6N3 , (7.7a)

a2 = N0V
(N3+3)/3N3 , (7.7b)

a3 =
√

1
�N0

V (2N3−3)/6N3 . (7.7c)

As in the previous case, we apply the law of variation for Hubble parameter given
by (5.7) which yields a constant value of deceleration parameter. Then for V we
ˇnd the expression (5.9):

V = (nDt + C1)3/n, n �= 0, C1 = const. (7.8)

Numerical study of the corresponding expression shows that it coincides with that
of Fig. 16.

Inserting (7.8) into (7.7) one ˇnds

a1 =

√
�

N0
(nDt + C1)(2N3−3)/2nN3 , (7.9a)

a2 = N0(nDt + C1)(N3+3)/nN3 , (7.9b)

a3 =
√

1
�N0

(nDt + C1)(2N3−3)/2nN3 . (7.9c)

7.2. Physical Aspects of Dark Energy Model. The directional Hubble para-
meters in this case have the form

H1 = H3 =
(2N3 − 3)D

2N3(nDt + C1)
=

(
1 − 3

2N3

)
H,

(7.10)

H2 =
(N3 + 3)D

N3(nDt + C1)
=

(
1 +

3
N3

)
H.

The expressions for the Hubble parameter H , scalar of expansion ϑ, shear
scalar σ, and the average anisotropy parameter Am for the model coincide with



ISOTROPIC AND ANISOTROPIC DARK ENERGY MODELS 627

those for Bianchi type-VI0. In particular, the graphical view of the Hubble
parameter coincides with Fig. 17. Energy density ε is given by

ε =
(

X1

κ

)
(nDt + C1)−2 −

(
m2�N0

κ

)
(nDt + C1)−(2N3−3)/nN3 , (7.11)

with X1 = 3D2(4N2
3 − 9)/4N2

3 . The EoS parameter ω is given by

ω =
X2(nDt + C1)−2

X1(nDt + C1)−2 − (m2�N0)(nDt + C1)−(2N3−3)/nN3
, (7.12)

where X2 = D2[(4N3 + 3)2N3n − (12N2
3 + 18N3 + 27)]/4N2

3 . The skewness
parameter γ, i.e., deviation of ω along y-axis, has the form

γ = −X3(nDt + C1)−2 − (m2�N0)(nDt + C1)−(2N3−3)/nN3

X1(nDt + C1)−2 − (m2�N0)(nDt + C1)−(2N3−3)/nN3
, (7.13)

where X3 = 9D2(3 − n)/2N2
3 .

As in the case of Bianchi type-VI0 spaceÄtime, here too the EoS parameter
ω is a function of time. We also observe that unlike the Bianchi type-VI0 case,
here the EoS parameter becomes zero, only when X2 = 0. For X2 > 0 we have

Fig. 26. Evolution of energy density. The
dashed line corresponds to q > 0, while
the dash-dotted line corresponds to q < 0

matter dominated Universe, whereas, for
X2 < 0 we have dark energy dominated
Universe.

Figure 26 shows the evolution of
energy density for a positive and neg-
ative DP, respectively. As one sees, for
both cases, it is a decreasing function of
time. Here we use the following set of
problem parameters: D = 1, C1 = 1,
N3 = 6, m = 1, n = 1.1 (for q > 0) and
n = 0.5 (for q < 0.).

Figures 27 and 28 show the evolu-
tion of the EoS parameter for a positive
and negative DP, respectively. As one
sees, it is a time-varying function and
changes its sign in the course of evolu-
tion.

For the value of ω to be consistent with observation [93], we have the
following general condition:

t1 < t < t2, (7.14)

where

t1 =
1

nD

[(
X2 + 1.67X1

1.67m2�N0

)nN3/(2(n−1)N3+3)

− C1

]
(7.15)
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Fig. 27. Evolution of the EoS parameter
for a positive DP

Fig. 28. Evolution of the EoS parameter
for a negative DP

and

t1 =
1

nD

[(
N2

0 (X2 + 0.62X1

0.62m2

)nN3/(2(n−1)N3+3)

− C1

]
. (7.16)

For this constraint, we obtain −1.67 < ω < −0.62, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data [93].

For the value of ω to be consistent with observation [186], we have the
following general condition:

t3 < t < t4, (7.17)

where

t3 =
1

nD

[(
N2

0 (X2 + 1.33X1)
1.33m2

)nN3/(2(n−1)N3+3)

− C1

]
(7.18)

and

t4 =
1

nD

[(
N2

0 (X2 + 0.79X1)
0.79m2

)nN3/(2(n−1)N3+3)

− C1

]
. (7.19)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [186].

For the value of ω to be consistent with observation [82, 94], we have the
following general condition:

t5 < t < t6, (7.20)
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where

t5 =
1

nD

[(
N2

0 (X2 + 1.44X1)
1.44m2

)nN3/(2(n−1)N3+3)

− C1

]
(7.21)

and

t6 =
1

nD

[(
N2

0 (X2 + 0.92X1)
0.92m2

)nN3/(2(n−1)N3+3)

− C1

]
. (7.22)

For this constraint, we obtain −1.44 < ω < −0.92, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [82,94].

We also observed that if

t0 =
1

nD

[(
N2

0 (X2 + X1)
m2

)nN3/(2(n−1)N3+3)

− C1

]
, (7.23)

then for t = t0 we have ω = −1, i.e., we have Universe with cosmological
constant. If t < t0, then we have ω > −1 that corresponds to quintessence, while
for t > t0 we have ω > −1, i.e., Universe with phantom matter [33].

The energy density in this case remains positive if

t � 1
nD

[(
X1

m2�N0

)nN3/(2N3(n−1)+3)

− C1

]
. (7.24)

The cosmological term in this case takes the form

Λ =
[
3D2 −

(
X1

κ

)]
(nDt + C1)−2+(

m2�N0

κ

)
(nDt + C1)−(2N3−3)/nN3 . (7.25)

As we see, the cosmological function is a decreasing function of time and it is
always positive when

t � 1
nD

[(
X1 − 3κD2

m2�N0

)nN3/(2N3(n−1)+3)

− C1

]
. (7.26)

Figure 29 shows the evolution of the cosmological constant. As one sees, it
is decreasing function of time.

In this case, for the energy density and cosmological constant to be non-
negative we ˇnd the expressions analogical to (4.49) and (4.52).
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Fig. 29. Evolution of Λ-term. The dashed
line corresponds to q > 0, while the dash-
dotted line corresponds to q < 0

Fig. 30. Evolution of the velocity of sound.
The dashed line corresponds to q > 0,
while the dash-dotted line corresponds to
q < 0

The velocity of sound in this case is found to be

vs =
dp

dε
=

2nN3X2

2nN3X1 − m2�N0(2N3 − 3)(nDt + C1)(2(n−1)N3+3)/nN3
. (7.27)

Figure 30 shows the evolution of the velocity of sound. As one sees, for a
positive DP, the system is stable at the initial stage, while becomes instable later
on. On the contrary, for a negative DP, it is instable initially, but becomes stable
in the course of evolution of the Universe.

8. BIANCHI TYPE-I COSMOLOGICAL MODELS

Let us now consider the Bianchi type-I cosmological model.
A Bianchi type-I (BI) Universe, being the straightforward generalization of

the �at FriedmannÄRobertsonÄWalker (FRW) Universe, is one of the simplest
models of an anisotropic Universe that describes a homogeneous and spatially
�at Universe. Unlike the RW Universe, which has the same scale factor for each
of the three spatial directions, a BI Universe has a different scale factor in each
direction, thereby introducing an anisotropy to the system. It moreover has the
agreeable property that near the singularity it behaves like a Kasner Universe,
even in the presence of matter, and consequently falls within the general analysis
of the singularity given by Belinskii et al. [13]. Also in a Universe ˇlled with
matter for p = ζ ε, ζ < 1, it has been shown that any initial anisotropy in
a BI Universe quickly dies away, and a BI Universe eventually evolves into a
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FRW Universe [89]. Since the present-day Universe is surprisingly isotropic, this
feature of the BI Universe makes it a prime candidate for studying the possible
effects of an anisotropy in the early Universe on present-day observations. In
light of the importance mentioned above, several authors have studied BI Universe
from different aspects.

The Einstein ˇeld equations in this case take the form:

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
= κT 1

1 , (8.1a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
= κT 2

2 , (8.1b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= κT 3

3 , (8.1c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
= κT 0

0 . (8.1d)

We consider two different cases.
8.1. Model with Constant Deceleration Parameter. First, we consider the

case with constant deceleration parameter [114]. To begin with we consider
the energyÄmomentum tensor given by (5.1). In this case, the Einstein system
Eqs. (8.1a)Ä(8.1d) take the form

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
= −κ(ω + δ)ε, (8.2a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
= −κ(ω + γ)ε, (8.2b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= −κωε, (8.2c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
= κε. (8.2d)

As one sees, we have four equations for seven unknowns, namely a1, a2, a3,
ε, ω, δ, and γ. So we need three additional constraints.

8.1.1. Solution to the Equations. As we have already mentioned, we will
consider the case with deceleration parameter. On account of (4.14), the deˇnition
of the deceleration parameter (4.15) can be rewritten as

q = − Ḣ

H2
− 1. (8.3)

Now, taking into account that as per assumption q is a constant, from (8.3)
we immediately ˇnd

H =
1

(1 + q)t + C1
, C1 = const. (8.4)
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Further calculation gives

a = [(1 + q)t + C1]1/(1+q), (8.5)

and
V = [(1 + q)t + C1]3/(1+q). (8.6)

Secondly, we assume the proportionality condition given by (4.19), from
which immediately follows (4.21).

And ˇnally we assume that δ = γ. Then subtraction of (8.2a) from (8.2b)
leads to

a1

a2
= D1 exp

(
X1

∫
dt

V

)
, D1 = const, X1 = const. (8.7)

On account of (4.3), (4.21), (8.7) and (8.6) we ˇnally ˇnd

a1 =
√

D1

N0
[(1 + q)t + C1](2N3−3)/2N3(1+q)×

× exp
{

X1

2(q − 2)
[(1 + q)t + C1](q−2)/(q+1)

}
, (8.8a)

a2 =
√

1
D1N0

[(1 + q)t + C1](2N3−3)/2N3(1+q)×

× exp
{

−X1

2(q − 2)
[(1 + q)t + C1](q−2)/(q+1)

}
, (8.8b)

a3 = N0[(1 + q)t + C1](N3+3)/N3(1+q). (8.8c)

8.1.2. Physical Aspects of the Model. The directional Hubble parameters take
the form

H1 =
[
1 − 3

2N3

]
H +

X1

2
, H2 =

[
1 − 3

2N3

]
H − X1

2
,

(8.9)

H3 =
[
1 +

3
N3

]
H.

From (8.2d) in this case we ˇnd the energy density as

ε =
(

X2

κ

)
[(1 + q)t + C1]−2 − X2

1/4κ, (8.10)

where X2 = (12N2
3 −27)/4N2

3 . As we can see, the energy density is a decreasing
function of time, if (1+q)t+C1 �= 0. In this case the model behaves like the one
ˇlled with �uid or dark energy with q < −1. But since q may be negative as well,
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in that case there is a possibility, when at some moment of time (1+q)t+C1 = 0.
In this case we have the model with phantom matter, which gives rise to a Big
Rip-type solution, when the energy density becomes inˇnity at a ˇnite moment
of time [132Ä134,155Ä158].

In Fig. 31, we have shown the evolution of energy density and EoS parameter
for a positive DP. As expected, the energy density is decreasing function of time
and it is qualitative the same as in the case of Bianchi type-VI0 or III models.

Fig. 31. Evolution of energy density ε ver-
sus t in power-law expansion for q > 0

Fig. 32. Evolution of EoS parameter for
q > 0

The variation of EoS parameter (ω) with cosmic time (t) is clearly shown
in Fig. 32, as a representative case with appropriate choice of constants of in-
tegration and other physical parameters using reasonably well-known situations.
From Fig. 32, we conclude that in early stage of evolution of the Universe, the
EoS parameter was positive (i.e., the Universe was matter-dominated) and at late
time it is evolving with negative value (i.e., at the present time). The earlier
real matter later on was converted to the dark energy dominated phase of the
Universe.

From (8.2c) we ˇnd the EoS parameter

ω =
X3[(1 + q)t + C1]−2 − X2

1/4
X2[(1 + q)t + C1]−2 − X2

1/4
, (8.11)

where we deˇne X3 = [(2q − 1)4N2
3 + (2 − q)126N3 − 27]/4N2

3 . From (8.2a)
we ˇnd the skewness parameter

γ = − X4[(1 + q)t + C1]−2

X2[(1 + q)t + C1]−2 − X2
1/4

, (8.12)

where we deˇne X4 = 9[4 + q]/2N3.
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Analyzing as in the previous case, we ˇnd that the EoS parameter is a function
of t and can be presented as a function of red-shift as well. So, if the present
work is compared with experimental results obtained in [82,93,94,186], then one
can conclude that the limit of ω provided by equation (8.11) may accommodated
with the acceptable range of EoS parameter. Also it is observed that at t = tc,
ω vanishes, where tc is a critical time given by

tc =
1

1 + q

[
2

X1

√
X3 − C1

]
. (8.13)

Thus, for this particular time, our model represents a dusty Universe. We also
note that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where
ω < 0, is converted to the dark energy dominated phase of Universe.

For the value of ω to be consistent with observation [93], we have the
following general condition:

t1 < t < t2, (8.14)

where

t1 =
1

1 + q

[
2

X1

√
X3 + 1.67X2

2.67
− C1

]
(8.15)

and

t2 =
1

1 + q

[
2

X1

√
X3 + 0.62X2

1.62
− C1

]
. (8.16)

For this constraint, we obtain −1.67 < ω < −0.62, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data [93].

For the value of ω to be consistent with observation (Tegmark et al., 2004),
we have the following general condition:

t3 < t < t4, (8.17)

where

t3 =
1

1 + q

[
2

X1

√
X3 + 1.33X2

2.33
− C1

]
(8.18)

and

t4 =
1

1 + q

[
2

X1

√
X3 + 0.79X2

1.79
− C1

]
. (8.19)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [186].
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For the value of ω to be consistent with observation [82, 94], we have the
following general condition:

t5 < t < t6, (8.20)

where

t5 =
1

1 + q

[
2

X1

√
X3 + 1.44X2

2.44
− C1

]
(8.21)

and

t6 =
1

1 + q

[
2

X1

√
X3 + 0.92X2

1.92
− C1

]
. (8.22)

For this constraint, we obtain −1.44 < ω < −0.92, which is in good agree-
ment with the limit obtained from observational results coming from SNe Ia
data [82,94].

We also observed that if

t0 =
1

1 + q

[
2

X1

√
X3 + X2

2
− C1

]
, (8.23)

then for t = t0 we have ω = −1, i.e., we have Universe with cosmological
constant. If t < t0, then we have ω > −1 that corresponds to quintessence,
while for t > t0 we have ω > −1, i.e., Universe with phantom matter [33].

Fig. 33. Evolution of cosmological con-
stant with respect to cosmic time

In this case, from (8.10) we ˇnd that
the energy density ε is a decreasing func-
tion of time and ε � 0 when

t � 1
1 + q

(√
X2

2X1
− C1

)
. (8.24)

For the cosmological constant
from (4.50) we ˇnd the cosmological con-
stant as

Λ =
[
3 −

(
X2

κ

)]
×

× [(1 + q)t + C1]−2 +
X2

1

4κ
. (8.25)

As we see, the cosmological function is
a decreasing function of time and it is
always positive when

t � 1
1 + q

[
X1

2
√

X2 − 3κ
− C1

]
. (8.26)

In Fig. 33, evolution of the cosmological constant is illustrated.
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8.2. LRS BI Model with Dominance Dark Energy. Let us now consider a
LRS Bianchi type-I model ˇlled with a binary mixture of perfect �uid and dark

energy. The energyÄmomentum tensor in this case is given by T i
j = T

(m)i
j +

T
(de)i
j , where

T
(m)i
j = diag [−ρ(m), p(m), p(m), p(m)] =

= diag [−1, ω(m), ω(m), ω(m)]ρ(m) (8.27)

and

T
(de)i
j = diag [−ρ(de), p(de), p(de), p(de)] =

= diag [−1, ω(de), ω(de), ω(de)]ρ(de), (8.28)

where ρ(m) and p(m) are, respectively, the energy density and pressure of the
perfect �uid component or ordinary baryonic matter, while ω(m) is its EoS para-
meter. Similarly, ρ(de) and p(de) are, respectively, the energy density and pressure
of the DE component, while ω(de) is the corresponding EoS parameter.

The Einstein system of equations for LRS BI model on account of a2 = a3

then reads

2
ä2

a2
+

ȧ2
2

a2
2

= −κ(ω(m)ρ(m) + ω(de)ρ(de)), (8.29a)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= −κ(ω(m)ρ(m) + ω(de)ρ(de)), (8.29b)

2
ȧ1

a1

ȧ2

a2
+

ȧ2
2

a2
2

= κ(ρ(m) + ρ(de)). (8.29c)

Following Akarsu and Kilinc [1], we assume the EoS parameter of the perfect
�uid to be a constant

ω(m) =
p(m)

ρ(m)
= const, (8.30)

whereas the EoS of the dark energy

ω(de) =
p(de)

ρ(de)
(8.31)

is considerd to be a function of time, since the current cosmological data from
SNIa, CMB and large scale structures mildly favor dynamically evolving DE
crossing the phantom divide-line (PDL) [201].

8.2.1. Solution to the Equation. In order to solve the ˇeld equations com-
pletely, ˇrstly we assume that the perfect �uid and DE components interact
minimally. Therefore, the energy momentum tensors of the two sources may be
conserved separately.
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The Bianchi identity Gij
;j = 0, in this case, leads to the two separate equations

for perfect �uid
ρ̇(m) + 3(1 + ω(m))ρ(m)H = 0 (8.32)

and dark energy
ρ̇(de) + 3(1 + ω(de))ρ(de)H = 0. (8.33)

We constrain the system of equations with proportionality relation between
shear (σ) and expansion (θ). This condition leads to the following relation
between the metric potentials:

a1 = an
2 , (8.34)

where n is a positive constant. For anisotropic model n �= 1.
In view of (8.34), from (8.29a) and (8.29b), we ˇnd

ä2

a2
+ (n + 1)

ȧ2
2

a2
2

= 0, (8.35)

with the solution
a2 = (k1t + k0)

1
n+2 , (8.36)

where k0 and k1 are the constants of integration.
From equations (8.34) and (8.36), we obtain

a1 = (k1t + k0)
n

n+2 . (8.37)

The mean Hubble parameter (H), expansion scalar (ϑ), and shear scalar (σ)
are given by

ϑ = 3H =
k1

(k1t + k0)
, (8.38)

σ2 =
(n − 1)2

3(n + 2)2
ϑ2. (8.39)

The rate of expansion in the direction of x, y, and z are given by

H1 =
ȧ1

a1
=

3n

(n + 2)
H, H2 = H3 =

ȧ2

a2
=

3
(n + 2)

H. (8.40)

The spatial volume (V ), mean anisotropy parameter (Am), and DP (q) are
found to be

V = a1a
2
2 = (k1t + k0), (8.41)

Am =
2(n − 1)2

(n + 2)2
, (8.42)

q =
d

dt

(
1
H

)
− 1 = 2. (8.43)
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It is important to note here that the proportionality relation between shear
and expansion leads to the positive deceleration parameter (q) with isotropic
distribution of DE in LRS Bianchi-I spaceÄtime. Since we are looking for a
model explaining an expanding Universe with acceleration, so, we assume the
anisotropic distribution of DE to ensure the present acceleration of Universe. So
we write equations (8.29a), (8.29b), and (8.33) as

2
ä2

a2
+

ȧ2
2

a2
2

= −κ[ω(m)ρ(m) + (ω(de) + δ)ρ(de)], (8.44)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
= −κ[ω(m)ρ(m) + (ω(de) + γ)ρ(de)], (8.45)

ρ̇(de) + 3ρ(de)(1 + ω(de))H + ρ(de)(δH1 + 2γH2) = 0. (8.46)

The third term of Eq. (8.46) arises due to the deviation from ω(de), while the ˇrst

and second terms of Eq. (8.46) are deviation free part of T
(de)i
j . According to

Eq. (8.46), the behavior of ρ(de) is controlled by the deviation free part of EoS
parameter of DE, but deviation will affect ρ(de) indirectly, since, as can be seen
later, they affect the value of EoS parameter. But we are looking for physically
viable models of Universe consistent with observations. Hence we constrained
δ(t) and γ(t) by assuming the special dynamics which is consistent with (8.46).
The dynamics of skewness parameter on x-axis (δ) and y-axis or z-axis (γ) is
given by

δ = −2mHH2

ρ(de)
, (8.47)

γ =
mHH1

ρ(de)
, (8.48)

where m is the dimensionless constant that parameterizes the amplitude of the
deviation from ω(de) and can be given as real values.

Subtraction of (8.44) from (8.45) gives

ä2

a2
− ä1

a1
+

ȧ2
2

a2
2

− ȧ1

a1

ȧ2

a2
= (γ − δ)ρ(de). (8.49)

Using Eqs. (8.34), (8.47), and (8.48), from (8.49), we obtain

ä2

a2
+

[
3(n2 − 1) + m(n + 2)2

3(n − 1)

]
ȧ2

2

a2
2

= 0. (8.50)

The general solution of Eq. (8.50) has the form

a2 = (k1t + k0)
3(n−1)

n1 , (8.51)
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where n1 = 3N1 + m(n + 2)2 with N1 = (n − 1)(n + 2). For a1 in this case
we ˇnd

a1 = (k1t + k0)
3n(n−1)

n1 . (8.52)

It is important to note here that we obtain power law solution by assuming
proportionality relation between shear scalar (σ) and expansion (θ) which seems
to describe the dynamics of Universe from Big Bang to the present epoch, while
a series of works [1, 4, 98, 202Ä204] have obtained the power law solution by
assuming special law of variation of the Hubble parameter. So, we represent the
new features of power law expansion. In this paper, we show how σ ∝ θ model
with LRS BI metric behaves in the presence of perfect �uid and anisotropic DE
components.

In view of the assumption ω(m) = const, Eq. (8.32) can be integrated
to obtain

ρ(m) = ρ0a
−3(ω(m)+1), (8.53)

where ρ0 is the positive constant of integration.
Average Hubble parameter (H), expansion scalar (ϑ) in this case is ex-

pressed as

ϑ = 3H =
3N1

n1

k1

(k1t + k0)
. (8.54)

The shear scalar (σ), directional Hubble parameters (H1, H2 or H3), and the
anisotropy parameter (Am) have the same form as in the previous case, i.e.,
given by the expressions (8.39), (8.40), and (8.42), respectively. The spatial
volume (V ), average scale factor (a) and DP (q) of the model are found to be

V = (k1t + k0)(3N1/n1), (8.55)

a = (k1t + k0)(N1/n1), (8.56)

q =
n1

N1
− 1 = 2 +

m

N1
(n + 2)2. (8.57)

As one sees, the DP q is a constant. The sign of q indicates whether the model
in�ates or not. A positive sign of q, i.e., n1/N1 > 1, corresponds to standard
decelerating model whereas negative sign of q, i.e., 0 < n1/N1 < 1, indicates
acceleration. The recent observations SN Ia, reveal that the present Universe is
accelerating and the value of DP lies somewhere in the range −1 < q < 0. It
follows that in the derived model, one can choose the value of DP consistent with
observations.

From (8.53) we then ˇnd the energy density of perfect �uid

ρ(m) = ρ0(k1t + k0)−3(ω(m)+1)N1/n1 , (8.58)
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on account of (8.58) from (8.29c) we obtain the dark energy density

ρ(de) =
9(2n + 1)(n − 1)2k2

1

n2
1(k1t + k0)2

− ρ0

(k1t + k0)3(ω
m+1)N1/n1

. (8.59)

In Fig. 34, we plot the energy density of matter and that of dark energy with
respect to cosmic time. We see that they both are positive, hence the weak and
null energy conditions are satisˇed for the model in question.

Now from (8.47) and (8.48) skewness parameters are obtained as

δ(t) = − 6m(n − 1)N1k
2
1

9(2n + 1)(n − 1)2k2
1 − ρ0n2

1(k1t + k0)2−3(ω(m)+1)N1/n1
, (8.60)

γ(t) =
3mn(n − 1)N1k

2
1

9(2n + 1)(n − 1)2k2
1 − ρ0n2

1(k1t + k0)2−3(ω(m)+1)N1/n1
. (8.61)

The EoS parameter of DE is given by

ω(de) =

= −

ω(m)ρ0

(k1t + k0)3(ω
(m)+1)N1/n1

+
3(n−1)2k2

1(6−2m(n+2)−n1/(n−1))
n2

1(k1t + k0)2

9(2n + 1)(n − 1)2k2
1

n2
1(k1t + k0)2

− ρ0

(k1t + k0)3(ω
m+1)N1/n1

.

(8.62)

Fig. 34. Evolution of matter and dark en-
ergy density with respect to cosmic time

Fig. 35. Evolution of EoS parameter with
respect to cosmic time

In Fig. 35, we have plotted the evolution of the EoS parameter with respect
to cosmic time.

It is observed that at t = −k0/k1, the spatial volume vanishes while all other
parameters diverge. Thus the derived model starts expanding with the Big Bang
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singularity at t = −k0/k1 which can be shifted to t = 0 by choosing k0 = 0. This
singularity is of point type because the directional scale factors A(t) and B(t)
vanish at initial moment. We observe that ρ(m) as well as ρ(de) remains positive
during the cosmic evolution. Therefore, the weak energy condition (WEC) as
well as null energy condition (NEC) are obeyed in the derived model. Further
ρ(m) and ρ(de) decrease with time and approach a small positive values at the
present epoch. The parameters H , σ, and θ start off with extremely large values
and continue to decrease with expansion of Universe. As is seen from Fig. 35,
the dark energy density ω(de) evolves with negative value, and its range is in nice
agreement with large scale structure data [94].

The density parameters of perfect �uid and DE are as follows:

Ω(m) =
ρ0n

2
1

3N2
1 k2

1

(k1t + k0)2−3(ω(m)+1)N1/n1 , (8.63)

Ω(de) =
3(2n + 1)
(n + 2)2

− ρ0n
2
1

3N2
1 k2

1

(k1t + k0)2−3(ω(m)+1)N1/n1 . (8.64)

After adding Eqs. (8.63) and (8.64), the overall density parameter (Ω) is ob-
tained as

Ω = Ω(m) + Ω(de) =
3(2n + 1)
2(n − 1)2

Am. (8.65)

This shows that the overall density parameter (Ω) depends on the anisotropy
parameter (Am). The behavior of density parameters in the evolution of Universe
with appropriate choice of constants of integration and other physical parameters
gives reasonably well-known situations. We observe that initially the ordinary
matter density dominates the Universe. But later on, the DE density dominates
the evolution which is probably responsible for the accelerated expansion of the
present-day Universe.

8.2.2. The Stateˇnder and Distance Modulus Curves. Sahni et al. [169] pro-
posed a cosmological diagnostic pair {r, s} called state ˇnder, which is deˇned as

r =
...
a

aH3
=

(
2

n1

N1
+ 1

) (
n1

N1
− 1

)
, (8.66)

s =
r − 1

3
(

q − 1
2

) =

(
2

n1

N1
+ 1

)(
2n1

N1
− 1

)
− 1

3
(

n1

N1
− 3

2

) . (8.67)

The dynamics of state ˇnder {r, s} depends on constants n and n1. It follows
that in derived model, one can choose the pair of state ˇnders which can success-
fully differentiate between a wide variety of DE models including cosmological
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constant, quintessence, phantom, quintom, the Chaplygin gas, braneworld models
and interacting DE models. For example, if we put n1 = 0, the state-ˇnder pair
will be {1, 0} which yields the ΛCDM (cosmological constant cold dark matter)
model. The state-ˇnder diagnosis for holographic DE model in non�at Universe
has been analyzed by Setare et al. [173].

The distance modulus is given by

μ = 5 log dL + 25, (8.68)

where the luminosity distance dL is deˇned as

dL = r1(1 + z)a0, (8.69)

where z and a0 represent red-shift parameter and present scale factor, respectively.
Let us now assume that T = k1t+ k0. Thus equation (8.56) may be rewritten as

a = T n2, (8.70)

where n2 = N1/n1.
For determination of r1, we assume that a photon is emitted by a source with

co-ordinates r = r1 and T = T1 and is received at a time T0 by an observer
located at r = 0. Then we determine r1 from

r1 =

T0∫
T1

dT

a
. (8.71)

Solving Eqs. (8.68)Ä(8.71), one can easily obtain the expression for distance mod-
ulus (μ) in terms of red-shift parameter (z) as

μ = 5 log

[
n2k1

H0(1 − n2)(1 + z)
1−2n2

n2

(
(1 + z)

1−n2
n2 − 1

)]
+ 25. (8.72)

Fig. 36. Evolution of EoS parameter with
respect to cosmic time

The comparison between the derived
model and SNLS type Ia supernovae data
can be seen in Fig. 36. The dotted line
represents the observed distance modu-
lus by SNLS type Ia supernovae data,
whereas the solid line represents the ana-
lyzed distance modulus μ of the derived
model.

It is observed that the derived
model is the best ˇt with high red-shift
values.
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9. INTERACTING TWO-FLUID SCENARIO IN FRW MODEL

FRW model is the most studied cosmological model. It is the simplest
model of an expanding Universe. As was mentioned earlier, this isotropic and
homogeneous cosmological model was ˇrst suggested by A.A. Friedmann [68,69].
Since that time it was widely believed that our Universe was a static one, his
ˇnding was overlooked as a mere mathematical exercise. But when in 1929
Hubble experimentally proved that our Universe is indeed expanding, the search
for an expanding Universe became an ultimate task. The model proposed by
Friedmann enjoyed a wide range of popularity after the independent papers by
Robertson [122,123] and Walker [194].

In this section, we study the evolution of the dark energy parameter within
the scope of a FRW model, given by (3.2). For convenience, we will rewrite the
metric in the following form:

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2
+ r2

(
dθ2 + sin2(θ) dφ2

)]
, (9.1)

where a(t) is some unknown function of time, and k is some constant, taking the
value +1, 0,−1. For k = −1 or k = 0 the space comes out to be inˇnity (open).
For k = 0 the space is �at, while k = +1 space is ˇnite (closed), though not
limited.

Corresponding Einstein ˇeld equations we write in the form

ptot = −
(

2
ä

a
+

ȧ2

a2
+

k

a2

)
, (9.2a)

ρtot = 3
(

ȧ2

a2
+

k

a2

)
, (9.2b)

where ptot = pm + pD and ρtot = ρm + ρD. Here pm and ρm are pressure and
energy density of barotropic �uid and pD and ρD are pressure and energy density
of dark �uid, respectively.

The Bianchi identity G;j
ij = 0 leads to T ;j

ij = 0 which yields

ρ̇tot + 3
ȧ

a
(ρtot + ptot) = 0. (9.3)

The EoS of the barotropic �uid and dark ˇeld are given by

ωm =
pm

ρm
(9.4)

and
ωD =

pD

ρD
, (9.5)

respectively. In the following sections, we deal with two cases, (i) noninteracting
two-�uid model and (ii) interacting two-�uid model.
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9.1. Noninteracting Two-Fluid Model. Let us ˇrst consider the case when
the �uid and dark energy are minimally coupled. In this case, Eq. (9.3) can be
written as two separate equations:

ρ̇m + 3
ȧ

a
(ρm + pm) = 0 (9.6)

and

ρ̇D + 3
ȧ

a
(ρD + pD) = 0. (9.7)

Assuming the perfect �uid EoS parameter ωm is constant, Eq. (9.6) can be
immediately integrated to obtain

ρm = ρ0a
−3(1+ωm), (9.8)

where ρ0 is a constant of integration. Inserting (9.8) into (9.2b) and (9.2a), we
ˇrst obtain the ρD and pD in terms of scale factor a(t)

ρD = 3
(

ȧ2

a2
+

k

a2

)
− ρ0a

−3(1+ωm) (9.9)

and

pD = −
(

2
ä

a
+

ȧ2

a2
+

k

a2

)
− ρ0ωma−3(1+ωm). (9.10)

In what follows, we consider three different anséatze for the scale factor those
give rise to a time-dependent deceleration parameter (DP):

q = −aä

ȧ2
=

d

dt

(
1
H

)
− 1, (9.11)

where H is the Hubble parameter deˇned as

H = − ȧ

a
. (9.12)

The motivation to use such ansatz is dictated by the fact that our Universe
has recently entered into a phase of accelerated mode of expansion from the
decelerating one. It means the DP has changed its sign, i.e., DP should be
a function of time. Moreover, the transition of red-shift from deceleration to
acceleration is about 0.5. Hence only a time variable DP, not constant one, can
adequately draw the realistic picture of the evolution of the Universe. In what
follows, we consider a new time parameter τ :

τ =
t

t1
, (9.13)

where t1 is a constant of unit time [t]. But for simplicity, we use the notation t
instead of τ . As a result, a(t) is still a unitless function. For simplicity, here and
further we write a as a function of t with t now being unitless.
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9.1.1. Ansatz I. First, we consider the case when the scale factor is given
by [115]

a(t) = (t − t0)n, (9.14)

where n is a positive constant. Under this assumption for ρD and pD we obtain

ρD =
3n2

(t − t0)2
+

3k

(t − t0)2n
− ρ0(t − t0)−3n(1+ωm) (9.15)

and

pD = −
[
n(3n − 2)
(t − t0)2

+
k

(t − t0)2n
+ ρ0ωm(t − t0)−3n(1+ωm)

]
, (9.16)

respectively. Inserting (9.15) and (9.16) into (9.5), we ˇnd the EoS parameter of
dark energy as

ωD = −

⎡
⎢⎢⎣

n(3n − 2)
(t − t0)2

+
k

(t − t0)2n
+ ρ0ωm(t − t0)−3n(1+ωm)

3n2

(t − t0)2
+

3k

(t − t0)2n
− ρ0(t − t0)−3n(1+ωm)

⎤
⎥⎥⎦ . (9.17)

It is observed that though for open, closed and �at Universe the EoS parame-
ter is an increasing function of time, the rapidity of its growth at the early stage
depends on the type of the Universe, while later on, it tends to the same constant
value independent to it.

The expressions for the matter-energy density Ωm and dark-energy density
ΩD are given by

Ωm =
ρm

3H2
=

ρ0

3n2
(t − t0)−3n(1+ωm)+2 (9.18)

and

ΩD =
ρD

3H2
= 1 +

k

n2(t − t0)2(n−1)
− ρ0

3n2
(t − t0)−3n(1+ωm)+2, (9.19)

respectively. From (9.18) and (9.19) one obtains

Ω = Ωm + ΩD = 1 +
k

n2(t − t0)2(n−1)
. (9.20)

From the right-hand side of Eq. (9.20) it is clear that in �at Universe (k = 0),
Ω = 1, in open Universe (k = −1), Ω < 1 and in closed Universe (k = +1),
Ω > 1. But at late time, we see for all �at, open and closed Universes Ω → 1.
This result is also compatible with the observational results. Since our model
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predicts a �at Universe for large times and the present-day Universe is very close
to �at, so the derived model is also compatible with the observational results.

In view of (9.2b) and (9.2a) from (9.11) we derive

q =
1

6H2
[ρm(1 + 3ωm) + ρD(1 + 3ωD)]. (9.21)

On the other hand, inserting (9.14) into (9.11), we ˇnd

q =
1 − n

n
. (9.22)

From (9.22) we observe that q > 0 for 0 < n < 1 and q < 0 for n > 1.
In the Universe, nearly 70% of the energy is in the form of dark energy.

Baryonic matter amounts to only 3Ä4%, while the rest of the matter (27% is
believed to be in the form of a nonluminous component of nonbaryonic nature
with a dust-like equation of state (w = 0)) is known as cold dark matter (CDM).
In this case, if the dark energy is composed just by a cosmological constant, then
this scenario is called Λ-CDM model. A convenient method to describe models
close to Λ CDM is based on the cosmic jerk parameter j, the dimensionless third
derivative of the scale factor with respect to the cosmic time [26,40,192,193]. A
deceleration-to-acceleration transition occurs for models with a positive value of
j0 and negative q0. Flat Λ-CDM models have a constant jerk j = 1. The jerk
parameter in cosmology is deˇned as the dimensionless third derivative of the
scale factor with respect to cosmic time

j(t) =
1

H3

˙̈a
a
, (9.23)

and in terms of the scale factor with respect to cosmic time

j(t) =
(a2H2)

′′

2H2
, (9.24)

where the ®dots¯ and ®primes¯ denote derivatives with respect to cosmic time
and scale factor, respectively. The jerk parameter appears in the fourth term of a
Taylor expansion of the scale factor around a0:

a(t)
a0

= 1+H0(t−t0)−
1
2
q0H

2
0 (t−t0)2+

1
6
j0H

3
0 (t−t0)3+O

[
(t − t0)4

]
, (9.25)

where the subscript 0 shows the present value. One can rewrite Eq. (9.23) as

j(t) = q + 2q2 − q̇

H
. (9.26)
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In view of (9.14), from (9.22) and (9.26) we obtain

j(t) =
(n − 1)(n − 2)

n2
. (9.27)

This value overlaps with the value j � 2.16 obtained from the combination of
three kinematical data sets: the gold sample of type Ia supernovae [121], the
SNIa data from the SNLS project [7], and the X-ray galaxy cluster distance
measurements [118] for n � 0.55.

9.1.2. Ansatz II. First, we consider the case when the scale factor is given
by [5]

a(t) =
√

tet. (9.28)

Under this assumption ρD and pD take the form

ρD = 3
(

n + t

2t

)2

+
3k

tnet
− ρ0(tnet)−

3
2 (1+ωm) (9.29)

and

pD = −
[
3

(
n + t

2t

)2

− n

t2
+

k

tnet
+ ρ0ωm(tnet)−

3
2 (1+ωm)

]
, (9.30)

respectively. The EoS parameter for dark energy now reads

ωD = −
3

(
n + t

2t

)2

− n

t2
+

k

tnet
+ ρ0ωm(tnet)−

3
2 (1+ωm)

(
n + t

2t

)2

+
k

tnet
− ρ0(tnet)−

3
2 (1+ωm)

. (9.31)

The behavior of EoS parameter qualitatively remains the same as in the
previous case.

The expressions for the matter-energy density Ωm and dark-energy density
ΩD are given by

Ωm =
ρm

3H2
=

4ρ0t
2

3(t + n)2
(tnet)−

3
2 (1+ωm) (9.32)

and

ΩD = 1 +
4k

tn−2et(n + t)2
− 4ρ0t

2

3(t + n)2
(tnet)−

3
2 (1+ωm), (9.33)

respectively. From (9.32) and (9.33) we ˇnd

Ω = Ωm + ΩD = 1 +
4k

tn−2et(n + t)2
. (9.34)
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From the right-hand side of Eq. (9.34) it is clear that in �at Universe (k = 0),
Ω = 1, in open Universe (k = −1), Ω < 1 and in closed Universe (k = +1),
Ω > 1. But at late time, we see for all �at, open and closed Universes Ω → 1.
This result is also compatible with the observational results. Since our model
predicts a �at Universe for large times and the present-day Universe is very close
to �at, so the derived model is also compatible with the observational results.

For the deceleration parameter in this case we ˇnd

q =
2

(t + 1)2
− 1, (9.35)

which is a function of time. From (9.22) we observe that q > 0 for t < 0.41 and
q < 0 for t > 0.41.

The jerk in this case is a time varying function:

j(t) = 1 − 6n

(n + t)2
+

8n

(n + t)3
. (9.36)

This value overlaps with the value j � 2.16 obtained from the combination of
three kinematical data sets: the gold sample of type Ia supernovae [121], the
SNIa data from the SNLS project [7], and the X-ray galaxy cluster distance
measurements [118] for

t = A − 50n

A
− n, (9.37)

where

A = 0.03
(
84100n + 1450

√
1450n3 + 3364n2

)1/3

.

9.1.3. Ansatz III. Finally, we consider the case where the metric function is
given by [153]

a(t) =
√

tnet. (9.38)

This ansatz generalizes the one proposed in [5].
Using this scale factor we ˇnd ρD and pD as

ρD = 3
(

n + t

2t

)2

+
3k

tnet
− ρ0(tnet)−

3
2 (1+ωm) (9.39)

and

pD = −
[
3

(
n + t

2t

)2

− n

t2
+

k

tnet
− ρ0ωm(tnet)−

3
2 (1+ωm)

]
, (9.40)
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respectively. The EoS parameter for dark energy now reads

ωD = −
3

(
n + t

2t

)2

− n

t2
+

k

tnet
− ρ0ωm(tnet)−

3
2 (1+ωm)

(
n + t

2t

)2

+
k

tnet
− ρ0(tnet)−

3
2 (1+ωm)

. (9.41)

Fig. 37. Evolution of EoS parameter with
respect to cosmic time

Its behavior is qualitatively the same as
in the previous cases.

The behavior of EoS in term of cos-
mic time t is shown in Fig. 37. It is ob-
served that though for open, closed and
�at Universes the EoS parameter is an
increasing function of time, the rapidity
of its growth at the early stage depends
on the type of the Universe, while later
on, it tends to the same constant value
independent of it.

The expressions for the matter-
energy density Ωm and dark-energy den-
sity ΩD are given by

Ωm =
ρm

3H2
=

4ρ0t
2

3(t + n)2
(tnet)−

3
2 (1+ωm) (9.42)

and

ΩD = 1 +
4k

tn−2et(n + t)2
− 4ρ0t

2

3(t + n)2
(tnet)−

3
2 (1+ωm), (9.43)

respectively. Equations (9.42) and (9.43) are reduced to

Ω = Ωm + ΩD = 1 +
4k

tn−2et(n + t)2
. (9.44)

From the right-hand side of Eq. (9.44) it is clear that in �at Universe (k = 0),
Ω = 1, in open Universe (k = −1), Ω < 1 and in closed Universe (k = +1),
Ω > 1. But at late time, we see for all �at, open and closed Universes Ω → 1.
This result is also compatible with the observational results. Since our model
predicts a �at Universe for large times and the present-day Universe is very close
to �at, so the derived model is also compatible with the observational results.
The variation of density parameter Ω with respect to cosmic time is shown
in Fig. 38.

The deceleration parameter (DP) in this case reads

q =
2n

(n + t)2
− 1. (9.45)
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Fig. 38. Evolution of density parameter
with respect to cosmic time

Fig. 39. Evolution of deceleration parame-
ter with respect to cosmic time for differ-
ent values of n

From Eq. (9.45), we observe that q > 0 for t <
√

2n − n and q < 0 for
t >

√
2n − n. It is observed that for 0 < n < 2, our model is evolving from

deceleration phase to acceleration phase. Also, recent observations of SNe Ia
expose that the present Universe is accelerating and the value of DP lies to some
place in the range −1 < q < 0. It follows that in our derived model, one
can choose the value of DP consistent with the observation. Figure 39 depicts
the deceleration parameter (q) versus time which gives the behavior of q from
decelerating to accelerating phase for different values of n.

The jerk in this case takes the form

j(t) = 1 − 6n

(n + t)2
+

8n

(n + t)3
. (9.46)

This value overlaps with the value j � 2.16 obtained from the combination of
three kinematical data sets: the gold sample of type Ia supernovae [121], the
SNIa data from the SNLS project [7], and the X-ray galaxy cluster distance
measurements [118] for

t = A − 50n

A
− n, (9.47)

where

A = 0.03
(
84100n + 1450

√
1450n3 + 3364n2

)1/3

.

9.2. Interacting Two-Fluid Scenario. Let us now consider the interaction
between dark and barotropic �uids. For this purpose, we can write the continuity
equations for dark �uid and barotropic �uids as

ρ̇m + 3
ȧ

a
(ρm + pm) = Q, (9.48)
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and

ρ̇D + 3
ȧ

a
(ρD + pD) = −Q. (9.49)

The quantity Q expresses the interaction between the dark components. Since
we are interested in an energy transfer from the dark energy to dark matter, we
consider Q > 0. This assumption ensures that the second law of thermodynamics
is fulˇlled [111]. Here we emphasize that the continuity Eqs. (9.48) and (9.49)
imply that the interaction term (Q) should be proportional to a quantity with units
of inverse of time, i.e., Q ∝ 1/t. Therefore, a ˇrst and natural candidate can be the
Hubble factor H multiplied by the energy density. Following Amendola et al. [3]
and Gou et al. [77], we consider

Q = 3Hσρm, (9.50)

where σ is a coupling constant. Using Eq. (9.50) in Eq.(9.48) and after integrating,
we obtain

ρm = ρ0a
−3(1+ωm−σ). (9.51)

In view of (9.51), ρD and pD can be expressed in term of scale factor a(t):

ρD = 3
(

ȧ2

a2
+

k

a2

)
− ρ0a

−3(1+ωm−σ) (9.52)

and

pD = −
(

2
ä

a
+

ȧ2

a2
+

k

a2

)
− ρ0(ωm − σ)a−3(1+ωm−σ), (9.53)

respectively.
As in the case of noninteracting �uids, we again study the three cases.
9.2.1. Ansatz I. Inserting (9.14) into (9.49) and (9.53), we obtain

ρD =
3n2

(t − t0)2
+

3k

(t − t0)2n
− ρ0(t − t0)−3n(1+ωm−σ) (9.54)

and

pD = −
[
n(3n − 2)
(t − t0)2

+
k

(t − t0)2n
+ ρ0(ωm − σ)(t − t0)−3n(1+ωm−σ)

]
, (9.55)

respectively. Inserting (9.54) and (9.55) into (9.5), we can ˇnd the EoS parameter
of dark ˇeld as

ωD = −

⎡
⎢⎢⎣

n(3n − 2)
(t − t0)2

+
k

(t − t0)2n
+ ρ0(ωm − σ)(t − t0)−3n(1+ωm−σ)

3n2

(t − t0)2
+

3k

(t − t0)2n
− ρ0(t − t0)−3n(1+ωm−σ)

⎤
⎥⎥⎦ .

(9.56)
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It is observed that, unlike the minimal coupling case, the EoS parameter is an
increasing function of time though for open and �at Universes and a decreasing
function of time for a closed one. At the later stage of evolution all the three
tend to the same constant value independent of the type of the Universe.

The expressions for the matter-energy density Ωm and dark-energy density
ΩD are given by

Ωm =
ρm

3H2
=

ρ0

3n2
(t − t0)−3n(1+ωm−σ) (9.57)

and

ΩD =
ρD

3H2
= 1 +

k

n2(t − t0)2(n−1)
− ρ0

3n2
(t − t0)−3n(1+ωm−σ), (9.58)

respectively. From Eqs. (9.57) and (9.58), we obtain

Ω = Ωm + ΩD = 1 +
k

n2(t − t0)2(n−1)
, (9.59)

which is the same as Eq. (9.59). Therefore, we observe that in the interacting
case the density parameter has the same properties as in the noninteracting case.
The expressions for deceleration parameter and jerk parameter are also the same
as in the case of noninteracting case.

Studying the interaction between the dark energy and ordinary matter will
open a possibility of detecting the dark energy. It should be pointed out that
evidence was recently provided by the Abell Cluster A586 in support of the
interaction between dark energy and dark matter [23, 49]. We observe that in
noninteracting case both open and �at Universes can cross the phantom region,
whereas in interacting case only open Universe can cross phantom region.

9.2.2. Ansatz II. Let us now study the interacting system of two-�uid scenario
for the second assumption given by (9.28). In this case we obtain

ρD = 3
(

n + t

2t

)2

+
3k

tnet
− ρ0(tnet)−

3
2 (1+ωm−σ) (9.60)

and

pD = −
[
3

(
n + t

2t

)2

− n

t2
+

k

tnet
− ρ0(ωm − σ)(tnet)−

3
2 (1+ωm−σ)

]
, (9.61)

respectively. The EoS parameter of dark ˇeld now reads

ωD = −
3

(
n + t

2t

)2

− n

t2
+

k

tnet
− ρ0(ωm − σ)(tnet)−

3
2 (1+ωm−σ)

3
(

n + t

2t

)2

+
3k

tnet
− ρ0(tnet)−

3
2 (1+ωm−σ)

. (9.62)
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It is observed that, unlike the minimal coupling case, the EoS parameter is an
increasing function of time for open and �at Universes and a decreasing function
of time for a closed one. At the later stage of evolution all the three tend to the
same constant value independent of the type of the Universe.

The expressions for the matter-energy density Ωm and dark-energy density
ΩD are given by

Ωm =
ρm

3H2
=

4ρ0t
2

3(t + n)2
(tnet)−

3
2 (1+ωm−σ) (9.63)

and

ΩD = 1 +
4k

tn−2et(n + t)2
− 4ρ0t

2

3(t + n)2
(tnet)−

3
2 (1+ωm−σ), (9.64)

respectively. Hence, we obtain

Ω = Ωm + ΩD = 1 +
4k

tn−2et(n + t)2
, (9.65)

which is the same as Eq. (9.34). Therefore, we observe that in the interacting
case the density parameter has the same properties as in the noninteracting case.
The expressions for deceleration parameter and jerk parameter are also the same
as in the case of noninteracting case.

9.2.3. Ansatz III. Finally we study the case when the scale factor is given
by (9.38). In this case, for dark energy density and pressure of dark energy we
obtain

ρD = 3
(

n + t

2t

)2

+
3k

tnet
− ρ0(tnet)−

3
2 (1+ωm−σ) (9.66)

and

pD = −
[
3

(
n + t

2t

)2

− n

t2
+

k

tnet
− ρ0(ωm − σ)(tnet)−

3
2 (1+ωm−σ)

]
, (9.67)

respectively. The EoS parameter of dark ˇeld in this case looks

ωD = −
3

(
n + t

2t

)2

− n

t2
+

k

tnet
− ρ0(ωm − σ)(tnet)−

3
2 (1+ωm−σ)

3
(

n + t

2t

)2

+
3k

tnet
− ρ0(tnet)−

3
2 (1+ωm−σ)

. (9.68)

It is observed that, unlike the minimal coupling case, the EoS parameter is an
increasing function of time for open and �at Universes and a decreasing function
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of time for a closed one. At the later stage of evolution all the three tend to the
same constant value independent of the type of the Universe.

The expressions for the matter-energy density Ωm and dark-energy density
ΩD are given by

Ωm =
ρm

3H2
=

4ρ0t
2

3(t + n)2
(tnet)−

3
2 (1+ωm−σ) (9.69)

and

ΩD = 1 +
4k

tn−2et(n + t)2
− 4ρ0t

2

3(t + n)2
(tnet)−

3
2 (1+ωm−σ), (9.70)

respectively. The expression for Ω = Ωm + ΩD in this case coincides with that
of noninteracting case, i.e.,

Ω = Ωm + ΩD = 1 +
4k

tn−2et(n + t)2
. (9.71)

9.3. Physical Acceptability and Stability of Solutions. For the stability of
corresponding solutions in both noninteracting and interacting models, we should
check that our models are physically acceptable. For this, ˇrstly, it is required
that the velocity of sound is less than that of light, i.e.,

0 � vs =
dp

dρ
< 1. (9.72)

In view of (9.2b) and (9.2a) we ˇnd that

vs = −1
3
−

2
d

dt

(
ä

a

)
− 3ρ0σ(1 + ωm − σ)a−3(1+ωm−σ) ȧ

a

3
d

dt

(
ȧ2

a2

)
− 6k

a2

ȧ

a

, (9.73)

where we have taken into account the interaction. Setting σ = 0, we come to the
noninteracting case. Being the ansatz III the most general one, we shall study the
stability for that case only. In this case, we ˇnd for the interacting case

vs = −1
3

+
2n(2 − n − t) + 3ρ0σ(1 + ωm − σ)(n + t) t2(tnet)−3(1+ωm−σ)/2

3(n + t)[n + 2kt2−ne−t]
.

(9.74)
As one sees, we can always choose n in such a way that the model satisˇes the
condition (9.72).
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Fig. 40. Speed of sound with respect to
cosmic time for different values of n

Figure 40 shows the sound speed
with respect to cosmic time.

Secondly, let us study the energy
conditions. The weak energy condition
is given by

ρ � 0, ρ + p � 0, (9.75)

while the dominant energy condition has
the form

ρ � |p|. (9.76)

The strong energy condition reads

ρ + 3p � 0. (9.77)

From the Eqs. (9.2b) and (9.2a) on
account of interaction we ˇnd

ρ = 3

[(
ȧ

a

)2

+
k

a2

]
, (9.78)

ρ + p = 2

[(
ȧ

a

)2

+
k

a2

]
− 2

ä

a
+ ρ0σa−3(1+ω−σ), (9.79)

ρ + 3p = −6
ä

a
+ 3ρ0σa−3(1+ω−σ). (9.80)

Fig. 41. Energy condition versus time for
k = 0

For the ansatz (9.38) the foregoing
equations give

ρ = 3

[(
n + t

2t

)2

+
k

tnet

]
, (9.81)

ρ + p =

[(
n + t

2t

)2

+ 2
k

tnet

]
+

+
n

t2
+ ρ0σ(tnet)−3(1+ω−σ)/2, (9.82)

ρ + 3p = 3
n

t2
− 3

2
(n + t)2

t2
+

+ 3ρ0σ(tnet)−3(1+ω−σ)/2. (9.83)

As we see from Figs. 41Ä43, the weak and dominant energy conditions (9.75)
and (9.76) for k = 0 and k = 1, i.e., for �at and closed models are satisˇed. But
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Fig. 42. Energy condition versus time for
k = +1

Fig. 43. Energy condition versus time for
k = −1

for k = −1, i.e., for open model, this condition does not hold for the later stage
of evolution. The strong energy condition holds only at the early stage of the
evolution.

Based on the above discussion, we conclude that the corresponding solutions
are physically acceptable.

CONCLUDING REMARKS ON THE RESULTS

In this review, we have studied the evolution of the Universe ˇlled with dark
energy with or without perfect �uid. In doing so, we considered a number of
cosmological models, namely Bianchi type I, III, VI0, VI, and FRW ones. For
the anisotropic cosmological models we have used proportionality condition as
an additional constraint.

In case of a BVI model, we found the exact solutions to the ˇeld equations
in quadrature. It was found that if the proportionality condition is used, this
together with the nondiagonal Einstein equation leads to the isotropic distribution
of energyÄmomentum tensor, i.e., T 1

1 = T 2
2 = T 3

3 . This fact allows one to solve
the equation for volume scale V exactly. The behavior of EoS parameter ω is
thoroughly studied.

A new anisotropic BVI0 DE model with variable EoS parameter ω has been
investigated by using the law of variation for the Hubble parameter proposed by
Berman [20] which yields a constant value of deceleration parameter. In this
case, it is found that two of the principal momenta are equal, i.e., T 1

1 = T 2
2 . It is

observed that, in early stage, the EoS parameter ω is positive, i.e., the Universe
was matter-dominated in early stage but in late time, the Universe is evolving
with negative values, i.e., the present epoch. DE model presents the dynamics of
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EoS parameter ω whose range is in good agreement with the acceptable range by
the recent observations [82,93,94,186].

An anisotropic Bianchi type-V model is studied. It is found that under the
proportionality condition the components of the energyÄmomentum tensor obey
T 1

1 + T 2
2 = 2T 3

3 . As a result like BVI0 spaceÄtime, we need extra assumption
to solve the equation for V , which is taken to the variation law of Hubble pa-
rameter. The model is thoroughly studied and the results are compared with
observational data.

An anisotropic Bianchi type-III DE model with variable EoS parameter ω has
been investigated, which is new and different from the other author's solutions.
In the derived DE model of the Universe, the cosmological term is a decreasing
function of time and it approaches a small positive value at late time (i.e., the
present epoch). The value of cosmological ®constant¯ for the model is found to
be small and positive, which is supported by the recent observations.

A new anisotropic B-I DE model with variable EoS parameter ω has been
investigated, which is different from the other author's solutions. The proposed
law of variation for the Hubble parameter yields a constant value of deceleration
parameter.

A spatially homogeneous and anisotropic locally rotationally symmetric
Bianchi-I spaceÄtime ˇlled with perfect �uid and anisotropic DE possessing dy-
namical energy density are studied. Studying the interaction between the ordinary
matter and DE will open up the possibility of detecting DE. It should be pointed
out that evidence was recently provided by Abell-Cluster A586 in support of
interaction between DE and dark matter.

In the derived model, the EoS parameter of DE (ω(de)) is obtained as time
varying and it is evolving with negative sign which may be attributed to the
current accelerated expansion of Universe. Also note that the isotropic distribution
of DE is not possible in LRS Bianchi type-I spaceÄtime because the isotropic
distribution of DE leads to the positive value of DP which cannot explain the
current accelerated expansion of Universe while for anisotropic distribution of DE,
DP evolves with negative sign. The distance modulus curve of derived model is
in good agreement with SNLS-type Ia supernovae for high red-shift value which
in turn implies that the derived model is physically realistic.

A system of two �uids within the scope of a spatially �at and isotropic FRW
model is studied. The role of two �uids either minimally or directly coupled in
the evolution of the dark energy parameter has been investigated. In doing so,
we have used three different anséatze regarding scale factor, that gives rise to a
variable decelerating parameter. It is observed that in noninteracting case both
open and �at Universes can cross the phantom region whereas in interacting case
only open Universe can cross phantom region. The stability and acceptability of
the solution obtained are also investigated.
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