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The kinetic theory is applied to the nuclear Fermi liquid. The nuclear collective dynamics
is treated in terms of the observable variables: particle density, current density, pressure, etc. The
in�uence of Fermi-surface distortion, relaxation processes and memory effects on the nuclear dynamics
is studied. We show that the presence of the dynamic Fermi-surface distortion gives rise to some
important consequences in the nuclear dynamics which are absent in classical liquids. We discuss
the nuclear small amplitude excitations, the spinodal instability, the nuclear ˇssion and the bubble
instability in heated Fermi liquid in the presence of the memory effects.
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INTRODUCTION

The theoretical study of many-particle systems implies two essential ingredi-
ents: the knowledge of the interparticle interaction and the technics to solve the
many-body Shréodinger equation. In the case of the presence of a small parameter
(e.g., ˇne-structure constant in atomic physics or quantum electrodynamics), the
quntum-mechanical perturbation theory can be effectively applied whereas the
variational approaches are more proper in the case of strong interparticle inter-
action. A signiˇcant feature of a nucleus is that the free-space nucleonÄnucleon
interaction is strongly renormalized inside the nucleus. This fact leads to the
additional difˇculties in a solving of the nuclear many-body problem because its
description requires the use of some effective nucleonÄnucleon interaction which
cannot be established from the ˇrst principle. Moreover, the effective nucleonÄ
nucleon interaction depends usually on the nucleon surroundings and becomes an
object of the variational procedure also [1].

Note that due to the use of the effective interaction, the equation of state
(EOS) for nuclei shows the saturated behavior which is similar to the classical
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van der Waals equation of state. In particular, the nuclear matter evolves through
the phase-separation and spinodal instability boundaries and may exhibit the ˇrst-
and second-order (liquid-gas) phase transitions [2]. Note also that the study of
nuclear many-body systems within the variational approaches subsided by the
effective nucleonÄnucleon interaction has a conceptual advantage because allows
one to connect the fundamental nuclear characteristics such as the EOS with basic
ˇrst principles.

One of the most intriguing problems of modern nuclear physics is the inves-
tigation of nuclear collective dynamics [3]. In general, the collective motion of
the nuclear Fermi liquid is in�uenced strongly by the Fermi motion of nucleons
and is accompanied by the dynamic distortion of the Fermi surface in the mo-
mentum space [4]. The presence of the dynamic Fermi-surface distortion gives
rise to some important consequences in the nuclear dynamics which are absent
in classical liquids. The dynamics of a nuclear Fermi liquid is determined by the
pressure tensor instead of the scalar pressure as in a classical liquid. This fact
changes the conditions for the propagation of the isoscalar and isovector sound
excitations and creates a strong transverse component in the velocity ˇeld of the
particle �ow. Furthermore, because of the Fermi-surface distortion, the scattering
of particles on the distorted Fermi surface becomes possible and the relaxation
of collective motion occurs [5]. The equations of motion of nuclear Fermi liquid
take then a non-Markovian form. The memory effects depend here on the relax-
ation time and provide a connection between both limiting cases of the classical
liquid (short relaxation time limit) and the quantum Fermi liquid (long relaxation
time limit). The Markovian dynamics only exists in these two limiting cases.

The below-used approach is the macroscopic one and involves into consid-
eration the equations of motion for the macroscopic observable values such as
the particle density or the nuclear shape parameters. Note that both the macro-
scopic and microscopic approaches can be effectively used to study the nuclear
collective motion. The main theoretical approaches to the microscopic description
of nuclear collective excitations are based upon the Random Phase Approxima-
tion (RPA), which is, essentially, the linear approximation to the time-dependent
HartreeÄFock theory [3]. We note also the microscopic quasiparticleÄphonon ap-
proach which was successfully used by the V.G. Soloviev's group in Dubna [6]
to describe the nuclear low-lying state as well as the Giant Multipole Resonance
(GMR) region.

In this article, we will pay close attention to the nuclear dynamics start-
ing from the self-consistent mean-ˇeld approximation and the collisional kinetic
theory. The interparticle interaction enters into consideration in both the self-
consistent mean ˇeld and the collision integral. The nuclear dynamics is de-
termined then in terms of local collective variables such as the mean particle
density, velocity ˇeld, pressure tensor, etc. The key elements of this approach
are the Fermi motion of nucleons and the Fermi-surface distortion which lead to
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the memory effects on the nuclear dynamics. We note that taking into consid-
eration the Fermi-surface distortion effects allows the description of a new class
of phenomena, most famous of which are Giant Multipole Resonances (GMR).
Furthermore, a scattering of particles on the distorted Fermi surface gives rise to
the �uid viscosity. We will show that the development of instability in nuclear
processes like binary ˇssion or multifragmentation in heavy-ion reactions also
depends signiˇcantly on the dynamic Fermi-surface distortion.

1. COLLISIONAL KINETIC EQUATION
AND FLUID DYNAMICS APPROACH

In the present paper, we will follow the BoltzmannÄVlasov kinetic theory
for the Wigner distribution function taking into consideration the Fermi-surface
distortions and the relaxation processes caused by the interparticle collision on
the distorted Fermi surface [5]. There are at least two advantages of the kinetic
approach to the quantum many-body problem: (i) In contrast to the quantum
Shréodinger equation, the kinetic equation incorporates the damping effects because
of the relaxation processes. Note that for the quantum approach it cannot be
achieved directly because of Hermitian's condition for the quantum Hamiltonian.
(ii) The kinetic equation can be easily generalized to the case of ˇnite temperature
T , whereas the temperature cannot be implanted straight to the quantum equations
of motion. The semiclassical kinetic approach to the nuclear dynamics was
widely used in many studies. One can mention here the direct solution of the
semiclassical BoltzmannÄVlasov kinetic equation [7] and the use of the method
based on the phase-space moments of the Wigner distribution function [8,9].

We are starting from the self-consistent BoltzmannÄVlasov kinetic equation
in the following form [5]:

∂

∂t
f +

p
m

· ∇rf − ∇rV · ∇pf = St [f ], (1)

where f ≡ f(r,p; t) is the Wigner distribution function; V ≡ V (r,p; t) is
the self-consistent mean ˇeld and St [f ] is the collision integral. The momentum
distribution is distorted during the time evolution of the system and the distribution
function takes the form

f(r,p; t) = fsph(r,p; t) +
∑
l�1

δfl(r,p; t), (2)

where fsph(r,p; t) describes the spherical distribution in momentum space and l
is the multipolarity of the Fermi-surface distortion. We point out that the widely-
used time-dependent ThomasÄFermi (TDTF) approximation and the correspond-
ing nuclear liquid-drop model (LDM) are obtained from Eq. (1) if one takes the
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distribution function f(r,p; t) in the following restricted form: fTF(r,p; t) =
fsph(r,p; t) + δfl=1(r,p; t) instead of Eq. (2), see [10]. Below we will extend
the TDTF approximation taking into account the dynamic Fermi-surface distor-
tion up to multipolarity l = 2 [11, 12]. We will also assume that the collective
motion is accompanied by a small deviation of the momentum distribution from
the spherical symmetry, i.e., even in the case of large amplitude motion, the main
contribution to the distribution function f(r,p; t) is given by the ThomasÄFermi
term fTF(r,p; t) and the additional term δfl=2(r,p; t) provides the small correc-
tions only. The lowest orders l = 0 and 1 of the Fermi-surface distortion (which
are not necessary small) do not contribute to the collision integral because of the
conservation laws [5], and the linearized collision integral with respect to small
perturbation δfl=2(r,p; t) is given by

St [f ] = −δfl=2

τ
, (3)

where τ is the relaxation time.
An additional advantage of the kinetic approach is the possibility of reducing

the kinetic equation (1) to the macroscopic equations of motion for the observable
values. One of such a kind examples gives the transition from Eq. (1) to the
equations of motion for the local values like particle density

ρ ≡ ρ(r, t) =
∫

g dp
(2π�)3

f(r,p; t),

velocity ˇeld

u ≡ u(r, t) =
1
ρ

∫
gdp

(2π�)3
p
m

f(r,p; t),

and pressure tensor

Pνμ ≡ Pνμ(r, t) =
1
m

∫
gdp

(2π�)3
(pν − muν)(pμ − muμ)f(r,p; t),

where g is the spinÄisospin degeneracy factor. Taking the ˇrst three moments in
p space from the kinetic equation (1), one can obtain [4]:

(i) Continuity equation

∂

∂t
ρ + ∇ν(ρuν) = 0. (4)

(ii) Euler-like equation

mρ
∂

∂t
uν + mρ∇μuνuμ + ∇νP + ρ∇ν

δEpot

δρ
= −∇μPνμ, (5)

where Epot is the potential energy of the interparticle interaction.
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(iii) Memory equation

∂

∂t
P ′

νμ + P
∂

∂t
Λνμ = −1

τ
P ′

νμ, (6)

where P ≡ P (r, t) is the isotropic part of the pressure tensor

P (r, t) =
1

3m

∫
gdp

(2π�)3
p2fsph(r,p; t),

P ′
νμ ≡ P ′

νμ(r, t) is the deviation of the pressure tensor from its isotropic part,
P (r, t), due to the Fermi-surface distortion

P ′
νμ(r, t) =

1
m

∫
dp

(2π�)3
(pν − muν)(pμ − muμ)δfl=2(r,p; t),

and εpot is the potential energy density related to the self-consistent mean ˇeld
V as V = δεpot/δρ. The tensor Λνμ in Eq. (6) is given by

Λνμ = ∇νχμ + ∇μχν − 2
3
δνμ∇λχλ,

where χν ≡ χν(r, t) is the displacement ˇeld related to the velocity ˇeld as
uν ≡ uν(r, t) = ∂χν(r, t)/∂t.

From Eq. (6) we ˇnd the pressure tensor which is given by the following
form:

P ′
νμ(r, t) = P ′

νμ(r, t0) −
t∫

t0

dt′ exp
(

t′ − t

τ

)
P (r, t′)

∂

∂t′
Λνμ(r, t′). (7)

The tensor P ′
νμ(r, t0) is determined by the initial conditions. In the case of the

quadrupole distortion of the Fermi surface, the tensor P ′
νμ(r, t0) is derived by the

initial displacement ˇeld χν(r, t0).
Collecting Eqs. (5) and (7), we obtain the basic equation of the �uid dynamics

approach (FDA) in the following form (we assume here the initial condition
P ′

νμ(r, t0) = 0 for simplicity):

mρ
∂

∂t
uν + mρ∇μuνuμ + ∇νP + ρ∇ν

δEpot

δρ
−

−∇μ

t∫
t0

dt′ exp
(

t′ − t

τ

)
P (r, t′)

∂

∂t′
Λνμ(r, t′) = 0. (8)

Here and in the further similar expressions, the repeated Greek indices are to be
understood as summed over. Equation (8) represents the non-Markovian, NavierÄ
Stokes-like equation of motion. The integral (the so-called memory integral) in the
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right-hand side of Eq. (8) occurs due to the Fermi-distortion effect, i.e., due to the
term δfl=2(r,p; t). This effect affects the nuclear dynamics extremely strongly.
It can be easily seen that in the limit of short relaxation time τ → 0, Eq. (8) is
reduced to the classical viscous NavierÄStokes equation. In the general case, the
memory integral in Eq. (8) gives rise to both the time irreversible viscosity and
to the additional, time-dependent conservative force, see below.

2. SMALL AMPLITUDE DYNAMICS

Considering a small amplitude motion, we will linearize Eq. (8) with respect
to the small variations of particle density δρ(r, t) and the displacement ˇeld
χν(r, t). Assuming also the periodic motion with δρ(r, t) ∼ exp(−iωt) and
using the continuity equation (4), we obtain from Eq. (8) the following equation
of motion for the Fourier transform χν,ω ≡ χν,ω(r) of the displacement ˇeld:

−ρeqω
2χν,ω + L̂χν,ω = ∇μσνμ,ω , (9)

where the conservative terms are abbreviated by

L̂χν,ω = − 1
m

ρeq∇ν

[
δ2Epot

δρ2

]
eq

∇μρeqχμ,ω − Im
(

ωτ

1 − iωτ

)
∇μ

Peq

m
Λνμ,ω.

Here and below the subscript ®eq¯ means the equilibrium. In particular,

ρeq ≡ ρeq(r) =
∫

g dp
(2π�)3

feq(r,p),

Peq ≡ Peq(r) =
1

3m

∫
g dp

(2π�)3
p2feq(r,p; t).

In Eq. (9), σνμ is the viscosity tensor

σνμ,ω = −i(ω/m)ηωΛνμ,ω,

where the viscosity coefˇcient

ηω = Re
(

τ

1 − iωτ

)
Peq.

We will demonstrate applications of Eq. (9) which are related to the nuclear
collective motion.

2.1. Compression Zero- and First-Sound Modes. The equation of mo-
tion (9) is closed. It can be applied to both the isoscalar and isovector sound
excitations. We will consider the Fermi surface distortion and the memory effects
on the isoscalar compression mode. To simplify the problem, we will assume
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the constant equilibrium bulk density ρeq(r) = ρ0 = const. Using the continu-
ity equation (4), we obtain from Eq. (9) the equation for the density variation
δρ = −∇ν(ρeqχν) in the following form [13]:

ω2δρ +
(

K ′
ω

9m

)
∇2δρ = iω

(
4ηω

3mρeq

)
∇2δρ. (10)

Here

K ′
ω = K + 8

(
εkin

ρ

)
eq

Im
(

ωτ

1 − iωτ

)
, (11)

where εkin is the kinetic energy density and K is the incompressibility of nuclear
matter

K ≡ 9ρ2
0

(
δ2Epot/A

δρ2

)
eq

.

The result of Eq. (11) can be interpreted as a renormalization of the Fermi-
liquid incompressibility caused by both the Fermi-surface distortions and the
memory effects in Eq. (8). Thus, there is a signiˇcant difference between the static
nuclear incompressibility coefˇcient, K , i.e., derived as a stiffness coefˇcient
with respect to a change in the bulk density, and the dynamic one, of Eq. (11),
associated with the sound propagation. This difference is due to the second
term on the RHS of Eq. (11) caused by the Fermi-surface distortion effects.
The quantity ηω in Eq. (10) determines the time-irreversible contribution to the
pressure tensor P ′

αβ and can be considered as the viscosity coefˇcient due to
the relaxation occurring on the distorted Fermi surface. Expression (10) is valid
independently of the nucleon's collision rate. The viscosity goes to zero in both
the rare, τ → ∞, and frequent, τ → 0, collision limits.

Assuming a plane wave solution δρ ∼ exp (iq · r−iωt) one obtains from
Eq. (10) the following dispersion relation:

ω2 =
(

K ′
ω

9m

)
q2 − iω

(
4ηω

3mρeq

)
q2. (12)

The solution of this equation deˇnes the complex wave number q (ω is real). A
simple solution to Eq. (12) can be obtained in two limiting cases of the frequent
collision (ˇrst sound) regime, ωτ → 0, and the rare collision (zero sound) regime,
ωτ → ∞. The sound velocity u = ω/q is given by

u = u1 =

√
K

9m
if ωτ → 0 and by u = u0 =

√
K + ΔK

9m
if ωτ → ∞, (13)

where ΔK ≈ 8(εkin/ρ)eq ≈ (24/5)εF ≈ 200 MeV (we adopted the kinetic
Fermi energy εF ≈ 40 MeV). We point out that the value of ΔK is comparable
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with the static incompressibility K ≈ 220 MeV and we have u0 ≈
√

2u1. The
factor

√
2 in this relation is due to the restriction � � 2 for the multipolarity

� of the Fermi-surface distortion. In a general case of arbitrary � this factor is
increased to

√
3 [14]. The result (13) means that in contrast to the ˇrst sound

(frequent collision) regime, the sound velocity of the compression mode cannot,
in general, be used directly to extract the static incompressibility of K because of
the additional contribution from the Fermi-surface distortion effects which result
in the renormalization of the incompressibility K into K ′

ω. Note also that the
viscosity ηω of the Fermi liquid disappears in both limiting cases of the frequent
and rare collisions, see above the derivation of ηω,

ηω ∼ τ if ωτ → 0 and ηω ∼ 1/τ if ωτ → ∞.

Using both asymptotic sound velocity u1 and u0, the solution to the dispersion
relation (12) can be written as

q =
ω

u0
(n + iκ),

where the refraction coefˇcient n and the attenuation coefˇcient κ (both real) are
obtained from the following equation:

n + iκ =

√
1 − iωτ

(u1/u0)2 − iωτ
. (14)

In the frequent collision (ˇrst sound) regime we obtain from Eq. (14)

n =
u0

u1
, κ = ωτ

(
u0

2u1

) [(
u0

u1

)2

− 1

]
if ωτ 	 1.

In the opposite case of the rare collision (zero sound) regime we obtain

n = 1, κ =

[
1 −

(
u1

u0

)2
]

/(2ωτ) if ωτ 
 1.

The attenuation coefˇcient κ in both limiting regimes is a complicated func-
tion of the frequency because of the retardation effect (ω dependency) in the
relaxation time τ [14]. In the case of sound propagation in a hot nuclear matter,
the competition between the temperature smoothing effects in the equilibrium
distribution function feq and the dynamic distortions of the particle momentum
distribution leads to the following expression for the relaxation time [14]:

τ =
�τ0

(�ω)2+(2πT )2
, (15)

where T is the temperature of nuclear matter and τ0 is the constant which depends
on the in-medium nucleonÄnucleon cross section.
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In Fig. 1, we have plotted both coefˇcients n and κ as obtained from Eqs. (14)
and (15). In the high-temperature limit, the system goes to the frequent collision
(ˇrst sound) regime with the saturated refraction coefˇcient n ≈ u0/u1 ≈

√
3

(we use the factor
√

3 instead of
√

2 assuming the contribution of the higher
multipolarities � > 2 in the Fermi-surface distortion as was mentioned above) and
the attenuation coefˇcient κ ∼ τ ∼ 1/T 2. In the opposite low temperature limit,
the system is close to the zero sound regime with n ≈ 1. We point out a shift
of both n and κ by nonzero values at T → 0. This is due to the memory effect
in the relaxation time τ of Eq. (15): in the very high frequency limit, the system
can exist close to the ˇrst sound regime at n ≈

√
3 even at zero temperature. The

position of the maximum of κ(T ) in Fig. 1 can be interpreted as the transition
temperature Ttr of zero- to ˇrst-sound regimes in a hot Fermi system. The value
of Ttr depends slightly on the sound frequency ω and it is shifted to smaller
values with the increase of ω.

Fig. 1. The refraction, n, and the attenuation, κ, coefˇcients of the isoscalar sound wave
as functions of temperature T . The calculation was performed for two eigenenergies
�ω = 1 MeV (solid line) and �ω = 1 eV (dashed line). The dotted line was obtained with
the vacuum nucleonÄnucleon cross section for �ω = 1 MeV

In conclusion to this section, we would like to note again that there is
a signiˇcant difference between the static nuclear incompressibility coefˇcient,
K , i.e., derived as a stiffness coefˇcient with respect to a change in the bulk
density, and the dynamic one, K ′

ω, associated with the zero sound velocity,
see Eq. (11). This difference occurs due to the memory and the Fermi-surface
distortion effect on the Fermi-liquid dynamics. The Fermi-surface distortion
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phenomenon is responsible for the collisional relaxation of the collective modes
in a Fermi liquid and for the non-Markovian character of the nuclear matter
viscosity (memory effect in the viscosity ηω, Eq. (8)). The memory effects in the
viscosity play an essential role in the description of the temperature dependence of
the refraction coefˇcient n. We note also the bell-shaped form of the attenuation
coefˇcient κ as a function of the temperature T , see Fig. 1. This peculiarity of
κ(T ) provides a new criterion for the determination of the transition temperature
Ttr between the zero-sound and ˇrst-sound regimes in hot nuclear matter.

2.2. Incompressible Fermi Liquid. Isoscalar Giant Quadrupole Resonance.
For the description of shape oscillations of a certain multipolarity L of a liquid
drop of radius R(t) we specify the liquid surface as

ρ = ρ0Θ(R(t) − r),

where

R(t) = Req

[
1 +

∑
M

αLM(t)YLM(θ, φ)

]
.

We will assume that the liquid is incompressible, ∇νχν = 0, and irrotational,
∇ × χ = 0. The displacement ˇeld χν(r, t) can be written then in the following
form:

χν(r, t) =
∑
M

aLM,ν(r)αLM(t),

where

aLM,ν(r) =
1

LRL−2
0

∇ν(rLYLM(θ, φ)).

Multiplying Eq. (9) by ma∗
LM,ν , summing over ν and integrating over r space, we

obtain the equation of motion for the Fourier transform of the collective variables
αLM(t) [12],

−ω2BLαLM,ω + (C(LDM)
L + C′

L)αLM,ω − iωγL(ω)αLM,ω = 0. (16)

The collective mass BL is found to be

BL = m

∫
dr ρeq

∑
ν

|aLM,ν |2 =
3

4πL
AmR2

eq.

The static (ω-independent) stiffness coefˇcient C
(LDM)
L of the liquid drop model

is given by [15,16]

C
(LDM)
L =

1
4π

(L − 1)(L + 2)bSA2/3 − 5
2π

L − 1
2L + 1

bC
Z2

A1/3
,
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where bS and bC are the surface energy and the Coulomb energy coefˇcients
appearing in the nuclear mass formula, respectively. We point out that the nucle-
onÄnucleon interaction, manifested at the starting equations (8), is presented
in Eq. (16) only implicitly through the phenomenological stiffness coefˇcient

C
(LDM)
L .

At ˇnite frequencies ω, the distortion of the Fermi surface causes an additional
contribution, C′

L in Eq. (16), to the stiffness coefˇcient. It is found as

C′
L ≡ C′

L(ω) = Im
(

ωτ

1 − iωτ

) ∫
drPeqΛ

(LM)

νμ ∇μa∗
LM,ν , (17)

where
Λ

(LM)

νμ = ∇νaLM,μ + ∇μaLM,ν .

Using derivation of aLM,ν , we obtain for the integral in Eq. (17)∫
dr ρeqΛ

(LM)

νμ ∇μa∗
LM,ν = 2ρ0

(L − 1)(2L + 1)
L

R3
0

and
C′

L(ω) = dL Im
(

ωτ

1 − iωτ

)
Peq.

The proportionality to (ωτ)2, for small values of this product, explains, why such
a correction does not appear in the hydrodynamic limit ωτ → 0.

For the friction coefˇcient γL(ω) in Eq. (16) we obtain

γL(ω) = ηω

∫
drΛ

(LM)

νμ ∇μa∗
LM,ν = 2

(L − 1)(2L + 1)
L

R3
0 ηω.

The friction coefˇcient γL(ω) disappears in two limiting cases of the frequent
collision (ˇrst sound) regime, ωτ → 0, and the rare collision (zero sound) regime,
ωτ → ∞. Both, C′

L and γL depend implicitly on the temperature via the T
dependence of the relaxation time τ in Eq. (15).

The homogeneous equation of motion (16) provides the following secular
equation for the surface eigenvibrations:

−ω2 BL +
(
C

(LDM)
L + C′

L(ω)
)
− i ω γL(ω) = 0. (18)

The transport coefˇcients C′
L(ω) and γL(ω) are ω-dependent because of the

memory effects. To solve Eq. (18), both the coefˇcients have to be deˇned in the
complex ω plane through analytical continuation of the corresponding expressions
for C′

L(ω) and γL(ω).
Assuming the zero-sound regime ωτ → ∞ and γL(ω) = 0, the eigenfrequen-

cies of shape vibrations are derived by the following transcendental equation:

−ω2 BL +
(
C

(LDM)
L + C′

L(ω)
)

= 0, (19)
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with Im ω = 0. The energy of the surface eigenmode of the incompressible
Fermi-liquid drop is given by

�ωL = �

√
C

(LDM)
L + C′

L(ωL)
BL

. (20)

Usually one has C
(LDM)
L 	 C′

L and Eq. (20) leads to the following A dependence
of the energy of the surface eigenmode:

�ωL ∼ A−1/3.

This is in contrast to the prediction of the traditional liquid drop model [16],
where

�ω
(LDM)
L = �

√
C

(LDM)
L

BL
∼ A−1/2.

The inclusion of the Fermi-surface distortion term C′
L(ω) into the eigenen-

ergy (20) is crucially important for correct description of the centroid energies
of the nuclear isoscalar giant multipole resonances with L � 2, within a �uid

Fig. 2. Dependence of the energy �ω2+ of nuclear strong collectivized isoscalar 2+ ex-
citations (isoscalar giant quadrupole resonance) on the mass number A. The dashed line
is for the liquid drop model and the solid line is for the Fermi-liquid drop where the
Fermi-surface distortion effects are taken into account
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dynamic approach. As an example, we consider the quadrupole mode L = 2.
In Fig. 2, we show the result of calculation of the energy of quadrupole eigenvibra-
tions (isoscalar giant quadrupole resonance) within the Fermi-liquid drop model
(FLDM) given by Eq. (20) (solid line) and the traditional liquid-drop model en-

ergy �ω
(LDM)
L (dashed line) [15, 16]. Here we have adopted the Fermi energy

εF = 40 MeV. The FLDM result agrees very well with the experimental value
of the energy of the isoscalar quadrupole resonance �ωexp

2+ ≈ 63A−1/3 MeV.
One can see also that the traditional liquid-drop model contradicts signiˇcantly
the experimental data for �ωexp

2+ . Discussing the Giant Multipole Resonance phe-
nomenon, it is necessary to recall the pioneer work [17] by A.B.Migdal on
the phenological description of the Isovector Giant Dipole Resonance (IGDR).
Migdal's work represents one of the ˇrst usages of the liquid-drop model to
study the nuclear collective dynamics. This idea was intensively used later in
many applications to the nuclear ˇssion and the tests of different approaches to
the problem of Giant Multipole Resonances. Actually, in the present paper, we
extend Migdal's conception taking into consideration the nucleon Fermi motion
in nuclear Fermi-liquid drop.

3. SPINODAL INSTABILITY

With decreasing bulk density or increasing internal excitation energy (tem-
perature) the liquid drop (saturated many-body system) reaches the regions of
mechanical or thermodynamical instabilities with respect to small density �uctua-
tions (spinodal instability). We will here consider the peculiarities of development
of the spinodal instability in a Fermi-liquid drop mainly focussing on the boundary
conditions and the memory effects. We will take into account the relaxation and
the dynamic Fermi-surface distortions and compare both regimes of the frequent
and rare collisions.

Let us consider small density �uctuations. Using the continuity equation (4),
we will rewrite Eq. (9) in the following form:

m
∂2

∂t2
δρ = ∇νρeq∇ν

δE

δρ
+ ∇ν∇μP ′

νμ. (21)

The pressure tensor P ′
νμ can be expressed through the displacement ˇeld χν(r, t),

see Eq. (7). Assuming also δρ ∼ e−iωt, the Fourier transform P ′
νμ,ω to the

pressure tensor P ′
νμ is given by

P ′
νμ,ω =

iωτ

1 − iωτ
PeqΛνμ,ω.

Below, we will use the extended ThomasÄFermi approximation for the internal
kinetic energy [3] and the Skyrme-type forces for the interparticle interaction [18].
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The equation of state then reads

E[ρ] =
∫

dr

{
�

2

2 m

[
3
5

(
3π2

2

)2/3

ρ5/3 +
1
4

ηW
(∇ρ)2

ρ

]
+

+
3
8

t0 ρ2 +
1
16

t3 ρ3 +
1
64

(9 t1 − 5 t2)(∇ρ)2
}

,

where tk are the Skyrme-force parameters and ηW is the Weizséacker correction
to kinetic energy density for the ˇnite Fermi system. Note that the Skyrme-force
parameters tk are connected with the Landau scattering amplitudes [14] by the
following relation:

F0 =
9 ρ0

8 εF

[
t0 +

3
2

t3 ρ0

]
m∗

m
+ 3

(
1 − m∗

m

)
, F1 = 3

(
m∗

m
− 1

)
,

where m∗ is the effective nucleon mass and

m

m∗ = 1 +
m ρ0

8 �2
(3 t1 + 5 t2).

We will assume a sharp surface behavior of ρeq having a bulk density ρ0 and
an equilibrium radius R0. Taking into account the continuity equation (4), the
equation of motion (21) is reduced in the nuclear interior to the following form
(we consider the isoscalar mode) [19]:

−m ω2 δρ =
(

1
9

K − 4
3

iωτ

1 − iωτ

(
Peq

ρ0

))
∇2δρ − 2(β + ts ρ0)∇2∇2δρ, (22)

where

β =
�

2

8 m
η W , ts =

1
64

(9 t1 − 5 t2).

We note the presence of the anomalous dispersion term in Eq. (22) (last term
on the r.h.s). This term contains both the Weizséacker correction to the kinetic
energy density (the term with β) and the potential energy contribution due to
the momentum dependence in the effective Skyrme forces (the term with ts).
Both of them contribute to the nuclear surface energy. At the saturated nuclear
density, ρ0 = ρsat ≈ 0.17 fm−3, the potential energy term ∼ ts ρ0 gives the
dominant contribution. However, for decreasing density ρ0 the potential term
goes down and becomes comparable with the Weizséacker correction term for the
bulk density ρ0,crit ≈ 0.3 ρsat used below in numerical calculations. We point
out that the anomalous dispersion term in Eq. (22) removes the unphysical inˇnite
growth rate of short-wavelength �uctuations of the particle density, occurring in
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the case of inˇnite nuclear matter with t1 = t2 = 0. The solution to Eq. (22) for
a ˇxed multipolarity L is given by

δρ(r, t) = ρ0 jL(qr)YLM(θ, φ)αLM(t),

where q is the wave number and αLM(t) is the amplitude of the density os-
cillations. We will distinguish between stable and unstable regimes of density
�uctuations. In the case of a stable mode at K > 0, a solution of Eq. (22) leads
to the following dispersion relation:

ω2 = u2q2 − iω
γ(ω)
m

q2 + κsq
4. (23)

Here, u is the sound velocity

u2 = u2
1 + κv,

u1 is the velocity of the ˇrst sound

u2
1 =

1
9m

K,

γ(ω) is the friction coefˇcient

γ(ω) =
4
3
Re

[
τ

1 − iωτ

]
Peq

ρ0
,

and

κv =
4
3
Im

[
ωτ

1 − iωτ

]
Peq

mρ0
, κs =

2
m

(β + tsρ0).

The quantities κv and γ(ω) appear due to the Fermi-surface distortion effect. The
dispersion relation (23) determines both the real and the imaginary part of the
eigenfrequency ω.

Let us consider now the volume instability regime, K < 0, and introduce a
growth rate Γ = −iω (Γ is real, Γ > 0). Using Eq. (23), one obtains

Γ2 = |u1|2 q2 − ζ(Γ) q2 − κs q4, (24)

where

ζ(Γ) =
4

3m

Γτ

1 + Γτ

Peq

ρ0
.

The dispersion equation (24) is valid for arbitrary relaxation time τ and
includes the in�uence of the collisional relaxation and the memory effects on the
bulk instability. It allows us to consider both the frequent and the rare interparticle
collision regimes for the instability growth rate.
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(i) Frequent collision regime: Γτ → 0.
The contribution from the dynamic distortion of the Fermi surface, κv, can

be neglected in this case and we have from Eq. (24)

Γ2 = |u1|2 q2 − Γ
(

γ̃

m

)
q2 − κs q4, (25)

where γ̃ = (8/15)εF τ is the friction coefˇcient. In the case of small friction
coefˇcient γ̃, one obtains from Eq. (25)

Γ2 ≈ |u1|2q2 − κsq
4 − γ̃

m
q2

√
|u1|2q2 − κsq4. (26)

The amplitude of the density oscillations, δρL(r, t), grows exponentially if
Γ > 0. Expression (26) determines two characteristic values of the wave number
q, namely, qmax, where the growth rate reaches a maximum of Γmax, and qcrit,
where Γ goes to zero, i.e.,

Γ = Γmax at q = qmax < qcrit, and Γ = 0 at q = qcrit.

The values of qmax and qcrit are obtained from, see Eq. (26),

∂Γ
∂q

∣∣∣∣
q=qmax

= 0 and q2
crit =

|u1|2
κs

at u2
1 < 0.

Thus, the critical wave number qcrit does not depend on the friction. However,
the presence of friction reduces the instability, see also Fig. 3 below.

(ii) Rare collision regime: Γτ → ∞.
In this case, we have from Eq. (24)

Γ2 = |u1|2q2 − κ′
vq

2 − κsq
4,

where

κ′
v =

4
3m

Peq

ρeq
.

The critical value qcrit and the value qmax are given by

q2
crit =

|u1|2 − κ′
v

κs
, q2

max =
1
2

q2
crit.

Thus, the distortion of the Fermi surface (presence of term κ′
v in qcrit) leads to a

decrease of the critical value qcrit, i.e., the Fermi-liquid drop becomes more stable
with respect to the bulk density �uctuations due to the dynamic Fermi-surface
distortion effects.
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Fig. 3. The dependence of the instability growth rate Γ on the wave number q in units of
Fermi wave number kF = pF /�. The calculations were performed for the Skyrme force,
temperature T = 6 MeV, bulk density ρ0 = 0.3ρeq with ρeq = 0.145 fm−3 and relaxation
time parameter τ0 = 9.2 MeV−1. The solid curve is for the Fermi-liquid drop (Eq. (24))
which takes into account the anomalous dispersion term ∼ q4 and the memory effects.
The dashed curves are the results for the nonviscous liquid: curve 1 is for the usual liquid,
i.e., neglecting the Fermi-surface distortion effects, and curve 2 is for the Fermi liquid.
The straight line is for inˇnite nuclear matter, i.e., neglecting anomalous dispersion term
∼ q4 in Eq. (24)

In Fig. 3, we show the instability growth rate Γ as obtained from Eq. (24).
We also show in this ˇgure the result for the nonviscous inˇnite nuclear matter
neglecting the anomalous dispersion term ∼ q4 and the nonviscous ˇnite liquid
drop neglecting the Fermi-surface distortion effects. In a ˇnite system, the non-
monotony behavior of the instability growth rate as a function of the wave number
q is due to the anomalous dispersion term ∼ q4 in Eq. (24) created by the gradient
terms in the equation of state. We point out that the ˇnite system becomes more
stable with respect to short-wave-length density �uctuations at q > qmax. We can
also see that the presence of viscosity (friction) decreases the instability and leads
to a shift of the position of the maximum of Γ(q) to the left. This means that the
point from the left slope of curve Γ(q) can appear on its right slope. This fact
is essential for the derivation of the character of spinodal instabilities (ˇssion or
multifragmentation) in ˇnite nuclei. Namely, the nucleus which is unstable with
respect to the ˇssion mode can become unstable to the multifragmentation due to
the relaxation processes.
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The position of the maximum of the instability growth rate Γ(q) is shifted to
a longer wavelength due to the Fermi surface distortion (FSD) effects (compare
dashed curves 1 and 2 in Fig. 3). Thus, the most unstable mode is shifted to
the region of the creation of larger clusters. Similarly to the above-mentioned
viscosity effect on the instability growth rate Γ(q), the FSD effects can change
the position of q on the slopes of the curve Γ(q), with respect to the position
qmax of the maximum.

4. LARGE AMPLITUDE MOTION. NUCLEAR FISSION

The nuclear large amplitude dynamics, in particular nuclear ˇssion, can be
studied in terms of only a few collective variables like nuclear shape parame-
ters [15]. Such a kind of approach is usually associated with the liquid drop
model and its extensions and is acceptable for a slow collective motion, where
the fast intrinsic degrees of freedom exert forces on the collective variables lead-
ing to a Markovian transport equation. An essential assumption is that the LDM
provides a good approximation for a smooth part, Ẽpot, of the collective potential
energy, Epot, and can be then used for the quantum calculations of Epot within

the shell-correction method [20], obtaining Epot = Ẽpot + δU , where δU is the
shell correction. On the other hand, it is well known (see also Fig. 2 above) that
the LDM is not able to describe some strongly collective nuclear excitations such
as the isoscalar giant multipole resonances. It is because the LDM ignores the
important features of the nucleus as a Fermi liquid. In general, the collective mo-
tion of the nuclear Fermi liquid is accompanied by the dynamic distortion of the
Fermi surface and the smooth energy Ẽpot should be subsidized by an additional

contribution, Ẽpot,F , which is caused by the dynamic Fermi-surface distortion
effect and is absent in the standard LDM [11, 12]. We point out that the energy
Ẽpot,F is a smooth quantity (in the sense of the shell-correction method) and it
cannot be recovered by taking into consideration the quantum shell corrections to
the adiabatic (static) potential energy deformation.

Assuming that the nucleus is an incompressible and irrotational �uid with
a sharp surface in r space, we will reduce the local equation of motion (5)
to the equations for the variables q = {q1, q2, . . . , qN}, that specify the shape
of the nucleus. The continuity equation (4) has to be complemented by the
boundary condition on the moving nuclear surface S. Below we will assume that
the axially symmetric shape of the nucleus is deˇned by rotation of the proˇle
function ρ = Y (z, {qi(t)}) around the z axis in the cylindrical coordinates ρ, z, ϕ.
The velocity of the nuclear surface is then given by [21]

uS =
N∑

i=1

ūiq̇i,
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where

ūi =
∂Y/∂qi

Λ
, Λ =

√
1 +

(
∂Y

∂z

)2

.

The potential of the velocity ˇeld takes the form

φ =
N∑

i=1

φi q̇i,

where the potential ˇeld φi ≡ φi(r, q) is determined by the equations of the
following Neumann problem:

∇2φi = 0, (n∇φi)S =
1
Λ

∂Y

∂qi
, (27)

where n is the unit vector which is normal to the nuclear surface. Using Eqs. (4)
and (5) with multiplying Eq. (5) by ∇μφi and integrating over r, one obtains

N∑
j=1

⎡⎣Bij(q)q̈j +
N∑

k=1

∂Bij

∂qk

·
qj

·
qk +

t∫
t0

dt′ exp
(

t′ − t

τ

)
κij(t, t′)

·
qj(t′)

⎤⎦ =

= −∂Epot(q)
∂qi

. (28)

Here Bij(q) is the inertia tensor

Bij(q) = mρ0

∮
ds ūiφj .

The adiabatic collective potential energy, Epot(q), does not contain the contribu-
tion from the Fermi-surface distortion effect and it is given by

Epot(q) =
∫

dr (εkin(r,�) + εpot(r,�)).

The memory kernel κi,j(t, t′) in Eq. (28) is given by

κij(t, t′) = 2
∫

drP (r, q(t′))
[
∇ν∇μφi(r, q(t))

][
∇ν∇μφj(r, q(t

′))
]
.

The displacement ˇeld χν(r, q) and the potential ˇeld φi ≡ φi(r, q) are deter-
mined by a solution to the Neumann problem (27). In the one-dimensional case
and the irrotational �ow, Eq. (27) leads to a velocity ˇeld potential of quadrupole
type [21]

φ(r, q) =
1
4q

(2z2 − x2 − y2).
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In this case q = q(t) is the dimensionless elongation of the ˇgure in units of the
radius R0 = r0A

1/3 of the nucleus, and the basic equation of motion (28) takes
the following form [22]:

B(q)
··
q +

∂B(q)
∂q

·
q
2

= −∂Epot(q)
∂q

−
t∫

t0

dt′ exp
(

t′ − t

τ

)
κ(t, t′)

·
q(t′). (29)

Here, the mass parameter B(q) and the memory kernel κ(t, t′) are given by

B(q) =
1
5

AmR2
0

(
1 +

1
2q3

)
and κ(t, t′) =

κ0

q(t)q(t′)
,

where κ0 = (4/5m)πρ0p
2
F R3

0.
To illustrate the memory effect on the large amplitude motion, we will apply

Eq. (29) to the motion from the barrier point to the ®scission¯ point. Following
the Kramers model, we will approximate the potential energy Epot(q) by an
upright oscillator (1/2)CLDM(q − q0)2 with q0 = 1 and an inverted oscillator
Ef − (1/2)C̃LDM(q − qf )2 which are joined smoothly as shown in Fig. 4. We
will consider the motion from the barrier point B to the ®scission¯ point C. The
behavior of q(t) depends dramatically on the memory effects and the relaxation
time. In Fig. 5, we show the result for two values of the relaxation time τ =
3 · 10−23 s and τ = 4 · 10−22 s.

Fig. 4. Dependence of the potential energy Epot(q) on the shape parameter q for the
Kramers model. The dimensionless parameter q is the elongation of the ˇgure in units of
the radius R0 = r0A

1/3 of the nucleus
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Fig. 5. Time variation of the change of the shape parameter Δq starting from the saddle
point B (see Fig. 4), for various values of the relaxation time τ . The curves 1 and 2
correspond to the values of τ = 3 · 10−23 s and τ = 4 · 10−22 s, respectively. We have

used the initial conditions Δq(t0) = 0, Δ
·
q(t0) = v0, and Δ

··
q(t0) = 0 with the following

parameters qf = 1.6, A = 236, and �ωf = �

√
|C̃LDM|/Bf = 1.16 MeV. The shape

parameter q is dimensionless, see Fig. 4. The initial velocity v0 was derived using the
initial kinetic energy Ekin,0 = (1/2)Bfv2

0 = 1 MeV

In the case of the very short relaxation time, τ = 3 · 10−23 s, the memory
effects in Eq. (29) play a minor role only and the amplitude of motion is approx-
imately an exponentially growing function, similar to the case of Newton motion
from the barrier in the presence of the friction forces, see curve 1 in Fig. 5. The
friction coefˇcient can be derived here from Eq. (29) at ωF,fτ 	 1 and it is
given by γ = γf = κfτ = ω2

F,fBfτ ∼ τ , where ωF,f =
√

κf/Bf is the charac-
teristic frequency for the eigenvibrations caused by the Fermi-surface distortion
effect. The behavior of Δq(t) is changed signiˇcantly with an increase of the
relaxation time. At large enough relaxation time, the descent from the barrier is
accompanied by the damped oscillations (curve 2 in Fig. 5).

The origin of such a kind of oscillations is the following. It can be shown
that the memory integral in Eq. (29) provides the conservative time-reversible
(elastic) force Fi,cons. The elastic force Fi,cons acts always against the driving
force −∂Epot(q)/∂q. That creates the effect of the hindrance for the descent
from the barrier B. This effect depends on both the collective velocity and the
relaxation time. In the case of slow motion, the hindrance is absent similarly
to the ˇrst sound regime for small amplitude vibrations. The hindrance effect
grows if the collective velocity is growing. Due to this property, the velocity
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of descent goes down, i.e., the hindrance effect becomes weaker and the nucleus
starts to accelerate again, etc. Such a kind of change of the hindrance effect
along the descent trajectory leads to the above-mentioned shape oscillations which
accompany the descent of the nucleus from the ˇssion barrier.

The memory integral in Eq. (29) contains also the time-irreversible part pro-
viding the damping (friction). The friction coefˇcient is essentially different in
both above-mentioned regimes. In the rare collision regime ωF,fτ 
 1, the
friction coefˇcient is obtained from Eq. (29) as γ = γf = Bf/τ ∼ 1/τ . This
behavior is opposite to the τ dependence of γf ∼ τ in the frequent collision
regime ωF,f τ 	 1. Such a feature of friction coefˇcient γ is a consequence of
the memory effects in the Fermi liquid. To connect both limiting cases of rare
and frequent collisions, there can be used the following bell-shaped extrapolation
form for the friction coefˇcient:

γ = γf = ωF,fBf
ωF,fτ

1 + (ωF,fτ)2
. (30)

Both the friction force ∼ γf and the elastic force Fi,cons(q, t) hinder the
descent of the nucleus from the ˇssion barrier. The elastic force Fi,cons(q, t) is
due to the Fermi surface distortions and it is absent in the LDM. The presence of
force Fi,cons(q, t) leads to an essential delay of the descent process with respect
to the analogous result obtained from the Newton motion in the LDM. The
in�uence of the memory effect on the descent time tsc from the barrier to the

Fig. 6. Dependence upon relaxation time of the time, tSC, required to travel a nucleus
from the saddle point B to the ®scission¯ point C (see Fig. 4). Solid line represents the
result of the calculation in the presence of the memory effects and dashed line is for the
case of Markovian (no memory) motion with the friction forces. The initial kinetic energy
is Ekin = 1 MeV
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®scission¯ point qsc is shown in Fig. 6. As is seen from Fig. 6, in the absence of
the memory effects (dashed lines), the descent time qsc is about (1−3) · 10−21 s
and, as it should be, the value of tsc goes to the limit of nonfriction motion
for both the frequent collision regime, τ → 0, and the rare collision regime,
τ → ∞. This property of the descent with no-memory effects is the result of
the Fermi-liquid approximation (30) for the friction coefˇcient γf . In contrast
to this Markovian motion, the non-Markovian descent time tsc evaluated in the
presence of the memory effects, i.e., in rare collision regime, grows monotonously
with the relaxation time (see solid line in Fig. 6). The additional delay of the
motion in the rare collision region is due to the contribution of the elastic force
Fi,cons(q, t) and caused by the memory integral which acts against the driving
force −∂Epot(q)/∂q.

5. BUBBLE INSTABILITY OF OVERHEATED NUCLEAR MATTER

Bellow we will consider the time development of the bubble instability in
the thermodynamically metastable (overheated) nuclear matter. We will mainly
focus on the dynamic effects related to the properties of the Fermi liquid. In
particular, we will take into consideration the Fermi-surface distortion effects,
memory effects (non-Markovian dynamics) and the relaxation processes in the
boiled Fermi liquid.

The boiling process takes place in the form of the generation of vapor bubbles
which then grow to macroscopic dimensions [23]. A liquid which is overheated
in the usual sense, i.e., with respect to a phase separate by a plane surface, can be
underheated with respect to a vapor bubble of a ˇnite radius R. Let us consider
the change of the free energy of the liquid due to the formation of a bubble of an
arbitrary radius R (i.e., not necessary stable). At ˇxed pressure P , temperature T
and isospin asymmetry parameter X = (N − Z)/(N + Z), it is given by the
change of the corresponding thermodynamical potential

ΔΦ = Φ − Φ0.

Here Φ0 = μliq(Aliq +Avap) corresponds to the absence of the bubble, where μliq

is the chemical potential of liquid phase, A = N + Z is the number of nucleons.
Here and below the indexes ®liq¯ and ®vap¯ denote the liquid and vapor phases,
respectively. Taking into account that the surface free energy of the bubble is
given by 4πR2σ, we will write, see [23],

ΔΦ = (μvap − μliq)
4π

3
R3ρvap + 4πR2σ,

where σ is the surface tension coefˇcient. At ˇxed P , T , and Xliq, both chemical
potentials μvap and μliq are also ˇxed and they are related to each other by the



MEMORY EFFECTS IN NUCLEAR FERMI LIQUID 1103

equilibrium condition

δΦ
δAliq

= 0 at Aliq + Avap = A = const, (31)

where
Φ = μliqAliq + μvapAvap + 4πR2σ. (32)

Using Eqs. (31) and (32), one obtains (for metastable vapor phase μvap < μliq)

μliq − μvap =
2σ

ρvapR∗ .

Here R∗ is the radius of the so-called critical bubble which is given by [23,24]

R∗ =
2σT0

ρvapφ(T − T0)
, (33)

where φ is the latent heat of evaporation and T0 is the temperature of saturated
vapor in the case of plane geometry at a ˇxed pressure P0. Finally, we obtain
the following result for the change of the thermodynamical potential in the heated
liquid:

ΔΦ ≡ ΔΦ(R) = 4πσ

(
R2 − 2R3

3R∗

)
. (34)

In Fig. 7, we have plotted the thermodynamical potential as a function of the
bubble radius (see Eq. (34)) for the overheated liquid nuclear matter with T > T0

Fig. 7. Dependence of the thermodynamical potential (see Eq. (34)) of metastable Fermi
liquid on the radius of the bubble. The solid line is for the overheated Fermi liquid with
T > T0 and the dashed line is for T < T0
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(solid curve) and for a temperature T below the boiling temperature T0 (dashed
curve). The position of the maximum of the curve ΔΦ is located at R = R∗ and it
is shifted to the left with the increase of the overheating temperature δT = T −T0

because of Eq. (33). As one can see from Fig. 7, the point R = R∗ is the critical
point for the metastable phase in the following sense: to start the boiling process,
i.e., to start the process of increasing the size of the bubbles, the system must
pass through the barrier ΔΦ(R) to reach the region of R > R∗.

To describe the development of instability of the bubble with a nonequi-
librium size R > R∗, one needs to know the equation of motion for the time-
dependent bubble radius R ≡ R(t). To obtain the macroscopic equation of motion
for R(t) in a heated Fermi liquid, we will start from the basic local equation of
motion (8). A solution of the continuity equation (4) for the spherical bubble
leads to the following displacement ˇeld in the surrounding liquid [25]:

χν(r, t) =
R3

3r2

rν

r
, r � R.

Multiplying Eq. (8) by χμ = uμ/
.

R and integrating over r, one obtains the follow-
ing non-Markovian equation for the collective variable R(t), see also Eq. (29):

B
..

R +
1
2

∂B

∂R

.

R
2

+

t∫
t0

dt′
.

R(t′) exp
(

t′ − t

τ

)
K(t, t′) = −∂Epot

∂R
. (35)

The inertial parameter B in Eq. (35) can be derived from the deˇnition of the
collective kinetic energy Ekin. Namely,

Ekin =
m

2

∫
dr ρu2 =

1
2
B

.

R
2
.

Assuming ρvap 	 ρliq ≈ ρ = ρ0θ(r − R), we obtain

B = 4πmρ0R
3.

The collective potential energy Epot(R) in Eq. (35) can be identiˇed with the
thermodynamical potential of Eq. (34):

Epot(R) = ΔΦ(R).

Finally, the memory kernel K(t, t′) in Eq. (35) is given by [26]

K(t, t′) =
32
5

πρ0εF R2(t)/R(t′).

We point out that the non-Markovian form of Eq. (35) is again due to the
effects of the Fermi-surface distortion. Similarly to results of the previous section,
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the memory integral in Eq. (35) provides both the friction and the conservative
time-reversible force. For two limiting cases of rare (τ → ∞) and frequent
(τ → 0) collision regimes, Eq. (35) is reduced to the standard Newton equation.
For both limiting cases, we obtain from Eq. (35)

B∗ ∂2

∂t2
R(t) = −k′R − γ

∂

∂t
R(t), (36)

where k′ = k = ∂2ΔΦ(R)/∂R2 = −8πσ if τ → 0 and k′ = k + κ̃ if τ → ∞,
where κ̃ = (32/5)πρ0εF R∗. The friction coefˇcient γ in Eq. (36) can be derived
similarly to γf in Eq. (30) and it is given by

γ = ωF B∗ ωF τ

1 + (ωF τ)2
,

which provides the correct limit for γ in both cases τ → 0 and τ → ∞. Here we
have used the following notations: ωF =

√
κ̃/B∗ and B∗ = 4πmρ0R

∗3.
In Fig. 8, we show the solutions of both Eqs. (35) and (36) for ΔR(t) =

R(t) − R∗ in the case of descent from the right slope of the barrier ΔΦ(R) for
R > R∗. In the case of very short relaxation time τ � 3 · 10−23 s (frequent col-
lision regime), the memory effects in Eq. (35) play only a minor role (Markovian
regime) and the amplitude of motion is approximately an exponentially growing
function, similar to the case of Newton motion from the barrier in the presence

Fig. 8. Time variation of the bubble shape parameter R near the barrier point R = R∗ for
various values of the relaxation time τ . The dashed and solid curves correspond to the
values of τ = 3 · 10−23 s obtained from Eq. (35) and τ = 4.5 · 10−22 s obtained from
Eq. (36), respectively
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of the friction forces of Eq. (36), see dashed curve in Fig. 8. At large enough
relaxation time, the bubble growth depends essentially on the memory effects
(non-Markovian regime). The solid line in Fig. 8 shows ΔR(t) obtained from
Eq. (35) for τ = 4.5 ·10−22 s. As can be seen from Fig. 8, the behavior of ΔR(t)
is changed dramatically with the increase of the relaxation time. For the large
relaxation time, a signiˇcant time delay in the increase of the bubble size arises
due to the non-Markovian effects. Moreover, the bubble growth is accompanied
by damped oscillations. These oscillations are due to the memory integral in
Eq. (35). The characteristic frequency, ωR, and the corresponding damping para-
meter, ωI , can be derived considering a small amplitude limit of Eq. (35) for the
motion near the barrier point R = R∗. Assuming the small amplitude motion, we
will look for the solution to Eq. (35) in the form

ΔR =
3∑

i=1

Ci exp (λit),

where the coefˇcients Ci are determined by the initial conditions. Differentiating
Eq. (35) over time we ˇnd that the eigenvalues λi can be obtained as solutions to
the following secular equation:(

λ2 +
k

B∗

) (
λ +

1
τ

)
+

κ̃

B∗λ = 0. (37)

In the case of the zero-relaxation-time limit, τ → 0, one obtains from Eq. (37) a
nondamped motion with λ = ±

√
|k| /B∗, i.e., the time evolution is derived by

the static stiffness coefˇcients k. In an opposite case of rare collisions, τ → ∞,
the solution to Eq. (37) leads to a motion with λ = ±i

√
(−|k| + κ̃)/B∗. In

contrast to the previous case, the additional contribution, κ̃, appears at the stiffness
coefˇcient −|k| + κ̃ because of the Fermi surface distortion effect.

In a general case of arbitrary τ , the solution (35) for a small amplitude limit
takes the form

ΔR = Cζ eζt + Aω e−Γt/2� sin
(

Et

�

)
+ Bω e−Γt/2� cos

(
Et

�

)
. (38)

The characteristic frequency, ωR, and the corresponding damping parameter, ωI ,
can be derived from the imaginary and real parts of the complex conjugated roots
of Eq. (37) as λ = −ωI ± iωR with Γ = 2�ωI and E = �ωR.

In Fig. 9, we show the dependence of the instability growth rate parameter ζ
(see Eq. (38)), the energy of eigenvibrations E and the damping parameter Γ
on the relaxation time τ . For small enough values of the relaxation time τ �
3 · 10−23 s, the function ΔR(t) does not oscillate with time and it takes the
following form (compare with Eq. (38) and see the dashed lines in Fig. 9):

ΔR = Cζ eζt + C1 e−Γ1t/2� + C2 e−Γ2t/2�. (39)
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Fig. 9. Dependence upon relaxation time τ of the characteristic energy E and width Γ
of oscillations and the instability growth rate parameter ζ for the case of Eq. (38) and
for damping parameters Γ1 and Γ2 in the case of the solution given by Eq. (39). The
dimensionless values of E, Γ, and ζ are shown in units of Fermi energy εF , i.e., E =
E/εF , Γ = Γ/εF , and ζ = ζ/εF

We point out that the behavior of the friction coefˇcient γ in the above-mentioned
relaxation regimes is essentially different. In the rare collision regime ωF τ 
 1,
the friction coefˇcient γ in the equation of motion (36) is obtained
from Eq. (35) as γ = B∗/τ ∼ 1/τ . This τ dependence of the friction coef-
ˇcient, γ ∼ 1/τ , is caused by the dynamic Fermi-surface distortions and it is
opposite to the τ dependence of γ ∼ τ in the short relaxation regime ωF τ 	 1
(see above).

We also point out that the presence of the characteristic oscillations of the
bubble radius behind the barrier with R > R∗ can lead to the emission of
γ quanta because of charged nuclear Fermi liquid. The energy, E = �ωR, and
the damping, Γ = 2�ωI , of this radiation depend on both the phase transition, T0,
and the overheating, δT , temperatures. This fact can be used for the determination
of both temperatures T0 and δT from the measurement of the characteristics E
and Γ of the corresponding resonance line. For the uncharged nuclear matter, the
energy E and the damping parameter Γ are given in Fig. 1.
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CONCLUSIONS

Starting from kinetic consideration, we have reduced the collisional kinetic
equation for the Wigner distribution function f(r,p; t) to the equations of motion
for several local quantities: the particle density ρ, the velocity ˇeld, u and the
pressure tensor Pνμ. The structure of these equations signiˇcantly depends on
the distortion of the Fermi surface in momentum space. The obtained equations
of motion have, in general, a non-Markovian form. The memory kernel depends
here on the relaxation time and provides a connection between both limiting cases
of the classical liquid dynamics (short relaxation time limit) and the quantum
Fermi-liquid dynamics (long relaxation time limit). The origin of the memory
phenomenon in Fermi-liquid dynamics can be easily understood if we take into
consideration the following fact. In the ˇnite Fermi liquid, the deformation of the
surface of the liquid drop or the distortion of the particle density in r space lead
to the distortion of the Fermi surface in p space in each point of the liquid drop.
On the distorted Fermi surface, the interparticle collisions are possible producing
the two-body relaxation and the damping. That leads to the retarded damping of
the basic motion in r space.

The Markovian dynamics exists in two above-mentioned limiting cases only.
We also point out that the short-relaxation-time limit corresponds to the ˇrst sound
propagation in an inˇnite Fermi liquid. In the opposite case of rare collision, one
obtains a zero sound propagation with a strong renormalized sound velocity.
Moreover, in the case of a ˇnite drop dynamics, the deformation energy of the
Fermi-liquid drop growth signiˇcantly when compared to the corresponding one
in the classical liquid drop.

An important consequence of the Fermi-surface distortion is the fact that the
interparticle collisions and the memory effects contribute to both the conservative
and the dissipative parts of the equations of motion for the local quantities ρ, u,
and Pνμ. The memory effects are especially important for a proper description
of the transition from the zero-sound regime at low temperature to the ˇrst-
sound regime at high temperatures. The memory effects in�uence strongly the
nuclear collective motion increasing the nuclear stiffness coefˇcients and allow-
ing us to describe the nuclear giant resonances (volume and surface collective
modes).

It was shown in Sec. 4 that the memory effects in�uence signiˇcantly the
development of instability near the ˇssion barrier for a large enough relaxation
time. The memory integral brings an additional elastic force which acts against
the adiabatic driving force, leading to a hindrance of the drift of the nucleus from
the barrier to the scission point and inducing characteristic shape oscillations of
the nucleus. In general, the Fermi surface distortions and the memory effects
lead to an important consequence of hindrance of the collective motion and, in
particular, the nuclear ˇssion. This hindrance occurs due to the time-reversible
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elastic force caused by the memory integral and it represents an additional effect
beside the hindrance due to the usual time-irreversible friction force.

We have studied the development of the bubble instability of heated nuclear
matter and showed that the bubble instability and boiling of Fermi liquid itself
are strongly in�uenced by the memory effects also, if the relaxation time is
large enough. In this last case, an expansion of the bubble is accompanied
by characteristic shape oscillations of the bubble radius which depend on the
parameters of the memory kernel and the relaxation time. The oscillations of
the bubble radius are due to the elastic force induced by the memory integral.
This elastic force acts against the usual adiabatic force and hinders the growth
of the bubble radius. In contrast to the case of the Markovian motion, the delay
in the boiling process is caused here by both the conservative elastic and the
friction forces.
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