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ON PATH DEPENDENCE OF THE QCD
CORRELATION FUNCTIONS

I. O. Cherednikov ∗

Universiteit Antwerpen, Antwerp, Belgium

Gauge-invariant hadronic and vacuum correlation functions in QCD contain the systems of Wil-
son lines and loops having complicated geometrical structure. Path dependence propagates, therefore,
into such important properties of the quantum correlators as the renormalization-group behaviour,
light-cone peculiarities, evolution, etc. In the present paper, I brie�y overview several instructive
examples of the manifestations of the structure of paths in the hadronic and vacuum correlation
functions with explicit transverse momentum/distance dependence. In particular, the transverse-
momentum-dependent (TMD) parton densities and the skewed jet quenching parameter in Euclidean
and Minkowski spaceÄtime are addressed.
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PACS: 12.38.-t

1. INTRODUCTION: PATH AND SHAPE VARIATIONS
IN THE WILSON LOOP SPACE

Loop space consists of colorless gauge-invariant ˇeld functionals Å expec-
tation values of the products of n Wilson loops [1,2], deˇned, in general, in the
manifold of arbitrary integration paths {Γi}:

Wn [Γ1, . . . , Γn] =
〈

0
∣∣∣∣T 1

Nc
Tr Φ (Γ1) · · ·

1
Nc

Tr Φ (Γn)
∣∣∣∣ 0

〉
, (1)

Φ(Γi) = P exp

⎡
⎣ig

∮
Γi

dzμAμ(z)

⎤
⎦ .
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The gauge ˇelds Aμ belong to the fundamental representation of non-Abelian
gauge group SU(Nc). Although the Wilson loops (2) are gauge invariant, their
deˇnition gives rise to the functional dependence on path and to the additional
singularities due to nontrivial behavior in vicinity of obstructions, cusps or self-
intersections. Moreover, the renormalization and conformal properties of the
Wilson loops possessing light-like segments (or lying completely on the light
cone) are known to be more intricate than those of the Wilson loops deˇned
on off-light-cone integration contours. Therefore, study of the geometrical and
dynamical properties of the loop space which can include, in general case, cusped
light-like Wilson exponentials, will provide us with fundamental information on
the renormalization group behavior and evolution of the various gauge-invariant
quantum correlation functions.

Finding an appropriate and complete set of equations of motion in the loop
space is not straightforward. It is known that the Wilson loops obey the nonper-
turbative MakeenkoÄMigdal (MM) equations [3, 4]:

∂ν
x

δ

δσμν(x)
W1[Γ] = Ncg

2

∮
Γ

dzμ δ(4)(x − z)W2[ΓxzΓzx], (2)

supplied with the Mandelstam constraints∑
aiWni [Γ

i
1, . . . , Γ

i
ni

] = 0. (3)

The MM set of equations follows from the SchwingerÄDyson equations being
applied to the Wilson functionals

δ〈α′|α′′〉 =
i

�
〈α′|δS|α′′〉, (4)

where the quantum action operator S deˇnes variations of arbitrary matrix
elements.

The differential operations in the loop space are the area and path deriva-
tives [3] ∗:

δ

δσμν(x)
Φ(Γ) ≡ lim

|δσμν(x)|→0

Φ(ΓδΓ) − Φ(Γ)
|δσμν(x)| , (5)

∂μΦ(Γ) = lim
|δxμ|

Φ(δx−1
μ Γδxμ) − Φ(Γ)

|δxμ|
. (6)

∗Another deˇnition of the area derivative is also possible
δ

δσμν [x(τ)]
=

τ−0∫

τ+0

dτ ′(τ ′ −

τ)
δ

δxμ(τ ′)

δ

δxμ(τ)
, which had been used in, e.g., [5], to address the similar problems from an

alternative point of view.
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Fig. 1. Area variations allowed for a light-cone Wilson rectangle: we consider only those
area variations which conserve the angles between the sides

However, the MM equations in the form (2) with the differential operations (5), (6)
do not take into account possible discontinuities of the slope of the integration
trajectories on which the Wilson loops are deˇned. In our recent works [6],
we developed an approach which allows one to apply the Schwinger method to
certain classes of the cusped loops (partially) lying on the light-like rays. The
loops of this kind occur, in the ˇrst place, in investigation of the duality between
the n-gluon scattering amplitudes and n-polygonal Wilson loops in N = 4 super-
YangÄMills theory [7]. Moreover, analogous light-like conˇgurations arise in the
soft parts of transverse-momentum-dependent PDFs (see the next Section).

In order to describe the shape variations of such Wilson loops which cor-
respond to the classically conformal invariant transformations, we proposed an
evolution equation which is valid for the planar light-like Wilson rectangular
loops, Fig. 1:

μ
d

dμ

(
δ

δ ln σ
ln W [Γ]

)
= −

∑
Γcusp, (7)

where the area differentials are deˇned in the transverse �z⊥ = 0:

dσ+− = N+dN−, dσ−+ = −N−dN+, (8)

so that the only allowed shape variations are presented in Fig. 1. The area
logarithmic derivation operator then reads

δ

δ ln σ
≡ σμν

δ

δσμν
= σ+−

δ

δσ+−
+ σ−+

δ

δσ−+
. (9)

The r.h.s. of Eq. (7) is deˇned by the sum of the light-cone cusp anomalous
dimensions. The latter appears to be a fundamental ingredient of an effective
quantum action for the Wilson loops with discontinuities of the slope. Equa-
tion (7) suggests, in fact, the duality of the energy (or rapidity, e.g., in the TMD
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case) evolution and geometrical shape variations of the underlying paths. We
made, therefore, a few steps in the understanding of the relationship between the
geometrical properties of the loop space in terms of the area differential evolu-
tion equations, from one side, and the dynamics accumulated in the cusps Å
the angles between the light-like straight lines, from another side. Thus, in the
loop space, the (external) dynamics can be taken into account by introducing the
obstructions to the initially smooth loops, with those obstructions resembling the
sources within the Schwinger ˇeld-theoretical picture. We have demonstrated that
the universal Schwinger quantum dynamical principle is a useful tool to study
some special classes of the elements of the loop space, in particular, the cusped
Wilson exponentials (null polygons) on the light cone.

2. STRUCTURE OF PATHS
IN TRANSVERSE-MOMENTUM-DEPENDENT PARTON DENSITIES

In this section, we address a bit more complicated systems of the Wilson lines,
namely those which enter the operator deˇnitions of the fully gauge-invariant
TMDs. These objects arise naturally in the QCD factorization approach to semi-
inclusive hadronic processes, such as SIDIS, DrellÄYan, etc. In the classical deep
inelastic lH → l′X scattering experiments, by measuring the momentum of the
outgoing lepton l′, we learn about the longitudinal distribution of partons inside
the nucleon. In a reference frame, where the nucleon moves (inˇnitely) fast, this
information is accumulated in the parton distribution functions (PDFs) fa(x, Q2)
in terms of the partonic degrees of freedom: e.g., the Bjorken variable xBj relates
to the fraction of the longitudinal momentum P of the parent hadron possessed
by a parton of the �avor a. Such collinear (integrated) PDFs can be properly
deˇned as completely gauge-invariant (nonperturbative) hadronic matrix elements

f(x; n+, n−, μ2; ) =
1
2

∫
dξ−

2π
e−ik+ξ−×

×
〈
p |ψ̄(ξ−)Wn− [ξ−, 0−]γ+ψ(0−)| p

〉
ξ+,ξ⊥=0

, x =
k+

p+
, (10)

with the renormalization-group properties controlled by the DGLAP evolution
equations (for review and references see [8]). The light-cone components of a
four-vector aμ are

a± =
1√
2
(a0 ± az).

Note that the implicit dependence on the light-like vectors n± is understood
in this deˇnition. Generic semi-inˇnite Wilson lines evaluated along a given
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four-vector w are deˇned as

Ww[0,∞] ≡ P exp

⎡
⎣−ig

∞∫
0

dτ wμ Aμ(ξ + wτ)

⎤
⎦ , (11)

where, in the case under consideration, the vector w can be either light-like
wL = n±, (n±)2 = 0, or transverse wT = l. It is worth noting that one can
relate the moments of the collinear PDFs

MN =
∫

dxxN−1f(x)

to the matrix elements of the local twist-two operators

ON =
(p+)−N

2
〈 p |ψ̄(0){γ+iD+ · · · iD+}sym ψ(0)| p 〉

arising in the operator product expansion on the light cone, thus making them
well-deˇned objects from the ˇeld-theoretical point of view [9].

Another attractive feature of the collinear PDFs (10) is that they imply a
clear interpretation as the probability for a parton inside the nucleon to have the
longitudinal momentum klong = xPlong. This interpretation is most naturally
established when QCD is canonically quantized (and subsequently renormalized)
on equal-®light-cone-time¯ surfaces ξ+ = 0 in a class of singular noncovariant
gauges [10]. This parton number interpretation holds, in the light-cone gauge
A+ = 0, in higher order calculations as well [11Ä13]. However, an important
problem must be solved in order to make the calculations in the light-cone gauge
feasible. Even after imposing the gauge condition A+ = 0, the gauge in not
completely ˇxed: one may still perform a ξ−-independent gauge transformation
U(ξ+, ξ⊥) by virtue of

∂+U(ξ+, ξ⊥) =
∂

∂x− U(ξ+, ξ⊥) = 0.

Therefore, ˇxing the gauge is equivalent to imposing certain boundary conditions
on the gauge ˇeld (see, e.g., [12,14Ä16]). Going over to the conjugate momentum
space, one observes that the ambiguity in the behavior of the gauge ˇeld at light-
cone inˇnity ξ− → ∞ maps over ambiguity of the gluon Green function at small
q+ → 0. A key issue is, therefore, how to get rid of extra complications due to
the emergent ®spurious¯ singularity ∼ [q+]−1 in the free gluon propagator

Dμν(q) =
i

q2 + i0

(
−gμν +

(n−)μqν + (n−)νqμ

[q+]

)
. (12)
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The uncertainty of the pole prescription in Eq. (12) corresponds to the residual
gauge freedom and can be treated without changing the gauge-ˇxing constraint
A+ = 0.

There are several possible pole-prescription-ˇxing procedures that are com-
patible with the light-cone gauge and have been shown to give correct results (at
least, up to the O(α2

s)-order). In particular, the principal value prescription

1
[q+]PV

η

= lim
η→0

1
2

(
1

q+ + iη
+

1
q+ − iη

)

was used in [17] to evaluate the DGLAP kernel in the next-to-leading order. Non-
symmetrical advanced and retarded pole prescriptions are also possible [14, 15].
Although these methods work in some situations, the only pole prescription which
is consistent with the equal-time canonical quantization in the light-cone gauge is
the MandelstamÄLeibbrandt one [18]:

1
[q+]

→ lim
η→0

1
[q+]ML

=

= lim
η→0

(q · n+)
(q · n+)(q · n−) + iη

.= lim
η→0

1
(q · n−) + iη(q · n+)

, (13)

where and in what follows n± are the light-like vectors (n±)2 = 0, n+n− = 1,
and

.= means equality in the sense of the theory of distributions. It was shown
that the free gluon propagator supplied with the ML pole prescription can be
directly derived following the equal-time quantization procedure and is compatible
with well-established results at least up to the O(αs)-order [11, 15, 19]. The
main difference between the q−-independent prescriptions and the ML one (13)
originates in the different situation of poles in the q0 plane, as it is shown and
explained in Fig. 1. Thanks to this feature, one can perform the Wick rotation
of the integration contour to the Euclidean momentum space, and the ultraviolet
divergences can be analyzed by means of the usual power counting procedure
in the Euclidean space. This observation anticipates the absence of overlapping
divergences in the loop calculations with the ML prescription.

It is worth noting that albeit the pole-prescription issues mentioned above
may reveal themselves in the course of the calculation, they are nonvisible in
the case of the collinear PDFs, by virtue of the cancelation of the soft diver-
gences in the virtual and the real gluon exchange graphs. However, those issues
are crucial and unavoidable in unintegrated PDFs [9], which are introduced in
the factorization approach to the semi-inclusive processes. The picture of the
nucleon revealed in the DIS experiments, being essentially one-dimensional, is
still incomplete: in this ®longitudinal¯ picture the transverse degrees of free-
dom of the partons are eliminated by deˇnition and the 3D structure remains
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inaccessible. The study of semi-inclusive processes, such as semi-inclusive deep
inelastic scattering (SIDIS), the DrellÄYan (DY) process, hadronÄhadron colli-
sions, or leptonÄlepton annihilation to hadrons, where (at least) one more ˇnal or
initial hadron is detected and its transverse momentum (and, possibly, its spin) is
observed, calls for the introduction of more involved quantities Å unintegrated
transverse-momentum-dependent (TMD) distribution and fragmentation functions
(see [20] and references therein).

Let us present a brief account of how the problem of the emergent singulari-
ties beyond the tree approximation is approached in different operator deˇnitions
of the (quark) TMDs. At the one-loop level, the following three classes of singu-
larities are expected: (i) simple ultraviolet poles which must be removed by the
standard renormalization procedure; (ii) pure rapidity divergences, which depend
on an additional rapidity parameter, but do not jeopardize the renormalizability
of the TMDs, and can be safely resumed by means of the CollinsÄSoper equa-
tion; (iii) highly undesirable overlapping divergences: they contain the UV and
rapidity poles simultaneously and thus break down the standard renormalizability
of TMDs, calling for a generalized renormalization procedure in order to enable
the construction of a consistent operator deˇnition of the TMDs. Before getting
started with the analysis of the divergences, let us try to learn something from
the tree approximation. The simplest ®unsubtracted¯ deˇnition of ®a quark in
a quark¯ TMD with only the light-like Wilson lines along the vectors n+, n−,
which allows a parton number interpretation in the light-cone gauge, reads

F
(
x,k⊥; n+, n−, μ2

)
=

1
2

∫
dξ−d2ξ⊥
2π(2π)2

e−ik·ξ×

×
〈
p |ψ̄(ξ−, ξ⊥)W†

n− [ξ−, ξ⊥;∞−, ξ⊥]W†
l [∞−, ξ⊥;∞−,∞⊥]×

× γ+Wl[∞−,∞⊥;∞−,0⊥]Wn− [∞−,0⊥; 0−,0⊥]ψ(0−,0⊥)| p
〉

(14)

with ξ+ = 0. Although the formal integration of deˇnition (14) over k⊥ yields
the collinear PDF, Eq. (10),∫

d2 k⊥F
(
x,k⊥; n+, n−, μ2

)
= f(x; n+, n−, μ2), (15)

this is only well-justiˇed in the tree approximation, because the rapidity diver-
gences in the loop corrections prevent a straightforward reduction. It is worth
noting that the normalization of the above TMD

F (0)
(
x,k⊥; n+, n−, μ2

)
=

1
2

∫
dξ−d2ξ⊥
2π(2π)2

×

× e−ik+ξ−+ik⊥·ξ⊥〈p |ψ̄(ξ−, ξ⊥)γ+ψ(0−,0⊥)| p〉 = δ(1 − x)δ(2)(k⊥) (16)
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can be obtained following the canonical quantization procedure in the light-cone
gauge, where the longitudinal Wilson lines disappear and the equal-time commuta-
tion relations for the quark creation and annihilation operators {a†(k, λ), a(k, λ)}
lead immediately to the parton number interpretation of the TMD:

F (0)
(
x,k⊥; n+, n−, μ2

)
∼ 〈 p | a†(k+,k⊥; λ)a(k+,k⊥; λ) | p 〉. (17)

The use of the ®tilted¯ gauge links does not meet this requirement.
Going beyond the tree approximation, one encounters a bunch of singular-

ities mentioned above. To overcome the problems related with them, different
frameworks have been proposed.

Adopting the covariant Feynman gauge, Ji, Ma, and Yuan developed a frame-
work which makes use of the tilted (off-the-light-cone) longitudinal gauge links
lined up along the vector n2

B 	= 0 [21]. In a covariant gauge, the transverse gauge
links at light-cone inˇnity cancel, and the rapidity cutoff ζ = (2p · nB)2/|n2

B|
is introduced to control the deviation of the longitudinal gauge links from the
light-like direction. A subtracted soft factor contains the nonlight-like gauge
links as well. Within this approach, the off-the-light-cone unsubtracted TMDs,
where the light-like vector n− in the longitudinal Wilson lines is replaced by the
tilted vector

nB = (−e2yB , 1,0⊥),

do not satisfy the relation (15), even in the tree approximation Å cf. Fig. 2 and
the caption. However, one can design a ®secondary factorization¯ method which
allows the expression of this TMD (transformed to the impact parameter space
F(x,b⊥)) in terms of a convolution of collinear PDFs and perturbative coefˇcient

Fig. 2. Location of the poles in the complex q0 plane: the poles of the light-cone gluon
propagator with the ML prescription (1) and the poles of the propagator in a covariant
gauge (2) belong to the same quadrants, so that the clock-wise Wick rotation is allowed.
The poles of the light-cone propagator with the principal-value prescription (3), in contrast,
impede that rotation
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functions at small b⊥ [21]. Another subtraction method, also in covariant gauges,
but without the explicit off-the-light-cone regularization in the unsubtracted TMD,
was developed in [22,23]. The corresponding geometry of the light-like and tilted
Wilson lines in the soft factors is shown in Fig. 3, lower panel.

In our works [24], we proposed to study the renormalization-group properties
of the unsubtracted quark TMD (14) and to make use of its one-loop anomalous
dimensions in order to reveal the simplest minimal geometry of the gauge links
in the soft factor which allows one to get rid of the mixed rapidity-dependent
terms. We showed (in the leading O(αs)-order) that the extra contribution to
the anomalous dimension is nothing but the cusp anomalous dimension [19, 26].

Fig. 3. Geometrical structure of integration contours in the unsubtracted TMDs with the
light-like (upper panel) and off-the-light-cone (lower panel) longitudinal gauge links and
their symbolic reduction to the collinear PDFs. In the former case, the transverse gauge
links cancel completely after the k⊥-integration, while the longitudinal gauge links reduce
to the one-dimensional light-like connector Wn[ξ−, 0−]. In the off-the-light-cone situation,
the cancelation of the transverse gauge links at inˇnity is not, at least, straightforward.
Moreover, the integrated conˇguration contains two nonvanishing off-the-light-cone gauge
links which are not equivalent to the simple connector Wn[ξ−, 0−]. Beyond the tree level,
the renormalization group properties of those two objects are also different. I put the
interrogation marks next to the transverse gauge links at inˇnity since I am not aware of
any consistent treatment of them in the TMD formulations with off-the-light-cone (tilted)
Wilson lines. In contrast, the transverse gauge links appear naturally in the ®light-cone¯
frameworks
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Note that in these works we adopted the light-cone gauge supplied with the
q−-independent pole prescriptions. In subsequent works we showed that our
approach works in the case of the ML pole prescription as well [24], and that it
can be consistently used to formulate a generalized deˇnition of the quark TMD
with a nonminimal spin-dependent term in the Wilson lines [25].

Compared to the JiÄMaÄYuan approach, we followed a different strategy.
Making the assumption that the parton number interpretation (17) must hold
for TMDs in the light-cone gauge (like it holds in the collinear PDFs), we are
in a position to derive a gauge-invariant operator deˇnition of the TMD. In
other words, starting from the requirement of the probability interpretation in
the light-cone gauge and adding, step by step, the minimally necessary gauge
links, we would end up with a gauge-invariant operator deˇnition of the TMD
without undesirable singularities. The generalized deˇnition of the quark TMD
we proposed, reads

F̃
(
x,k⊥; n+, n−, μ2

)
=

F
(
x,k⊥; n+, n−, μ2

)
SF (n+, n−)L−1

F (n+)
, (18)

where the soft factor SF and the self-energy factor LF are deˇned in [24, 28],
see also Figs. 3 and 4.

The following conjecture concerning the generic structure of divergences of
the TMD beyond the tree approximation is in order:

The contribution of the overlapping singularities to the renormalized TMD
can be expressed either in terms of a ˇnite number of the cusp anomalous
dimensions which are known in the theory of Wilson lines/loops up to the
O(α2

s)-order Å in this case, their treatment consists of the subtraction of (a
ˇnite number of) corresponding cusped soft factors; or those singularities depend
on the degenerate rapidities Å in that case, one has to subtract the self-energy
soft factors which consist, in contrast, of the ®smooth¯ inˇnite gauge links with-
out any obstructions (cusp or intersections). The conjecture is, therefore, that
there is no other sort of unphysical singularities in the loop corrections to the
TMDs in any order of αs.

In the leading order, we demonstrated the validity of the above statement
in our works [24, 27, 28]. An important question remains, however, how our
TMD can be built into an appropriate factorization formula for semi-inclusive
hadronic tensor. In our approach, the following factorization formula is supposed
to be valid

Wμν = |H(Q, μ)2|μν F
(
x,k⊥; n+, n−, μ2

)
SF (n+, n−)L−1

F (n+)
⊗ Dn(z, zk′

⊥; n+, n−, μ)
SD(n+, n−)L−1

D (n−)
+ . . . ,

(19)
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where the geometrical structure of the soft factor is consistent with that of the
collinear PDF [19,29] and does not break the number interpretation. The explicit
proof of the conjectured factorization and of absence of double counting is in
progress.

Recently, Collins proposed a new deˇnition of the (quark) TMD [30] which
is assumed to be a part of the factorization formula for the semi-inclusive hadronic
tensor (up to the power corrections)

Wμν = |H(Q, μ)2|μνF [Col](x,k⊥; μ, ζF ) ⊗ D[Col](z, zk′
⊥; μ, ζD) + . . . , (20)

where all soft factors are absorbed into the TMD distribution FCol and the frag-
mentation DCol functions, so that there are no separate soft factors in factorized
structure functions, e.g.,

F [Col](x,b⊥; μ, ζF ) = F
(
x,k⊥; n+, n−, μ2

) √
S(n+, nB)

S(n+, n−)S(nA, n−)
. (21)

Here the soft factors depend on the light-like n± or the tilted nA,B vectors (for
details, see [30]). Note that the TMD (21) is deˇned in the impact parameter
space

F(x,b⊥) =
∫

d2k⊥ e−i k⊥b⊥ F(x,k⊥),

so that it is, in fact, a ®semi-integrated PDF¯ and the reduction to the collinear
case corresponds to the limit b⊥ → 0. The geometry of the gauge links in the
soft factors is presented and explained in Fig. 4.

Several open questions are still to be answered:
• How should one prove the complete gauge invariance of the TMD (21)? It

is formulated in the covariant Feynman gauge, where the transverse gauge links
at light-cone inˇnity vanish. What will change, if we adopt some physical (axial)
gauge?

• In particular, how should one treat the T -odd effects in the axial gauges
given that the structure of the transverse gauge links at light-cone inˇnity is not
yet clariˇed in the TMD (21)?

• After reduction to the collinear PDF (in the case of TMD (21), this cor-
responds to the limit b⊥ → 0), there is neither a mutual compensation of the
longitudinal, nor that of the transverse gauge links (if introduced in the usual
manner), see Fig. 4. Hence, the geometrical structure of the gauge links in the
collinear PDF obtained from the TMD (21) seems too cumbersome to be simply
included in the standard DIS factorization scheme (see, e.g., [19,29]).
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Fig. 4. Comparative geometry of the Wilson lines in unsubtracted soft factors and visu-
alization of the reduction to the collinear case. Upper panel shows the soft factor in the
momentum space, as proposed in [24]. Lower panel presents the tilted off-the-light-cone
integration paths in the impact parameter space, as well as the result of the reduction to
the collinear b⊥ → 0 conˇguration

Fig. 5. Comparative geometry of the Wilson lines in the subtracted soft factors. Upper
panel corresponds to the soft factor of the TMD distribution function which enters the
factorization formula (19). Lower panel shows the longitudinal gauge links shifted off the
light cone, which are used in the factorization approach (20
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3. SKEWED JET QUENCHING PARAMETER
IN EUCLIDEAN SPACEÄTIME

The last example of the crucial role played by the geometrical layout in the
theory of the Wilson loops is provided by the so-called jet quenching parameter
which characterizes the transverse momentum gain of a jet propagating through
the nuclear medium [31]. Jet quenching is observed in the heavy-ion collisions
at RHIC [32] and at the LHC [33]. It is assumed that a dense, deconˇned
state of quarks and gluons is formed in such collisions, known as the quarkÄ
gluon plasma (QGP) [34]. For a recent review of jet quenching, see, e.g., [35],
while [36] provides an up-to-date report on the quarkÄgluon plasma. We will
not discuss the phenomenological aspects of this process, concentrating instead
on the speciˇc problems arising in calculation of the correlator of two inˇnite
oppositely directed light-like Wilson lines. Perturbative calculations of the Wilson
lines and loops call for a careful treatment of the angular dependence (e.g., cusps,
self-intersections, etc.) and the possible divergences of various kinds both in
Minkowski and Euclidean spaceÄtime (see, e.g., [2,26,37]). Here we address the
issue of the angular dependence of the generic skewed correlator of two Wilson
lines, deˇned ˇrst in Euclidean space, and then show how to transform to the
Minkowskian geometry on the light cone. We do not specify the way how the
expectation values in the medium

〈�|W†W|�〉

must be evaluated, instead, we try to retrieve as much as possible information,
making as less as possible conjectures about the properties of the two-gluon
contraction in a medium.

Namely, we consider the following object in Euclidean space:

P̃ (z⊥; v, v̄) = 〈�| 1
Nc

Tr {W†
v̄ [z⊥]Wv[0⊥]}|�〉, (22)

where

Wv[0⊥] = P exp

⎡
⎣igvμ

∞∫
−∞

dσAμ(y)

⎤
⎦, y = vσ, (23)

and

W†
v̄ [z⊥] = P exp

⎡
⎣−igv̄μ

∞∫
−∞

dσ′Aμ(y′)

⎤
⎦, y′ = v̄σ′ + z⊥, (24)
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where the directions of the Euclidean vectors v and v̄ are determined by the
angles φ, φ̄

vμ = (v0, vz,0⊥) = L(cosφ/2, sinφ/2,0⊥), (25)

v̄μ = (v̄0, v̄z,0⊥) = −L(cos φ̄/2, sin φ̄/2,0⊥), (26)

v2 = v̄2 = L2. (27)

This object is more general than is needed for the straightforward calculation
of the jet quenching parameter, but contains all peculiarities we are interested in.
Let us deˇne an asymmetric function of the Euclidean vectors (v, v̄)

ρ(v, v̄) =
1
L

∫
d2k⊥k2

⊥

∫
d2z⊥eik⊥·z⊥ P̃ (z⊥; v, v̄), (28)

which formally resembles the skewed analogue of the physical q̂, and we assume
that an appropriate transition procedure

ρ(v, v̄) → q̂LC (29)

exists.

Fig. 6. Skewed conˇguration of the Wilson lines
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Naively, the realistic situation is supposed to be achieved by making the
transformation of the angles to the Minkowski geometry (φ, φ̄) = i(ψ, ψ̄) and
setting them equal. The light-cone case can be obtained, formally, by taking the
limit of large Minkowskian angles φ and φ̄. We will see, however, that this
straightforward strategy does not work in our case. Instead, we will keep the two
angles different after transformation to Minkowski spaceÄtime and, given that
the angular dependence gets factorized into a covariant multiplier, demonstrate
that the light-cone limit can be consistently performed in the skewed layout.
Another important change as compared to the standard deˇnition of P (k⊥) is
that we evaluate the line integrals in the Wilson functionals along the inˇnite
paths, keeping IR singularities under control, if needed, by an additional energy
scale λ. In the dimensional regularization, λ is introduced formally as an energy
parameter in the integration measure. On the other hand, the length L provides
the natural longitudinal scale. Recall that the length of an integration contour in
the coordinate space corresponds to the inverse mass of the eikonalized particle
in the momentum space L ∼ m−1 [26]. Let us note that the contribution under
consideration is UV ˇnite due to the space-like separation of the Wilson lines.
This is not the case anymore in the NLOs.

The leading nontrivial term of the weak-ˇeld expansion of the skewed prob-
ability distribution (22) reads

P̃ (1)(z⊥; v, v̄) = − (ig)2 (vμv̄ν)

∞∫
−∞

dσ

∞∫
−∞

dσ′ Tr
1

Nc
×

× 〈�|P [Aμ(vσ + z⊥)Aν(v̄σ′)]|�〉. (30)

The most general Lorentz and colour structure of the two-gluon correlator,
which takes into account both perturbative and possible nonperturbative con-
tributions [38]

〈�|[Aa
μ(vσ + z⊥)Ab

ν(v̄σ′)]|�〉 = δab Dμν(vσ − v̄σ′ + z⊥), (31)

is determined as follows:

Dμν(z) = gμν∂2D1(z2) − ∂μ∂νD2(z2) =

= gμν(2ω∂u + 4z2∂2
u)D1(z2) − (2gμν∂u + 4zμzν∂2

u)D2(z2), (32)

where u ≡ z2 and z = vσ + z⊥ − v̄σ′. Dimension regularization provides IR
ˇniteness under ω = 4 − 2ε, ε < 0. We will also use the Laplace transform of

the functions D1,2 and their derivatives D
(l)
1,2 ≡ ∂l

uD1,2(u) in Euclidean space:

D
(l)
1,2 = (−1)l

∞∫
0

dα αl e−αz2
⊥D̃1,2(α). (33)
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Equation (30) can be split up into four contributions:

P̃ (1)(z⊥; v, v̄) = g2 CF I, I = I1 + I1′ + I2 + I2′ , CF =
N2

c − 1
2Nc

, (34)

and

I1 = vμv̄ν

∞∫
−∞

dσ

∞∫
−∞

dσ′ 2ωgμν∂u D1(z2),

I1′ = vμv̄ν

∞∫
−∞

dσ

∞∫
−∞

dσ′ 4gμνz2∂2
uD1(z2),

I2 = −vμv̄ν

∞∫
−∞

dσ

∞∫
−∞

dσ′ 2gμν∂u D2(z2),

I2′ = −vμv̄ν

∞∫
−∞

dσ

∞∫
−∞

dσ′ 4zμzν∂2
uD2(z2).

(35)

Evaluating the line integrals (35), we use the representation

e−αz2
= e−αL2(σ+cos(Δφ)σ′)2

e−αL2σ′2 sin2(Δφ) e−αb2⊥ , (36)

where Δφ = (φ − φ̄)/2.
After a straightforward, but tedious calculation (see for technical details [39]),

we ˇnally obtain

P̃ (1)(z⊥; v, v̄) = g2CF 2π
cosΔφ

| sinΔφ|
[
(ω − 2)D1(z2

⊥) + 2z2
⊥D′

1(z
2
⊥)

]
. (37)

Equation (43) is our main result for the skewed probability distribution in Euclid-
ean spaceÄtime in the leading nontrivial order. Let us note that the contribution
of the second term in the two-gluon correlator, D2, falls out, which is indeed
required by gauge invariance.

To establish the connection of this function with the physical jet quenching
parameter, it is instructive to rewrite the angular factor in the covariant form

K(v, v̄) ≡ cosΔφ

| sin Δφ| =
(v · v̄)√

v2v̄2 − (v · v̄)2
, (38)

which allows us to study in detail the transition to the light-cone Minkowskian
layout.
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In Minkowski spaceÄtime, for each pair of time-like vectors v and v̄ traveling
in the opposite time direction, a rest frame can be found in which they are
parameterized as follows:

v = L (γ1,−β1γ1,0⊥) = L

(
cosh

ψ1

2
,− sinh

ψ1

2
,0⊥

)
,

v̄ = −L (γ2,−β2γ2,0⊥) = −L

(
cosh

ψ2

2
,− sinh

ψ2

2
,0⊥

)
.

(39)

Evaluated in these two vectors, the function K(v, v̄) reads:

K(v, v̄) =
v · v̄√

v2v̄2 − (v · v̄)2
= −i

cosh
(

ψ1 − ψ2

2

)
∣∣∣∣sinh

(
ψ1 − ψ2

2

)∣∣∣∣
. (40)

In the case we are interested in, i.e., the case ψ1 = ψ2, this expression is singular.
Thus, in the limit of v and v̄ lying in the opposite spaceÄtime direction, the
parameterization (40) of K(v, v̄) is ill-deˇned.

Moreover, one has to be careful in using the deˇnition (38) K(v, v̄) in the
light-cone case. To illustrate this, take the parameterization (39) of v and v̄ in
the limit of inˇnite rapidity:

vLC =
L

2

(
eψ1/2,−eψ1/2,0⊥

)
,

v̄LC = −L

2

(
eψ2/2,−eψ2/2,0⊥

)
,

v2
LC = v̄2

LC = 0.

(41)

In the light-cone limit ψ1, ψ2 → ∞, formula (40) is clearly ill-deˇned as well.
However, one cannot simply insert (41) into deˇnition (38), since that would
yield:

K (v · v̄)LC = −L2

4
eψ1/2eψ2/2 − eψ1/2eψ2/2√

−L4

16

(
eψ1/2eψ2/2 − eψ1/2eψ2/2

)2
=

0
0
.

Thus, although we have a covariant deˇnition (38) of the angular dependence
K(v, v̄), we are facing problems both in the evaluation of K(v, v̄) for v and v̄
opposite vectors in Minkowski spaceÄtime, and in the evaluation of K(v, v̄) for
vectors on the light cone.
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Let us consider a straightforward solution of this problem, which requires
just being more careful when taking the light-cone limit. Indeed, writing

v∗ = lim
ε→0

L

2

(
eψ1/2 + ε,−eψ1/2 + ε,0⊥

)
,

v̄∗ = lim
δ→0

−L

2

(
eψ2/2 + δ,−eψ2/2 + δ,0⊥

)
,

the deˇnition of K(v, v̄) can be readily used, yielding:

K (v∗, v̄∗) = lim
ε,δ→0

⎛
⎜⎜⎝−L2

4
ε eψ2/2 + δ eψ1/2√

−L4

16

(
ε eψ2/2 + δ eψ1/2

)2

⎞
⎟⎟⎠ = i. (42)

This method suggests, however, setting the primordial partons off-mass-shell. An
even more straightforward method is to place only one vector on the light cone,
while the other vector remains time-like (that is, we deˇne the skewed layout),
for example:

v → vLC =
L

2

(
eψ1/2,−eψ1/2,0⊥

)
,

v̄ = −L

(
cosh

ψ2

2
,− sinh

ψ2

2
,0⊥

)
.

In that case, using the deˇnition of K(vLC, v̄) yields (since v2
LC = 0):

K(vLC, v̄) =
vLC · v̄√

v2
LCv̄2 − (vLC · v̄)2

= i.

The last equation suggests that the angular multiplier K(v, v̄) is invariant in the
skewed layout, so that one can readily put the second vector on the light cone.
After a straightforward, but tedious calculation (see for technical details [39]), we
ˇnally obtain

P̃ (1)(z⊥; v, v̄) = g2CF 2π
cosΔφ

| sin Δφ|
[
(ω − 2)D1(z2

⊥; λ) + 2z2
⊥D′

1(z
2
⊥; λ)

]
, (43)

where we take into account the IR-cutoff λ in D1, which might be IR-singular.
In contrast, the UV-ˇniteness is guaranteed by the effective UV-cutoff z⊥. Equa-
tion (43) is our main result for the skewed probability distribution in Euclidean
spaceÄtime in the leading nontrivial order. Let us note that the contribution of the
second term in the two-gluon correlator, D2, falls out, which is indeed required
by gauge invariance.
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CONCLUSIONS

We discussed several examples of the quantum gauge-invariant correlation
functions Å hadronic and vacuum matrix elements Å which include the compli-
cated sets of the Wilson lines lying on or near the light cone. It is shown that the
explicit path-dependence is the price one has to pay for the gauge invariance of the
nonlocal correlators. The dependence of the geometrical layout shows up in the
renormalization-group properties of the transverse-momentum-dependent parton
distribution functions, deˇnes their rapidity evolution and affects the universality
of the TMD PDFs deˇned within the QCD factorization approach to the semi-
inclusive hadronic processes. Another important example of the manifestation of
the path-dependence is given by the Wilson lines correlator in the deˇnition of the
jet quenching parameter. In that case, the geometrical setup delivers unavoidable
singularity in the angular-dependent factor, for which reason one must follow
a speciˇc procedure of the transition from Euclidean to Minkowski spaceÄtime
in order to go around this problem. Therefore, the path-dependence in nonlocal
operators in quantum ˇeld theory is not only of a signiˇcant theoretical interest,
but yields direct consequences in the hadronic phenomenology.
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