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In this work, we ˇrst review the issues on the singularities and the boundary conditions in
the light-cone gauge and how to regularize them properly. Then, we will further review how these
singularities and the boundary conditions can result in the gauge link at the inˇnity in the light-cone
direction in the DrellÄYan process. Except for reviewing, we also have veriˇed that the gauge link
at the light-cone inˇnity has no dependence on the path not only for the Abelian ˇeld, but also for
non-Abelian gauge ˇeld.
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INTRODUCTION

The light-cone gauge was widely used as an approach to remove the redundant
freedom in quantum gauge theories. The YangÄMills theories were studied on
the quantization in light-cone gauge by several authors [1, 2]. In perturbative
QCD, the collinear factorization theorems of hard processes can be proved more
conveniently and simply in light-cone gauge than in other gauges [3Ä7]. Actually,
only in light-cone gauge, the parton distribution functions deˇned in QCD hold
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the probability interpretation in the naive parton model [8]. However, in light-
cone gauge, when we calculate the Feynman diagrams with the gauge propagator
in the perturbative theory, we have to deal with the light-cone singularity 1/q+,

Dμν(q) =
1

q2 + iε

(
gμν − nμqν + nνqμ

q+

)
. (1)

There have been a variety of prescriptions suggested to handle such singular-
ities [9Ä13] from a practical point of view. Afterwards, it was clariˇed [14]
that the gauge potential cannot be arbitrarily set to vanish at the inˇnity in the
light-cone gauge, the spurious singularities are physically related to the boundary
conditions that one can impose on the potentials at the inˇnity. Different pole
structures for regularization mean different boundary conditions. It should be
emphasized that the above conclusion does not restrict to the light-cone gauge, it
holds for any axial gauges.

The nontrivial boundary conditions at the inˇnity in the light-cone gauge also
clarify another puzzle in the transverse-momentum-dependent structure functions
of nucleons. In the covariant gauge, in which the gauge potential vanishes at the
spaceÄtime inˇnity, the transverse-momentum parton distribution can be given by
operator matrix elements [15Ä17]:

q(x,k⊥) =
1
2

∫
dy−

2π

d2y⊥
(2π)2

e−ixp+y−+ik⊥·y⊥×

× 〈P |ψ̄(y−,y⊥) �nL†[∞,y⊥; y−,y⊥]L[∞,0⊥; 0,0⊥]ψ(0,0⊥)|P 〉, (2)

where

L[∞,y⊥; y−,y⊥] ≡ P exp

⎛
⎜⎝−ig

∞∫
y−

dξ−A+(ξ−,y⊥)

⎞
⎟⎠ (3)

is the gauge link or Wilson line to ensure the gauge invariance of the matrix
elements. Such a gauge link is produced from ˇnal-state interactions between
the struck quark and the target spectators. It has been veriˇed in [18] that the
presence of the gauge link is essential for the nonvanishing Sivers function, which
is the main mechanism of single-spin asymmetry at low transverse momentum
in high-energy collisions. However, if we naively choose the light-cone gauge
A+ = 0 in the above deˇnition, it seems as if the gauge link in Eq. (3) would
disappear, which would result in the ˇnal interaction or Siver's function vanishing.
It seems as if different gauges lead to contradictory results. Since physics should
not depend on the gauge we choose, there must be something we missed in
the above. Such a contradiction was solved by Ji and Yuan in [19] where they
found that the ˇnal-state interaction effects can be recovered properly in the light-
cone gauge by introducing a transverse gauge link at the light-cone inˇnity. Then



1268 JIAN-HUA GAO

in [20], Belitsky, Ji, and Yuan demonstrated how the transverse gauge link can be
produced from the transverse components of the gauge potential at the light-cone
inˇnity at the leading twist level. Further in [21], we derived such a transverse
gauge link within a more regular and general method. It was found that the gauge
link at the light-cone inˇnity naturally arises from the contribution of the pinched
poles: one is from the quark propagator and the other one is hidden in the gauge
vector ˇeld in the light-cone gauge. It is just the pinched poles that pick out the
contribution of the gauge potential at the light-cone inˇnity. Actually in [21],
a more general gauge link over the hypersurface at the light-cone inˇnity was
derived, which is beyond the transverse direction. Besides, there are also other
relevant works on the transverse gauge link in the literature [22Ä24].

In this paper, we will devote ourselves to reviewing the above works and
putting them together with the emphasis on mathematical rigor. However, through
the reviewing, we will try to discuss them in a different way or point of view,
which can be also regarded as the complement to the previous works. Except for
reviewing, we also have veriˇed that the gauge link at the light-cone inˇnity has
no dependence on the path not only for the Abelian ˇeld but also for non-Abelian
gauge ˇeld, which has not been discussed in the previous works.

We organize the paper as follows: in Sec. 1, we present some deˇnitions
and notations which will be used in our paper. In Sec. 2, we discuss how the
singularity can arise in the light-cone gauge, how different singularities correspond
to different boundary conditions and how we regularize them properly. In Sec. 3,
we derive the transverse gauge link or more general gauge link in the light-cone
gauge in the DrellÄYan process. In Sec. 4, we verify that the gauge link at the
light-cone inˇnity has no dependence on the path for non-Abelian gauge ˇeld.
In Sec. 5, we give a brief summary.

1. DEFINITIONS AND NOTATIONS

In our work, we will choose the light-cone coordinate system by introduc-
ing two light-like vectors nμ and n̄μ and two transverse space-like vectors nμ

⊥1

and nμ
⊥2

nμ =
1√
2
(1, 0, 0, 1) ≡ [0, 1,0⊥], (4)

n̄μ =
1√
2
(1, 0, 0,−1) ≡ [1, 0,0⊥], (5)

nμ
⊥1 = (0, 0, 1, 0) ≡ [0, 0, 1, 0], (6)

nμ
⊥2 = (0, 0, 0, 1) ≡ [0, 0, 0, 1], (7)

where we have used square brackets [ ] to denote the components in the light-
cone coordinate, compared with the usual Cartesian coordinate denoted by the
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parentheses ( ). In such a coordinate system, we can write any vector kμ as
[k+, k−,k⊥] or [k+, k−, k⊥1, k⊥2], where k+ = k ·n, k− = k · n̄, k⊥1 = n⊥1 · k,
k⊥2 = n⊥2 · k.

Since we will consider the non-Abelian gauge ˇeld all through our paper,
we will use the usual compact notations for the non-Abelian ˇeld potential and
strength, respectively,

Aμ ≡ Aa
μta, Fμν ≡ F a

μνta, (8)

where ta is the fundamental representation of the generators of the gauge sym-
metry group.

For the sake of conciseness, we would like to introduce some further no-
tations. We will decompose any momentum vector kμ and the gauge potential
vector Aμ, as the following:

kμ = k̃μ + xpμ, Aμ = Ãμ + A+n̄μ, (9)

where k̃μ = [0, k−,k⊥], x = k+/p+, and Ãμ = [0, A−,A⊥]. Meanwhile, for
any coordinate vector yμ, we will make the following decomposition:

yμ = ẏμ + y−nμ, (10)

where ẏμ = [y+, 0,y⊥]. With these notations, it is very easy to show k · y =
k̃ · ẏ + xp+y−. In the light-cone gauge A+ = 0, the gauge vector Aμ = Ãμ.
When no confusion could arise, we will write yμ as [y−, ẏ] for simplicity.

2. SINGULARITIES AND BOUNDARY CONDITIONS
IN THE LIGHT-CONE GAUGE

In this section, we will review how the singularities appear in the light-cone
gauge, how they are related to the boundary conditions of the gauge potential at
the light-cone inˇnity and how we can regularize them in a proper way consistent
with the boundary conditions. Although this section is mainly based on the
literature [14] and [20], there are also a few differences from them. For example,
we will discuss the non-Abelian gauge ˇeld from the beginning to the end, while
in the original works, only the Abelian gauge ˇeld was emphasized. Besides, we
will make the maximal gauge ˇxing from the point of view of linear differential
equation.

With the light-cone gauge condition nμAμ = 0, let us consider the non-
Abelian counterpart of the Maxwell equations,

DμFμν = −jν , (11)
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where Fμν = ∂μAν − ∂νAμ − ig [Aμ, Aν ] , jν = ψ̄taγνψta. We can rewrite
the above equations in another form

∂μ∂μAν − ∂ν∂μAμ = −Jν, (12)

where we have deˇned Jν ≡ jν + ig[Aμ, Fμν ] + ig∂μ[Aμ, Aν ]. Contracting both
sides of Eq. (12) with nν and taking the light-cone gauge condition into account
yields

nν∂ν∂μÃμ = nνJν . (13)

Integrating the above equation gives rise to

∂̃μÃμ(+∞, x̃) − ∂̃μÃμ(−∞, x̃) =

+∞∫
−∞

dx−nνJν . (14)

Since
+∞∫
−∞

dx−nνJν = 0, in general, need not be true, we cannot arbitrarily

choose both Aμ(+∞, x̃) = 0 and Aμ(−∞, x̃) = 0 at the same time. One of
these boundary conditions can be arbitrarily chosen, while the other one must be
subjected to satisfy the constraint (14). This is just why we cannot choose the
boundary conditions arbitrarily in the light-cone gauge. In fact, this conclusion
holds for any axial gauges. From the Fourier transforms of Eq. (12),

k2Aν − kν(k · A) = −J , (15)

and together with the light-cone gauge condition, it is easy to obtain the formal
solutions

Ãμ =
∫

d4k
eik·x

k2

(
−J̃ μ +

k̃μ

k+
J+

)
, (16)

where Aμ and J μ are the Fourier transforms of Aμ and Jμ, respectively. It is
obvious that there is an extra singularity at k+ = 0 in the solution (16). If we
assume that the currents are regular at k = 0, it is easy to verify that the different
pole prescriptions correspond to different boundary conditions. In our paper, we
will consider three different boundary conditions

Advanced: Ã(+∞, ẏ) = 0,

Retarded: Ã(−∞, ẏ) = 0, (17)

Antisymmetric: Ã(−∞, ẏ) + Ã(∞, ẏ) = 0,

which correspond to three different pole structures, respectively,

1
k+ − iε

,
1

k+ + iε
,

1
2

(
1

k+ + iε
+

1
k+ − iε

)
, (18)



SINGULARITIES, BOUNDARY CONDITIONS AND GAUGE LINK 1271

where the last prescription is just the conventional principal value regularization.
In the next section, we will deal with the Fourier transform of the gauge potential

Ãμ(k+, ẏ) ≡
∞∫

−∞

dy− eik+y−
Ãμ(y−, ẏ). (19)

In order to pick out the contribution of the gauge potential at the inˇnity, we
need a mathematical trick by manipulating this integration by parts

∞∫
−∞

dy− eik+y−
Ãμ(y−, ẏ) =

i

k+

∞∫
−∞

dy− eik+y−
∂+Ãμ(y−, ẏ), (20)

where ∂+ = ∂− = ∂/∂y−. We will see that once we choose the prescriptions (18)
according to the boundary conditions (17), we will obtain the gauge link at the
light-cone inˇnity.

We have seen that we cannot choose the boundary conditions arbitrarily, now
we will discuss how to ˇx the gauge freedom as maximally as possible. These
have been also discussed in Appendix in [20], we will take them into account from
the point of view of differential equations. Under a general gauge transformation,
the gauge potential transforms as

Aμ → S−1AμS +
i

g
S−1∂μS. (21)

In order to eliminate the light-cone component n · A = 0, we obtain the gauge
transformation by solving the equation

nμ∂μS = ignμAμS. (22)

This equation is an ordinary linear differential equation, whose solution is well
known

S = P

⎧⎪⎨
⎪⎩exp

⎡
⎢⎣ig

x+∫
x+
0

nμAμ(ξ, x−, x⊥1, x⊥2) dξ

⎤
⎥⎦

⎫⎪⎬
⎪⎭ S̃(x−, x⊥1, x⊥2), (23)

where S(x−, x⊥1, x⊥2) is an arbitrary unitary matrix which does not depend
on x+. This freedom allows us to set one of the three residual components of Aμ

zero on the three-dimensional hyperplane at x+ = x+
0 . Without loss of generality,

we can set A−(x+
0 , x−, x⊥) = 0 by solving the following equation:

n̄μ∂μS̃ = ign̄μAμS̃. (24)
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The solution is given by

S̃ = P

⎧⎪⎨
⎪⎩exp

⎡
⎢⎣ig

x−∫
x−
0

dξ n̄μAμ(x+
0 , ξ, x⊥1, x⊥2)

⎤
⎥⎦

⎫⎪⎬
⎪⎭ S⊥(x⊥1, x⊥2). (25)

There is still an arbitrary unitary matrix which depends only on x⊥. We can use
this freedom to further set one of the residual transverse components of the gauge
potential zero, e.g., A⊥1 = 0, at the two-dimensional hyperplane (x+ = x+

0 ,
x− = x−

0 ) by solving

nμ
⊥1∂μS⊥ = ignμ

⊥1AμS⊥(x⊥1, x⊥2). (26)

The solution is given by

S⊥ = P

⎧⎨
⎩exp

⎡
⎣ig

x⊥1∫
x0⊥1

dξ nμ
⊥1Aμ(x+

0 , x−
0 , ξ, x⊥2)

⎤
⎦

⎫⎬
⎭ S1⊥(x⊥2). (27)

We can continue to set the only left transverse components A⊥2 = 0 at the
straight line [x+ = x+

0 , x− = x−
0 , x⊥1 = x0⊥1] by solving

nμ
⊥2∂μS1⊥ = ignμ

⊥2AμS1⊥(x⊥2). (28)

The solution is given by

S1⊥ = P

⎧⎨
⎩exp

⎡
⎣ig

x⊥1∫
x0⊥1

dξ nμ
⊥2Aμ(x+

0 , x−
0 , x0⊥2, ξ)

⎤
⎦

⎫⎬
⎭S2⊥. (29)

With only a trivial global gauge transformation left, we have maximally ˇxed
our gauge freedom. Although we cannot choose the boundary conditions of the
gauge potential arbitrarily in the light-cone gauge, the constraint that the ˇeld
strengths should vanish at the inˇnity requires that the gauge potential must be a
pure gauge

Aμ =
1
ig

ω−1∂μω, (30)

where ω = exp (iφ) with φ ≡ φata. We can expand the above pure gauge as

Aμ =
1
ig

ω−1∂μω = ∂μφ +
i

2!
[∂μφ, φ] +

i2

3!
[[∂μφ, φ], φ] + . . . (31)
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3. GAUGE LINK IN THE LIGHT-CONE GAUGE
IN THE DRELLÄYAN PROCESS

In this section, we will review how the singularities and boundary conditions
in the light-cone gauge can result in the gauge link at the light-cone inˇnity. Since
the detailed derivation of transverse gauge link had been made for semi-inclusive
deep inelastic scattering [20,21], we will discuss the DrellÄYan process in detail
in order to avoid total repeating. For simplicity, we will set the target to be a
nucleon and the projectile to be just an antiquark.

The tree scattering amplitude of the DrellÄYan process, corresponding to Fig. 1,
reads

Mμ
0 = ū(q − k)γμ〈X |ψ(0)|P 〉, (32)

where k denotes the momentum of initial quark from the proton P with the
momentum p, and q − k and q are the momenta of the antiquark and virtual
photon, respectively.

Fig. 1. The tree diagram in the DrellÄYan
process

Fig. 2. The one-gluon exchange diagram
in the DrellÄYan process

The one-gluon amplitude in the light-cone gauge, corresponding to Fig. 2,
reads

Mμ
1 =

∫
d4k1

(2π)4
d4y1 ei(k−k1)·y1 ū(q−k)γρ1

�q− �k1

(q − k1)2 + iε
〈X |Ãρ1(y1)γμψ(0)|P 〉.

(33)
In order to obtain the leading twist contribution, we only need the pole contribu-
tion in the quark propagator

M̂μ
1 =

∫
d3k̃1

(2π)4
d3ẏ1

p+dx1

2π
dy−

1 ei(k̃−k̃1)·ẏ1+i(x−x1)p
+y−

ū(q − k̂)×

× γρ1
�q− � k̂1

2p · (k̂1 − q)
1

(x1 − x̂1 − iε)
〈X |Ãρ1(y1)γμψ(0)|P 〉, (34)

where M̂μ
1 with an extra ˆ denotes that only the pole contribution is kept and

k̂1 ≡ [x̂1p
+, k−

1 , k1⊥] with x̂1 = k̂+/p+ = xB + k2
⊥/2p · (k1 − q), which is
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determined by the on-shell condition (q−k̂1)2 = 0. In Eq. (34), we have separated
the integral over x1 and y−

1 from the others in order to ˇnish integrating them
out ˇrst. Now, we need to choose a speciˇc boundary condition for the gauge
potential Ãρ at the inˇnity. Let us start with the advanced boundary condition
Ã(+∞, ẏ) = 0. Using Eq. (20) for the advanced boundary condition, we have

M̂μ
1 =

∫
d3k̃1

(2π)4

∫
d3ẏ1

∫
dx1

2π

∫
dy−

1 ei(k̃−k̃1)·ẏ1 ei(x−x1)p
+y−

ū(q − k)γρ1×

× �q− � k̂1

2p · (k̂1 − q)

1
(x1 − x̂1 − iε)

i

(x − x1 − iε)
〈X |∂+Ãρ1(y1)γμψ(0)|P 〉. (35)

Let us ˇnish integrating over x1 and y−
1 :

∫
dx1

2π
dy−

1 ei(x−x1)p
+y− 1

(x1 − x̂1 − iε)
i

(x − x1 − iε)
∂+Ãρ1(y1) =

= −
∫

dy−
1 (θ(−y−) ei(x−x̂1)p

+y−
+ θ(y−))

1
x − x̂1

∂+Ãρ1(y1) =

=
1

x − x̂1
Ãρ1 (−∞, ẏ1) + higher twist, (36)

where only the leading term in the Taylor expansion of the phase factor
ei(x−x̂1)p

+y−
is kept, because the other terms are proportional to (x − x̂1)n =

[k2
⊥/2p · (k + q) − k2

1⊥/2p · (k1 + q)]n (n � 1), which will contribute at higher
twist level.

However, if we choose the retarded boundary conditions, we can have

M̂μ
1 =

∫
d3k̃1

(2π)4

∫
d3ẏ1

∫
dx1

2π

∫
dy−

1 ei(k̃−k̃1)·ẏ1 ei(x−x1)p
+y−

ū(q − k)γρ1×

× �q− � k̂1

2p · (k̂1 − q)
1

(x1 − x̂1 − iε)
i

(x − x1 + iε)
〈X |∂+Ãρ1(y1)γμψ(0)|P 〉. (37)

Integrating out x1 and y−
1 ˇrst yields

∫
dx1

2π

∫
dy−

1 ei(x−x1)p
+y− 1

(x1 − x̂1 − iε)
i

(x − x1 + iε)
∂+Ãρ1(y1) =

= −
∫

dy−
1 (θ(−y−) ei(x−x̂1)p

+y−−θ(−y−))
1

x − x̂1
∂+Ãρ1(y1) = higher twist.

(38)

We can see that the retarded boundary condition does not result in leading twist
contribution in the DrellÄYan process. If we choose the antisymmetric boundary
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condition, which corresponds to the principal value regularization, we obtain

∫
dx1

2π

∫
dy−

1 ei(x−x1)p
+y− 1

(x1 − x̂1 + iε)
PV

i

(x − x1)
∂+Ãρ1(y1) =

=
∫

dy−
1

1
2
(2θ(y−) ei(x−x̂1)p

+y− − θ(y−) + θ(−y−))
1

x − x̂1
∂+Ãρ1(y1) =

=
1

x − x̂1
Ãρ1 (+∞, ẏ1) + higher twist, (39)

where PV denotes principal value. In the above derivation, we notice that the
presence of the pinched poles is necessary to pick up the gauge potential at
the light-cone inˇnity. Actually, these pinched poles have selected the so-
called Glauber modes of the gauge ˇeld [23]. Although there is no leading
twist contribution in the retarded boundary condition, it was shown in [20],
that all the ˇnal-state interactions have been encoded into the initial-state light-
cone wave functions. In principal value regularization, the ˇnal-state scattering
effects appear only through the gauge link, while in advanced regularization,
they appear through both the gauge link and initial light-cone wave functions.
In the following, we will only concentrate on the advanced boundary condi-
tion. Only keeping leading twist contribution and inserting Eq. (36) into Eq. (35),
we have

M̂1 =
∫

d3k̃1

(2π)4
d3ẏ1 ei(k̃−k̃1)·ẏ1 ū(q − k)γρ1

�q− � k̂1

2p · (k̂1 − q)
×

× 1
x − x̂1

〈X |Ãρ1(−∞, ẏ1)ψ(0)|P 〉. (40)

Using Eq. (31), only keeping the ˇrst Abelian term and performing the integration
by parts over ẏ1, we obtain

M̂1 =
∫

d3k̃1

(2π)4
d3ẏ1 ei(k̃−k̃1)·ẏ1 ū(q − k)(� k̃− � k̃1)×

× �q− � k̂1

2p · (k̂1 − q)
−i

x − x̂1
〈X |φ(−∞, ẏ1)ψ(0)|P 〉. (41)

We can calculate these Dirac algebras, and ˇnally obtain

M̂1 = ū(q − k)〈X |iφ(−∞, 0)ψ(0)|P 〉, (42)
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Fig. 3. The two-gluon exchange diagram in the DrellÄYan process

where we have dropped all the higher twist contributions. Now, let us further
consider the two-gluon exchange scattering amplitude plotted in Fig. 3:

Mμ
2 =

∫
d4k2

(2π)4
d4k1

(2π)4
d4y2d

4y1 ei(k−k2)·y2+i(k2−k1)·y1 ū(q − k)γρ2×

× �q− �k2

(q − k2)2 + iε
γρ1

�q− �k1

(q − k1)2 + iε
〈X |Ãρ2(y2)Ãρ1 (y1)γμψ(0)|P 〉. (43)

Analogously to the case of Mμ
1 , we will only keep the pole contribution

M̂μ
2 =

∫
d3k̃2

(2π)3
d3k̃1

(2π)3
d3ẏ2 d3ẏ1

p+dx2

2π

p+dx1

2π
dy−

2 dy−
1 ×

× ei(k̃−k̃2)·ẏ2+i(k̃2−k̃1)·ẏ1+i(x−x2)p
+y−

2 +i(x2−x1)p
+y−

1 ū(q − k)γρ2×

× �q− � k̂2

2p · (k̂2 − q)
γρ1

�q− � k̂1

2p · (k̂1 − q)

1
(x2 − x̂2 − iε)

1
(x1 − x̂1 − iε)

×

× 〈X |Ãρ2(y2)Ãρ1 (y1)γμψ(0)|P 〉. (44)

With the regularization (20) and (18), we can integrate out x2 and y−
2 ˇrst

M̂μ
2 =

∫
d3k̃2

(2π)3
d3k̃1

(2π)3
d3ẏ2 d3ẏ1

p+dx1

2π
dy−

1 ×

× ei(k̃−k̃2)·ẏ2+i(k̃2−k̃1)·ẏ1+i(x−x1)p
+y−

1 ū(q − k)γρ2
�q− � k̂2

2p · (k̂2 − q)
×

× γρ1
�q− � k̂1

2p · (k̂1 − q)
1

(x − x̂2 − iε)
1

(x1 − x̂1 − iε)
×

× 〈X |Ãρ2(−∞, ẏ2)Ãρ1 (y1)γμψ(0)|P 〉. (45)
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Further integrating out x1 and y−
1 gives rise to

M̂μ
2 =

∫
d3k̃2

(2π)3
d3k̃1

(2π)3
d3ẏ2 d3ẏ1 ei(k̃−k̃2)·ẏ2+i(k̃2−k̃1)·ẏ1 ū(q − k)×

× γρ2
�q− � k̂2

2p · (k̂2 − q)
γρ1

�q− � k̂1

2p · (k̂1 − q)

1
(x − x̂2 − iε)

1
(x − x̂1 − iε)

×

× 〈X |Ãρ2(−∞, ẏ2)Ãρ1(−∞, ẏ1)γμψ(0)|P 〉. (46)

Using Eq. (31), only keeping the ˇrst Abelian term, we have

M̂μ
2 =

∫
d3k̃2

(2π)3
d3k̃1

(2π)3
d3ẏ2 d3ẏ1 ei(k̃−k̃2)·ẏ2+i(k̃2−k̃1)·ẏ1 ū(q − k)×

× γρ2
�q− � k̂2

2p · (k̂2 − q)
γρ1

�q− � k̂1

2p · (k̂1 − q)
1

(x − x̂2 − iε)
1

(x − x̂1 − iε)
×

× 〈X |∂̃ρ2φ(−∞, ẏ2)∂̃ρ1φ(−∞, ẏ1)γμψ(0)|P 〉. (47)

Using the integration by parts, we can integrate out k̃2 and ẏ2, and obtain

M̂μ
2 =

∫
d3k̃1

(2π)3
d3ẏ1 ei(k̃2−k̃1)·ẏ1 ū(q − k)γρ1

�q− � k̂1

2p · (k̂1 − q)
1

(x − x̂1 − iε)
×

× 〈X | i
2
∂̃ρ1φ

2(−∞, ẏ1)γμψ(0)|P 〉. (48)

Further, by integrating over k̃1 and ẏ1, we ˇnally obtain

M̂μ
2 = ū(q − k)〈X | i

2

2!
φ2(−∞, 0)γμψ(0)|P 〉. (49)

It should be noted that we have neglected the higher twist contributions in the
above derivation. It is obvious that the procedure from M1 to M2 can be
easily generalized to higher order amplitudes. For example, the general n-gluon
exchange amplitude Mn in Fig. 4 reads

M̂n =
∫ n∏

j=1

d3k̃j

(2π)3
d3ẏj ei(k̃n−k̃n−1)·ẏn+...+i(k̃2−k̃1)·ẏ2×

×
n∏

j=1

p+dxj

2π
dy−

j ei(xn+1−xn)p+y−
n +...+i(x2−x1)p

+y−
1 ū(q − k)×

× γρn
�q− � k̂n

2p · (k̂n − q)
· · · γρ1

�q− � k̂1

2p · (k̂1 − q)
1

(xn − x̂n − iε)
· · · 1

(x1 − x̂1 − iε)
×

× 〈X |Ãρn(yn) · · · Ãρ1(y1)ψ(0)|P 〉. (50)
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Fig. 4. The n-gluon exchange diagram in the DrellÄYan process

We ˇrst ˇnish integrating from xn, y−
n to x1, y

−
1 one by one. Keeping the leading

twist contribution, we have

M̂n =
∫ n∏

j=1

d3k̃j

(2π)3
d3ẏj ei(k̃n+1−k̃n)·ẏn+...+i(k̃2−k̃1)·ẏ2 ū(k + q)×

× γρn
� k̂n+ �q

2p · (k̂n + q)
· · · γρ1

� k̂1+ �q
2p · (k̂1 + q)

1
(x̂n+1 − x̂n)

· · · 1
(x̂2 − x̂1)

×

× 〈X |∂̃ρnφ(−∞, ẏn) ∂̃ρn−1φ(−∞, ẏn−1) · · · ∂̃ρ1φ(−∞, ẏ1)ψ(0)|P 〉, (51)

where we have used Eq. (31) again and only have kept the ˇrst Abelian term.
Integrating over momenta from k̃n and ẏn to k̃1 and ẏ1 one by one, we ˇnally have

M̂n = ū(q − k)〈X | i
n

n!
φn(−∞, 0)ψ(0)|P 〉. (52)

As a ˇnal step, we resum to all orders and obtain

∞∑
n=0

M̂n = ū(q − k)〈X | exp (iφ(−∞, 0))ψ(0)|P 〉 =

= ū(q − k)〈X |ω(−∞, 0)ψ(0)|P 〉. (53)

The light-cone inˇnity y− = −∞ instead of y− = +∞ re	ects that the phase
factor arises from the initial interaction rather than from the ˇnal interaction.
Now, we need to express ω as the function of Aμ by solving Eq. (30) at the
light-cone inˇnity. We can rewrite Eq. (30) in the partial differential form

∂̃μω(−∞, ẋ) = igÃμ(−∞, ẋ)ω(−∞, ẋ). (54)

This equation cannot be solved unless certain integrability conditions are satisˇed.
In Sec. 4, we will show that Fμν = 0 is the right integrability condition, which
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is assumed to be always satisˇed for the gauge ˇeld at the inˇnity. The solution
is exactly the gauge link that we want

ω(−∞, ẋ) = P exp

⎛
⎝ig

ẋ∫
−∞̇

dξ̇μ Ãμ(−∞, ξ̇)

⎞
⎠ = L[−∞, ẋ;−∞,−∞̇], (55)

where we have chosen ω(−∞,−∞̇) = 1, which can be always achieved by using
the residual global gauge transformation S2⊥ in (29). It follows that

M̂n = ū(q − k)〈X |ψ(0)L[−∞, 0̇;−∞,−∞̇]|P 〉. (56)

It should be emphasized that the gauge link we obtain here is over the hypersurface
at the light-cone inˇnity along any path integral, not restricted along the transverse
direction. Let us verify this independence in the next section.

4. PATH INDEPENDENCE OF THE GAUGE LINK

In this section, we will show that the gauge link (55) is the solution of Eq. (54)
with the integrability condition Fμν = 0. However, we would like to prove
a more general conclusion here. We will verify that the arbitrary gauge link
connecting x0 with x,

ω(s; x0, x) = P

⎧⎨
⎩exp

⎡
⎣ig

s∫
0

ds1
dyν1

ds1
Aν1 (y(s1; x0, x))

⎤
⎦
⎫⎬
⎭ , (57)

where s1 denotes the path parameter with the constraints

y(0; x0, x) = x0, y(s; x0, x) = x, (58)

is the solution of the equation

∂μω = igAμω (59)

under the integrability condition Fμν = 0.
For the sake of brevity, we introduce some compact notations

� (s1) ≡
dyν1

ds1
Aν1(y(s1; x0, x)), (60)

�μ(si) ≡ ∂μyνiAνi(y(si; x0, x)), (61)

�μ(si) ≡
dyνi

ds1
∂μyρFρνi(y(si; x0, x)). (62)

We can expand ω(s) as

ω(s) = φ0 + igφ1 + (ig)2φ2 + (ig)3φ3 + . . . , (63)
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where we have deˇned

φ0 = 1, (64)

φ1 =

s∫
0

ds1� (s1), (65)

φ2 =

s∫
0

ds1

s1∫
0

ds2� (s1)� (s2), (66)

φ3 =

s∫
0

ds1

s1∫
0

ds2

s2∫
0

ds3� (s1)� (s2)� (s3). (67)

We have suppressed all the dependence on x0 and x. In the following, we devote
ourselves to calculating ∂μω in detail. In order to do that, we need to calculate
the partial derivative of each term in the expansion (63). The partial derivative
of the zeroth order is trivially zero. Let us calculate the ˇrst order

∂μφ1 =

s∫
0

ds1
d(∂μyν1)

ds1
Aν1(y(s1)) +

s∫
0

ds1
dyν1

ds1
∂μyρ ∂

∂yρ
Aν1(y(s1)), (68)

where it should be noted that ∂μ ≡ ∂/∂xμ here and we must distinguish it
from ∂/∂yμ. Using the differential chain-type rule and the deˇnition Fμν =
∂μAν − ∂νAμ − ig [Aμ, Aν ], we have

∂μφ1 =

s∫
0

ds1
d(∂μyν1)

ds1
Aν1(y(s1)) +

s∫
0

ds1∂μyρ d

ds1
Aρ(y(s1))+

+

s∫
0

ds1
dyν

ds1
∂μyρ{Fρν1(y(s1)) + ig[Aρ(y(s1)), Aν(y(s1))]} =

= �μ(s) −�μ(0) +

s∫
0

ds1{�μ(s1) + ig[�μ(s1),� (s1)]}. (69)
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Now, let us turn to the second order

∂μφ2 = ∂μ

⎡
⎣ s∫

0

ds1� u(s1)φ1(s1)

⎤
⎦ =

=

s∫
0

ds1 ∂μ� (s1)φ1(s1) +

s∫
0

ds1� (s1)∂μφ1(s1). (70)

Once more, using the differential chain-type rule and the deˇnition of Fμν , we
obtain

∂μφ2 =

s∫
0

ds1
d

ds1
�μ(s1)φ1(s1) +

s∫
0

ds1� (s1) ∂μφ1(s1) +

s∫
0

ds1{�μ(s1)+

+ ig[�μ(s1),� (s1)]}φ1(s1) = �μ(s)φ1(s) −
s∫

0

ds1�μ(s1)
dφ1(s1)

ds1
+

+

s∫
0

ds1� (s1)∂μφ1(s1) +

s∫
0

ds1{�μ(s1) + ig[�μ(s1),� (s1)]}φ1(s1). (71)

Using the result of the ˇrst order (69) and the relation

dφ1(s1)
ds1

= � (s1), (72)

we have

∂μφ2 = −
s∫

0

ds1[�μ(s1),� (s1)] +� (s1)φ1(s) − φ1(s)� (0)+

+

s∫
0

ds1

s1∫
0

ds2� (s1){�μ(s2) + ig[�μ(s2),� (s2)]}+

+

s∫
0

ds1

s1∫
0

ds2{�μ(s1) + ig[�μ(s1),� (s1)]}� (s2). (73)

Hence, it is shown that we can obtain ∂μφ2 by using the result of ∂μφ1 in
an iterative way. Such a process can be generalized to higher order case.
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For example,

∂μφn+1 = �μ(s)φn(s) −
s∫

0

ds1�μ(s1)
dφn(s1)

ds1
+

s∫
0

ds1� (s1)∂μφn(s1)+

+

s∫
0

ds1{�μ(s1) + ig[�μ(s1),� (s1)]}φn(s1). (74)

Using the general relation

dφn+1(s1)
ds1

= � (s1)φn(s1) (75)

yields

∂μφn+1 = �μ(s)φn(s) −
s∫

0

ds1�μ(s1)� (s1)φn−1(s1)+

+

s∫
0

ds1� (s1)∂μφn(s1) +

s∫
0

ds1{�μ(s1) + ig[�μ(s1),� (s1)]}φn(s1). (76)

We can express ∂μφn(s1) in terms of the lower order terms φn−1 and φn−2:

∂μφn+1 = �μ(s)φn(s) +

s∫
0

ds1�μ(s1)φn(s1)+

+

s∫
0

ds1[�μ(s1),� (s1)](igφn(s1) − φn−1(s1))−

−
s∫

0

ds1

s1∫
0

ds2� (s1)�μ(s2)� (s2)φn−2(s1) +

s∫
0

ds1� (s1){�μ(s1)+

+ ig[�μ(s1),� (s1)]}φn−1(s1) +

s∫
0

ds1

s1∫
0

ds2� (s1)� (s2)∂μφn−1(s2). (77)
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Continuing this iterative process, we ˇnally have

∂μφn+1 = �μ(s)φn(s) − φn(s)�μ(s) +

s∫
0

ds1�μ(s1)+

+

s∫
0

ds1

s1∫
0

ds2� (s1)�μ(s2) + . . . +

+

s∫
0

ds1 · · ·
sn∫
0

dsn+1� (s1) · · ·� (sn)�μ(sn+1)+

+

s∫
0

ds1[�μ(s1),� (s1)](igφn(s1) − φn−1(s1))+

+

s∫
0

ds1

s1∫
0

ds2� (s1)[�μ(s2),� (s2)](igφn−1(s2) − φn−2(s2)) + . . . +

+

s∫
0

ds1

s1∫
0

ds2 · · ·
sn∫
0

dsn+1� (s1) · · ·� (sn−1)×

× [�μ(sn),� (sn)](igφ1(sn) − φ0(sn)) +

s∫
0

ds1

s1∫
0

ds2 · · ·
sn∫
0

dsn+1×

×� (s1) · · ·� (sn)[�μ(sn+1),� (sn+1)]igφ0(sn+1). (78)

Summing all of them gives rise to the partial derivative of ω(s)

∂μω(s) =
∞∑

n=0

(ig)n

n!
∂μφn. (79)

It is found that all the commutation terms cancel each other, and the ˇnal re-
sult reads

∂μω(s) = �μ(s)ω(s) − ω(s)�μ(0) +

s∫
0

ds1 ω−1(s1)�μ(s1)ω(s1). (80)

Using the constraints (58) and considering the assumption Fμν = 0, we have

∂μω = igAμω. (81)

Thus, we have veriˇed that the expression (57) is the solution of differential
equation (59) and the integrability condition if Fμν = 0. According to the theory
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of linear differential equation, this solution must be unique with some speciˇc
initial condition, which means that the solution (57) does not depend on the path
we choose. This conclusion of path independence can also be obtained from the
non-Abelian Stokes Theorem [25Ä27].

5. SUMMARY

In the present work, we have reviewed some issues which are very important
when we deal with the calculation in the light-cone gauge. First, we discussed
why we cannot arbitrarily choose the boundary conditions of the gauge potential
at the light-cone inˇnity. Then, we showed how the singularities appear in the
light-cone gauge, how they are related to the boundary conditions, and how we
can regularize them in a proper way corresponding to the different boundary
conditions. Later on, we showed how to derive the gauge link at the light-cone
inˇnity from these singularities in the DrellÄYan process. Finally, we veriˇed
that the gauge link at the light-cone inˇnity has no dependence on the path not
only for the Abelian ˇeld, but also for non-Abelian gauge ˇeld.
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