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In this work, we first review the issues on the singularities and the boundary conditions in
the light-cone gauge and how to regularize them properly. Then, we will further review how these
singularities and the boundary conditions can result in the gauge link at the infinity in the light-cone
direction in the Drell-Yan process. Except for reviewing, we also have verified that the gauge link
at the light-cone infinity has no dependence on the path not only for the Abelian field, but also for
non-Abelian gauge field.

B mpexact BrenHoil p GoTe BrepBbie OOCYXI IOTCS HPOOIEMBbI CHHTYISIPHOCTEH U TP HUYHBIX
yCIIOBHiI B K JMOPOBKE H CBETOBOM KOHyce, T KXKe IpoOIeM WX KOPPEKTHOH pEryiispu3 LHH.
ITok 3 HO, K K ®TH CHHIYJISIPHOCTH M TP HHYHBIC YCIOBMSl HPUBOIAT K K JIMOPOBOYHOW CBSI3M H
6ecKOHEeYHOCTH B H NP BIICHHH CBETOBOTO KOHYC B mpotecce Ipenn —fn . B p 6oTte T KXe MOK 3 HO,
YTO K JINOPOBOYH S CBSI3b H OECKOHEYHOCTH CBETOBOTO KOHYC HE 3 BHCUT OT IYTH HE TOIIBKO UL
GesieBoro, HO M sl He GeneBoro K JMOPOBOYHOTO IMOJIS.

PACS: 12.38.Bx; 13.60.-r

INTRODUCTION

The light-cone gauge was widely used as an approach to remove the redundant
freedom in quantum gauge theories. The Yang—Mills theories were studied on
the quantization in light-cone gauge by several authors [1,2]. In perturbative
QCD, the collinear factorization theorems of hard processes can be proved more
conveniently and simply in light-cone gauge than in other gauges [3-7]. Actually,
only in light-cone gauge, the parton distribution functions defined in QCD hold
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the probability interpretation in the naive parton model [8]. However, in light-
cone gauge, when we calculate the Feynman diagrams with the gauge propagator
in the perturbative theory, we have to deal with the light-cone singularity 1/q¥,

1 Nuqy + Nyq
D (q) = ——— | g — ) 1
I (q) q2+i€ <gu, q+ ) ( )

There have been a variety of prescriptions suggested to handle such singular-
ities [9-13] from a practical point of view. Afterwards, it was clarified [14]
that the gauge potential cannot be arbitrarily set to vanish at the infinity in the
light-cone gauge, the spurious singularities are physically related to the boundary
conditions that one can impose on the potentials at the infinity. Different pole
structures for regularization mean different boundary conditions. It should be
emphasized that the above conclusion does not restrict to the light-cone gauge, it
holds for any axial gauges.

The nontrivial boundary conditions at the infinity in the light-cone gauge also
clarify another puzzle in the transverse-momentum-dependent structure functions
of nucleons. In the covariant gauge, in which the gauge potential vanishes at the
space—time infinity, the transverse-momentum parton distribution can be given by
operator matrix elements [15-17]:

1 [dy” d?>y1 ot s
k )=Z= tapTyT ik vy
q(ma L) 2 / or (27T)2 e X

X (Pl(y~,y1) #Li oo,y 1397,y 1]£[00,0150,0,]4(0,0.)|P), (2)

where
oo

Lloo,y1;y7,y1] = Pexp —ig/dﬁ‘/ﬁ(é?yﬁ ®3)
-

is the gauge link or Wilson line to ensure the gauge invariance of the matrix
elements. Such a gauge link is produced from final-state interactions between
the struck quark and the target spectators. It has been verified in [18] that the
presence of the gauge link is essential for the nonvanishing Sivers function, which
is the main mechanism of single-spin asymmetry at low transverse momentum
in high-energy collisions. However, if we naively choose the light-cone gauge
AT = 0 in the above definition, it seems as if the gauge link in Eq.(3) would
disappear, which would result in the final interaction or Siver’s function vanishing.
It seems as if different gauges lead to contradictory results. Since physics should
not depend on the gauge we choose, there must be something we missed in
the above. Such a contradiction was solved by Ji and Yuan in [19] where they
found that the final-state interaction effects can be recovered properly in the light-
cone gauge by introducing a transverse gauge link at the light-cone infinity. Then
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in [20], Belitsky, Ji, and Yuan demonstrated how the transverse gauge link can be
produced from the transverse components of the gauge potential at the light-cone
infinity at the leading twist level. Further in [21], we derived such a transverse
gauge link within a more regular and general method. It was found that the gauge
link at the light-cone infinity naturally arises from the contribution of the pinched
poles: one is from the quark propagator and the other one is hidden in the gauge
vector field in the light-cone gauge. It is just the pinched poles that pick out the
contribution of the gauge potential at the light-cone infinity. Actually in [21],
a more general gauge link over the hypersurface at the light-cone infinity was
derived, which is beyond the transverse direction. Besides, there are also other
relevant works on the transverse gauge link in the literature [22-24].

In this paper, we will devote ourselves to reviewing the above works and
putting them together with the emphasis on mathematical rigor. However, through
the reviewing, we will try to discuss them in a different way or point of view,
which can be also regarded as the complement to the previous works. Except for
reviewing, we also have verified that the gauge link at the light-cone infinity has
no dependence on the path not only for the Abelian field but also for non-Abelian
gauge field, which has not been discussed in the previous works.

We organize the paper as follows: in Sec.1, we present some definitions
and notations which will be used in our paper. In Sec.2, we discuss how the
singularity can arise in the light-cone gauge, how different singularities correspond
to different boundary conditions and how we regularize them properly. In Sec.3,
we derive the transverse gauge link or more general gauge link in the light-cone
gauge in the Drell-Yan process. In Sec.4, we verify that the gauge link at the
light-cone infinity has no dependence on the path for non-Abelian gauge field.
In Sec. 5, we give a brief summary.

1. DEFINITIONS AND NOTATIONS

In our work, we will choose the light-cone coordinate system by introduc-
ing two light-like vectors n# and 7* and two transverse space-like vectors n/| |

and n'],
1
H— _—_(1,0,0,1) = [0,1,0], 4
W= (10,01 =[01,0.] @
1
il = —(1,0,0,—1) = [1,0,0.], 5
n \/5( )=1[1,0,0.] (5)
| = (0,0,1,0) = [0,0,1,0], (6)
n'/, =1(0,0,0,1) = [0,0,0,1], 7

where we have used square brackets [ ] to denote the components in the light-
cone coordinate, compared with the usual Cartesian coordinate denoted by the
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parentheses ( ). In such a coordinate system, we can write any vector k¥ as
[k+,k7,kl] or [k+,k7,kj_1,kl2], where k1 = k-n,k-=k-n ki1=ni11-k,
kiog=mn12-k.

Since we will consider the non-Abelian gauge field all through our paper,
we will use the usual compact notations for the non-Abelian field potential and
strength, respectively,

A, =AY, PR = FLE, (8)

where t® is the fundamental representation of the generators of the gauge sym-
metry group.

For the sake of conciseness, we would like to introduce some further no-
tations. We will decompose any momentum vector k* and the gauge potential
vector A¥, as the following:

kP = k4 aph, AM = A4 Atak ©)

where k* = [0,k~, k], x = kt/p*, and A* = [0,A~, A|]. Meanwhile, for
any coordinate vector y*, we will make the following decomposition:

y' =g" +y nk (10)

where gt = [yT,0,y1]. With these notations, it is very easy to show k - y =
k -y +zpTy~. In the light-cone gauge AT = 0, the gauge vector A¥ = AH,
When no confusion could arise, we will write y* as [y~,¢| for simplicity.

2. SINGULARITIES AND BOUNDARY CONDITIONS
IN THE LIGHT-CONE GAUGE

In this section, we will review how the singularities appear in the light-cone
gauge, how they are related to the boundary conditions of the gauge potential at
the light-cone infinity and how we can regularize them in a proper way consistent
with the boundary conditions. Although this section is mainly based on the
literature [14] and [20], there are also a few differences from them. For example,
we will discuss the non-Abelian gauge field from the beginning to the end, while
in the original works, only the Abelian gauge field was emphasized. Besides, we
will make the maximal gauge fixing from the point of view of linear differential
equation.

With the light-cone gauge condition n,A" = 0, let us consider the non-
Abelian counterpart of the Maxwell equations,

D, F" = —j", (1
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where FHV = OFAY — OV AH — ig[AF, AY], j¥ = t"pt?. We can rewrite
the above equations in another form

DL O"AY — 0V D, AF = —J", (12)

where we have defined J” = j¥ +ig[A,, F'*] +igd,[A", A”]. Contracting both
sides of Eq. (12) with n, and taking the light-cone gauge condition into account
yields

n, 0”9, A" =n, J". (13)

Integrating the above equation gives rise to

+oo

Dp At (+00,7) — 0, AM(—00, i) = /dm’n,,J”. (14)
+oo

Since f dx~n,JY = 0, in general, need not be true, we cannot arbitrarily
— 00

choose both A¥(+o00,Z) = 0 and A¥(—o0,Z) = 0 at the same time. One of
these boundary conditions can be arbitrarily chosen, while the other one must be
subjected to satisfy the constraint (14). This is just why we cannot choose the
boundary conditions arbitrarily in the light-cone gauge. In fact, this conclusion
holds for any axial gauges. From the Fourier transforms of Eq. (12),

E2AY —k(k-A) = —J, (15)
and together with the light-cone gauge condition, it is easy to obtain the formal
solutions

B . etk _ ];p, N
wo__ _TH R
A_/dkk2 Jr Tt ), (16)

where A" and J* are the Fourier transforms of A* and J*, respectively. It is
obvious that there is an extra singularity at k¥ = 0 in the solution (16). If we
assume that the currents are regular at £ = 0, it is easy to verify that the different
pole prescriptions correspond to different boundary conditions. In our paper, we
will consider three different boundary conditions

Advanced: A(400,7) =0,
Retarded: A(—o0,5) =0, (17)
Antisymmetric:  A(—o0, ) + A(co,9) = 0,

which correspond to three different pole structures, respectively,

1 L 1 1 + 1 (18)
kEt —ie’ kt+ie 2\ kTt +ie kt—ie)’
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where the last prescription is just the conventional principal value regularization.
In the next section, we will deal with the Fourier transform of the gauge potential

Akt 9) = / dy~ e*" ALy, 9). (19)

In order to pick out the contribution of the gauge potential at the infinity, we
need a mathematical trick by manipulating this integration by parts

/ dy~ ¢V A = o / dy~ ™ O Ay, g), Q0)
— o0 —00

where 9T = 0_ = §/dy~. We will see that once we choose the prescriptions (18)

according to the boundary conditions (17), we will obtain the gauge link at the

light-cone infinity.

We have seen that we cannot choose the boundary conditions arbitrarily, now
we will discuss how to fix the gauge freedom as maximally as possible. These
have been also discussed in Appendix in [20], we will take them into account from
the point of view of differential equations. Under a general gauge transformation,
the gauge potential transforms as

A“HS”&£+§S”%S 1)

In order to eliminate the light-cone component n - A = 0, we obtain the gauge
transformation by solving the equation

nt0,S =1ign"A,S. (22)

This equation is an ordinary linear differential equation, whose solution is well
known

zt

S=P exp ig/nuAu(gvxiaxJ_lva_Q)df S((Ei,fl}_l,le), (23)
g
where S(x~,x11,2%12) is an arbitrary unitary matrix which does not depend
on . This freedom allows us to set one of the three residual components of A,
zero on the three-dimensional hyperplane at 2+ = x1. Without loss of generality,
we can set A~ (xd, 27,2, ) = 0 by solving the following equation:

79,8 = ign*A,S. (24)
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The solution is given by

S=P{exp ig/dfn“AH(mg,g,xu,mlg)J Si(xi1,212). (25)

To

There is still an arbitrary unitary matrix which depends only on x; . We can use
this freedom to further set one of the residual transverse components of the gauge
potential zero, e.g., A;; = 0, at the two-dimensional hyperplane (z+ = a:ar s

x~ = xy) by solving
n! 10,51 =ign'| A5 (z11,212). (26)

The solution is given by

S, =P exp |ig / dént  Au(zd, oy, & wi2)| ¢ Sii(zi). 27)

Zol1

We can continue to set the only left transverse components A2 = 0 at the
straight line [+ = 2§, ¥~ = 2y, 211 = 011] by solving

n! 50,811 = ign'|,AuS11 (2 12). (28)
The solution is given by

Tl1
S11L = Pqexp |ig / dént AL (g, 2y, 2012,&) | ¢ S (29)

Zol1

With only a trivial global gauge transformation left, we have maximally fixed
our gauge freedom. Although we cannot choose the boundary conditions of the
gauge potential arbitrarily in the light-cone gauge, the constraint that the field
strengths should vanish at the infinity requires that the gauge potential must be a
pure gauge

1
A, = —w 0w, (30)

tg
where w = exp (i¢) with ¢ = ¢%t*. We can expand the above pure gauge as

i2

4, - %w*lauw = 9,0+ 5110,6.0] + S[0,6.6161+ .. G
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3. GAUGE LINK IN THE LIGHT-CONE GAUGE
IN THE DRELL-YAN PROCESS

In this section, we will review how the singularities and boundary conditions
in the light-cone gauge can result in the gauge link at the light-cone infinity. Since
the detailed derivation of transverse gauge link had been made for semi-inclusive
deep inelastic scattering [20,21], we will discuss the Drell-Yan process in detail
in order to avoid total repeating. For simplicity, we will set the target to be a
nucleon and the projectile to be just an antiquark.

The tree scattering amplitude of the Drell-Yan process, corresponding to Fig. 1,
reads

MY = (g — )y (X [(0)|P), (32)

where k£ denotes the momentum of initial quark from the proton P with the
momentum p, and ¢ — k and ¢ are the momenta of the antiquark and virtual
photon, respectively.

P

¢

Fig. 1. The tree diagram in the Drell-Yan Fig. 2. The one-gluon exchange diagram
process in the Drell-Yan process

The one-gluon amplitude in the light-cone gauge, corresponding to Fig. 2,
reads

_ d4k1 4 ’i(k*kl)- . L q_ }61 _
MY —/(2w)4d yi e U u(g—k)y? m<X|Am(y1>v%(o>|§3>).

In order to obtain the leading twist contribution, we only need the pole contribu-
tion in the quark propagator

~ d?’];?l p+da31 T Y ; +,— ~

mo_ 3, — ot(k—k1)-g1+i(z—mz1) (g —

My —/(2w)4d - dy; €' VorrEm IRy (g — k) x
X ~P1 g/_ }21 1

2 - (ky — q) (x1 — &1 — ie) (X|A,, (y1)7"(0)|P), (34)

where M{‘ with an extra ~ denotes that only the pole contribution is kept and
ki = [21pT, ky ,ki1] with 2 = kT /pt = zp + k% /2p - (k1 — q), which is
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determined by the on-shell condition (q—l%l)2 = 0. In Eq. (34), we have separated
the integral over 7 and y; from the others in order to finish integrating them
out first. Now, we need to choose a specific boundary condition for the gauge
potential flp at the infinity. Let us start with the advanced boundary condition
fl(—i—oo, y) = 0. Using Eq. (20) for the advanced boundary condition, we have

3 -
My :/ = / /dm / k)i Gieme0P Ty (g — )y x

[l (X[ Ay (31)1*HO)|P). (35)

.(kl_q)(xl—xl—ze)(x—xl—ze)

Let us finish integrating over x; and y; :

oy, — i ty” 1 ¢ + i
7,$ T A) —
/ 2 2 W (xl—xl—ze)(x—xl—ie)a pr (1)
1 -
eile—21)pTy~ +A —
/dy1 +0(y ))x—ﬁ1a o1 (Y1)

= x%‘%lfim(—oo,yl) + higher twist, (36)
where only the leading term in the Taylor expansion of the phase factor
eile—EpTy g kept, because the other terms are proportional to (x — 1)" =
(k% /2p- (k4 q) = k7, /2p- (k1 + ¢)]" (n > 1), which will contribute at higher
twist level.

However, if we choose the retarded boundary conditions, we can have

37,

.g(klki q) (T1 — &1 —i€) (x — z1 + ie) XA Oy OIP). 3T

Integrating out z; and y; first yields

1 [y - 1 i _
d z T—x1) v i _
/ / (J)l — Ty —i€) (x — a1 +i€)a o (Y1)
. —\ Li(x—21 - 1
- [ @yt

Y =0(-y7))

Ot A, (y1) = higher twist.
(38)

J)—J?l

We can see that the retarded boundary condition does not result in leading twist
contribution in the Drell-Yan process. If we choose the antisymmetric boundary
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condition, which corresponds to the principal value regularization, we obtain

dl‘l / _ 1 7 ~
dyy ef=rpty” PV ot A =
/ (x1 — &1 + ie) (x — 1) o (91)

1
/dyl S(20(y7) TP —g(y7) + 6(—y 7)) 0" Ap, (1) =

(E—(L’

1 ~
= ——A, (4+00, y1) + higher twist, (39)
r — X

where PV denotes principal value. In the above derivation, we notice that the
presence of the pinched poles is necessary to pick up the gauge potential at
the light-cone infinity. Actually, these pinched poles have selected the so-
called Glauber modes of the gauge field [23]. Although there is no leading
twist contribution in the retarded boundary condition, it was shown in [20],
that all the final-state interactions have been encoded into the initial-state light-
cone wave functions. In principal value regularization, the final-state scattering
effects appear only through the gauge link, while in advanced regularization,
they appear through both the gauge link and initial light-cone wave functions.
In the following, we will only concentrate on the advanced boundary condi-
tion. Only keeping leading twist contribution and inserting Eq. (36) into Eq. (35),
we have

i :/éf; By R (g — k) S Q‘(—I% ¥ q)x
P ——
L (X|A,, (=00, 51)0(0)|P). (40)

(E—(L’

Using Eq. (31), only keeping the first Abelian term and performing the integration
by parts over g;, we obtain

. Bk o i I
My :/ =By e FR) I G(g — ) (K- Fy)x

(2)
qd— K —i .
T — (X|p(—00,91)Y(0)|P). (41)

We can calculate these Dirac algebras, and finally obtain

My = u(q — k){X|i¢(=00,0)1(0)|P), 42)
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Fig. 3. The two-gluon exchange diagram in the Drell-Yan process

where we have dropped all the higher twist contributions. Now, let us further
consider the two-gluon exchange scattering amplitude plotted in Fig. 3:

) Ay ik I
P = / (27r)24 (27r)14 d*ypdtyy o' TR v TR G (g — )P
q— k2 o q— ki 5 i
! XA, A ® P). “
X (q—k2)2+i67 (q—k1)2—|—ie< | Pz(yQ) Pl(yl)’y ¢(0)| > (43)

Analogously to the case of M{', we will only keep the pole contribution

. Bly d3ky .. .. pTdrs ptda
MY = : 3y B3 =" dy, dy;
2 / (2m)3 (27)3 VT T Ty W2 M

% ei(k*%z)'y'zﬂ(’;z*kl)'?)1+i(I*12)P+y£+i(I2*I1)P+yf (g — k)yP2 x
d— ko e d— ki 1 1 »
2p~(k‘2—q) 2p~(k‘1—q) (xg—ﬁg—ie) (xl—ii'l—iE)
X (X[ Ap, (y2)Ap, (5179 (0)|P).  (44)

With the regularization (20) and (18), we can integrate out 2 and y, first

. Bly Bk .. .. prdn;
MY = d3g0 d3y) dyy
2 / (277)3 (27'(')3 Y2 U1 271' yl X
> ei(f@*kz)'?)zﬂ(’;z*’51)'9'1+i($*$1)?+y1_ a(q — k)’y”%
2p - (k2 — q)
q— ki 1 1
= — - = — X
2 (k1 —q) (x — Zg — i€) (x1 — &1 — i€)

X (X Apy (—00,52) Ap, (y1)y" ¥ (0)|P).  (45)

X ,ypl
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Further integrating out z; and y; gives rise to

. Bhy k1 o, a . ah i P
1 — d3 . d3 . ’L(k}*k)z)-y2+l(k)27k)1)~y1 — _ k
= / (2m)? (2mp 2 =

X P2 g/_A Ko AP g/_A 2! Al : Al __x
2 (ks —q) 2p- (k1 —q) (& — &2 —i€) (x — &1 — i€)
X <X|A/)2(_Ooal./2)gm(_ooa91)71L¢(0)|P>' (46)
Using Eq. (31), only keeping the first Abelian term, we have

. By By o
Z\[M — d d3 ’L(k}*k)z)-y2+l(k)27k)1)~y1 — _ k
2 /(277) (2 ) y2 yle u(q )X

P kQ P kl 1 1
e Ga—q) 2p-(ln—q) @ — a2 —i€) (a1 —i€) |
X (X[0p, (=00, §2)0p, (=00, §1)7" ¥ (0)| P).  (47)

Using the integration by parts, we can integrate out ko and 72, and obtain

My = / &d% ¢!k k)01 (g — k)yr a— R
(277)3 D - (kl _ q) (3: — I — ZG)

1z N
x (X135 1y 9% (—00,51)7"4(0)| P).  (48)
Further, by integrating over k1 and g1, we finally obtain
2
- _ i
MY = (g = k){X|5;6% (=00, 0079 (0)| P). (49)

It should be noted that we have neglected the higher twist contributions in the
above derivation. It is obvious that the procedure from M; to M, can be
easily generalized to higher order amplitudes. For example, the general n-gluon
exchange amplitude M, in Fig. 4 reads

.
/H kj L g3 e Fn Rt ioctctilRa 1) g

+dx]

dy; ei@ny1—an)pTy o ti(za—z)ptyy a(q — k)x

H::s

H SRPRSY S
—q) o0 (ky —q) (Tn —Tn —i€)  (z1 — &1 — ie)
X (X[ A, (yn) - Ay, (1) 0(0)|P). (50)

X ,an

X

—
?T‘>
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—

Fig. 4. The n-gluon exchange diagram in the Drell-Yan process

We first finish integrating from x,,,y,, to x1,y; one by one. Keeping the leading
twist contribution, we have

i nOBE
M, = / [T o2 Py e kner—hodnteetithaho)de gk 4 g) x
j=1

(2m)
ot d L Kt d R S
2p- (kn +q) 2 - (k1 + q) @ni1 — &n) (82— 21)

X <X|é n ¢(—OO, yn) ({;p7L71¢(—OO, anl) e 5P1 ¢(—OO, yl)w(0)|P>a (51)

where we have used Eq.(31) again and only have kept the first Abelian term.
Integrating over momenta from k,, and ¢, to k1 and y; one by one, we finally have

N ~ i
Mn = (g = k)(X |5 ¢" (=00,0)4(0)| P). (52)
As a final step, we resum to all orders and obtain
o ~
> M, = (g — k)(X | exp (ip(—00,0))1(0)|P) =
n=0
= u(q — k)(X|w(—00,0)¢(0)[P). (53)
The light-cone infinity ¥y~ = —oo instead of y~ = +oo reflects that the phase

factor arises from the initial interaction rather than from the final interaction.
Now, we need to express w as the function of A, by solving Eq.(30) at the
light-cone infinity. We can rewrite Eq. (30) in the partial differential form

Duw(—o00, &) = igA,(—o0, i) w(—o0, &). (54)

This equation cannot be solved unless certain integrability conditions are satisfied.
In Sec.4, we will show that F'*¥ = 0 is the right integrability condition, which
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is assumed to be always satisfied for the gauge field at the infinity. The solution
is exactly the gauge link that we want

w(—o0,) = Pexp ig/df'“fl”(—oo,f') = L[—00,&;—00,—0], (55)

where we have chosen w(—o00, —c0) = 1, which can be always achieved by using
the residual global gauge transformation So in (29). It follows that

M, = u(q — k){X|(0)L]—00, 0; —o00, —]| P). (56)

It should be emphasized that the gauge link we obtain here is over the hypersurface
at the light-cone infinity along any path integral, not restricted along the transverse
direction. Let us verify this independence in the next section.

4. PATH INDEPENDENCE OF THE GAUGE LINK

In this section, we will show that the gauge link (55) is the solution of Eq. (54)
with the integrability condition F'*¥ = 0. However, we would like to prove
a more general conclusion here. We will verify that the arbitrary gauge link
connecting xg with z,

ol dyn
slsio,) = P exp |ig [ dsi DA, (lssiana)| {0 6D
0

where s; denotes the path parameter with the constraints
y(0; 20, 7) = w0, Y(s;20,7) = 7, (58)
is the solution of the equation
Opw = igA,w (59)

under the integrability condition F'* = 0.
For the sake of brevity, we introduce some compact notations

437(81) = d—51AV1 (y(Sl;l’o,(IJ)), (60)

dﬂ(sz) = auyyiAVi (y(Si;(L'(),l')), (61)
dy”

Fu(si) = dLﬁ@;Ly”F,)Vi (y(si; w0, 7). (62)

We can expand w(s) as

w(s) = go +igpr + (ig)>d2 + (ig)>ds + ..., (63)
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where we have defined

¢o =1, (64)

¢ = /d81 o (51), (65)
0

b2 = / ds) / dso o (1) (52), (66)
0 0

(b3 = /dSl/dSQ/ng 527(81)527(82)%(53). (67)
0 0 0

We have suppressed all the dependence on xy and z. In the following, we devote
ourselves to calculating J,w in detail. In order to do that, we need to calculate
the partial derivative of each term in the expansion (63). The partial derivative
of the zeroth order is trivially zero. Let us calculate the first order

S S a

_ d(auyul) dy™
Out1 f/dsldislAul(y(sl))+/d51d—slauypw14m (y(s1)), (68)
0 0

where it should be noted that 0, = 0/0xz" here and we must distinguish it
from 0/0y*. Using the differential chain-type rule and the definition F*¥ =
OuA, — 0,A, —ig[A,, A)], we have

S S

d(o,,y*? d

@m:/@rhﬁlmmwn+/mmw—ﬁmmm+
dsy dsy

0

0
4 [ a0, s (51)) + ig A, (0(). A y(s0)]} =
0

S

=,(s) — #,(0) + /dsl{ﬂu(sl) +ig[,(s1), & (s1)]}.  (69)
0
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Now, let us turn to the second order

8IL¢2 = 8u [/ dsy MU(Sl)Cﬁl(Sl)] =
0

S S

:/d51 8ud(sl)¢1(sl)+/d51427(81)8“¢1(51). (70)

0 0

Once more, using the differential chain-type rule and the definition of F*¥, we
obtain

O = /dsl 1(51) ¢1(s1) /dslﬁf 51) Ou1(s1) /d51{c/u 51)+

S

+igly(s0), 7 51 }or(s1) = ()6n(5) — [ dsnar (o) AL ¢
)
+/Sd81»@7(81)3u¢1(81)+/Sd81{c%(81)+ig[ﬂu(sl)v427(81)]}%(81) (71)
; ;
Using the result of the first order (69) and the relation
D o), )

we have

Dytrr = /wl (51), (51)] + (1)1 () — 61 (5) 7 (0)+
/dSl/dSQ 81 {f (52)4‘@9[427”(52) M(SQ)]}—"

+0/d510/d52{§u(51)+ig[du(sl),d(sl)]}d(52). (73)

Hence, it is shown that we can obtain J,¢> by using the result of J,¢; in
an iterative way. Such a process can be generalized to higher order case.
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For example,

S

O = ()b (s) — / dsl%(sl)dd’;s(fl) + / ds1.7(51)0,bn(51)+

0 0

—|—/dsl{</“ s1) +igle,(s1), (1)} on(s1). (74)
0

Using the general relation

d¢n+1(sl)
d81

= o (s1)Pn(s1) (75)

yields

Byubnir = () (s) — / 01,7, (51) 7 (51) b1 (51)+
0

S S

+/dsld(sl)8u¢n(sl)—|—/dsl{ﬂu(sl)+ig[xzf“(sl),427(81)]}(;5”(51). (76)

0 0

We can express 0,¢n(s1) in terms of the lower order terms ¢,,_1 and ¢, _s:

Dbnsr = () bu(s) + / ds1. 0 (51)bn (1)
0

S

+ [ dsilatilon). o (s1)igon(s1) - dn-a(or))-

0
—/d81/d82 Qf(Sl)Q{M(SQ)Q{(SQ)(ﬁn,Q(Sl)+/d81ﬂ(81){ 3‘\“(81)4-
0 0 0

—|—ig[zQ{M(sl),427(81)]}@1)",1(31)+/dsl/d52 o (81) (52)0pudn—1(s2). (I7)

0 0
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Continuing this iterative process, we finally have

Bybuir = u(5)6u(s) — buls / ds1.Fu(51)+
/dsl/dSQ (51)Fu(s2) + ..+
¥ / sy /  dsnnt (1) () Falsnir)
A
, / o[y (51),  (51))(ign(51) — Gnr (1)) +
/ dsy / sy o (51)0p(52), 7 (52)|(ig6n1(52) — Gu-2(52)) + ... +

+/d51/d52---/dsnﬂd(sl)---d(sn_l)x
0 0 0

X [ (s0), o (sn)](igp1(sn) —¢0(5n))+/d51/d82“'/d5n+1><
0 0 0

x @ (s1) A (50)[Du(sn+1), F (Sn41)ligdo(snv1).  (78)

Summing all of them gives rise to the partial derivative of w(s)

Ouw(s) =Y (ZZ!) b 79)

n=0

It is found that all the commutation terms cancel each other, and the final re-
sult reads

Ouw(s) = #,(s)w(s) — w(s),(0) + /d51 w (1) Fu(s1)w(s1). (80)
0
Using the constraints (58) and considering the assumption F*” = 0, we have
Ouw = igA,w. (81)

Thus, we have verified that the expression (57) is the solution of differential
equation (59) and the integrability condition if F'*¥ = 0. According to the theory
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of linear differential equation, this solution must be unique with some specific
initial condition, which means that the solution (57) does not depend on the path
we choose. This conclusion of path independence can also be obtained from the
non-Abelian Stokes Theorem [25-27].

5. SUMMARY

In the present work, we have reviewed some issues which are very important
when we deal with the calculation in the light-cone gauge. First, we discussed
why we cannot arbitrarily choose the boundary conditions of the gauge potential
at the light-cone infinity. Then, we showed how the singularities appear in the
light-cone gauge, how they are related to the boundary conditions, and how we
can regularize them in a proper way corresponding to the different boundary
conditions. Later on, we showed how to derive the gauge link at the light-cone
infinity from these singularities in the Drell-Yan process. Finally, we verified
that the gauge link at the light-cone infinity has no dependence on the path not
only for the Abelian field, but also for non-Abelian gauge field.
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