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I review the resummation formalism for organizing large logarithms in perturbative expansion
of collinear subprocesses through the variation of Wilson lines off the light cone. A master equation
is derived, which involves the evolution kernel resulting from this variation. It is then demonstrated
that all the known single- and double-logarithm summations for a parton distribution function or a
transverse-momentum-dependent parton distribution can be reproduced from the master equation by
applying appropriate soft-gluon approximations to the evolution kernel. Moreover, jet substructures,
information of which is crucial for particle identiˇcation at the Large Hadron Collider and usually
acquired from event generators, can also be calculated in this formalism.

‚ · ¡μÉ¥ ¶·¥¤¸É ¢²¥´ Ëμ·³ ²¨§³ ¶¥·¥¸Ê³³¨·μ¢ ´¨Ö, ¶·¥¤´ §´ Î ¥³Ò° ¤²Ö ¢Ò¸É· ¨¢ ´¨Ö
¡μ²ÓÏ¨Ì ²μ£ ·¨Ë³μ¢ ¢ ¶¥·ÉÊ·¡ É¨¢´μ³ · §²μ¦¥´¨¨ ±μ²²¨´¥ ·´ÒÌ ¶μ¤¶·μÍ¥¸¸μ¢ ¶μ¸·¥¤¸É¢μ³
¢ ·¨ Í¨¨ ¢¨²Ó¸μ´μ¢¸±¨Ì ²¨´¨° ¢´¥ ¸¢¥Éμ¢μ£μ ±μ´Ê¸ . �·¥¤¸É ¢²¥´ ¢Ò¢μ¤ £² ¢´μ£μ Ê· ¢´¥´¨Ö,
±μÉμ·μ¥ ¢±²ÕÎ ¥É ¢ ¸¥¡Ö Ö¤·μ Ô¢μ²ÕÍ¨¨, ¶μ²ÊÎ ¥³μ¥ ÔÉμ° ¢ ·¨ Í¨¥°. ‡ É¥³ ¶μ± §Ò¢ ¥É¸Ö, ÎÉμ
¢¸¥ ¨§¢¥¸É´Ò¥ μ¤´μ- ¨ ¤¢ÊÌ²μ£ ·¨Ë³¨Î¥¸±¨¥ ¸Ê³³¨·μ¢ ´¨Ö ¤²Ö ËÊ´±Í¨¨ · ¸¶·¥¤¥²¥´¨Ö ¶ ·Éμ´μ¢
¨²¨ ¶ ·Éμ´´μ£μ · ¸¶·¥¤¥²¥´¨Ö, § ¢¨¸ÖÐ¥£μ μÉ ¶μ¶¥·¥Î´μ£μ ¨³¶Ê²Ó¸ , ³μ£ÊÉ ¡ÒÉÓ ¶μ²ÊÎ¥´Ò ¨§
£² ¢´μ£μ Ê· ¢´¥´¨Ö ¶·¨ ¨¸¶μ²Ó§μ¢ ´¨¨ ¶μ¤Ìμ¤ÖÐ¨Ì ¶·¨¡²¨¦¥´¨° ³Ö£±μ£μ £²Õμ´  ¤²Ö ¶μ¸É·μ¥-
´¨Ö Ö¤·  Ô¢μ²ÕÍ¨¨. Š·μ³¥ Éμ£μ, ¢ ¶·¥¤¸É ¢²¥´´μ³ Ëμ·³ ²¨§³¥ ¢μ§³μ¦´μ ¢ÒÎ¨¸²¥´¨¥ ¸É·Ê°´ÒÌ
¸Ê¡¸É·Ê±ÉÊ·, ¨´Ëμ·³ Í¨Ö μ ±μÉμ·ÒÌ Ö¢²Ö¥É¸Ö ±²ÕÎ¥¢μ° ¤²Ö ¨¤¥´É¨Ë¨± Í¨¨ Î ¸É¨Í ´  	μ²ÓÏμ³
 ¤·μ´´μ³ ±μ²² °¤¥·¥ ¨ μ¡ÒÎ´μ ¶μ²ÊÎ ¥É¸Ö ¨§ £¥´¥· Éμ·μ¢ ¸μ¡ÒÉ¨°.

PACS: 12.38.Cy

INTRODUCTION

It is known that radiative corrections in perturbative QCD (pQCD) produce
large logarithms at each order of the coupling constant. Double logarithms ap-
pear in processes involving two scales, such as ln2(p+b), with p+ being the
large longitudinal momentum of a parton and b being the impact parameter con-
jugate to the small-parton transverse momentum kT . In the region with a large
Bjorken variable x, there exists ln2(1/N) from the Mellin transformation of
ln (1 − x)/(1 − x)+, for which the two scales are the large p+ and the small
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infrared cutoff (1 − x)p+ for gluon emissions from a parton. Single logarithms
are generated in processes involving one scale, such as ln p+ and ln (1/x), for
which the relevant scales are the large p+ and the small xp+, respectively. To
improve perturbative expansion, these logarithmic corrections need to be orga-
nized by evolution equations or resummation techniques. Various methods have
been developed to organize these logarithmic corrections to a parton distribu-
tion function (PDF) or to a transverse-momentum-dependent distribution function
(TMD): the kT resummation for ln2(p+b) [1, 2], the threshold resummation for
ln2(1/N) [3Ä5], the joint resummation [6, 7] that uniˇes the above two for-
malisms, the DokshitzerÄGribovÄLipatovÄAltarelliÄParisi (DGLAP) equation for
ln p+ [8], the BalitskyÄFadinÄKuraevÄLipatov (BFKL) equation for ln (1/x) [9],
and the CiafaloniÄCataniÄFioraniÄMarchesini (CCFM) equation [10] that com-
bines the above two evolution equations.

The deˇnition of a PDF or a TMD contains Wilson lines along the light
cone, which collect gluons collimated to a beam particle of momentum p and
attaching to other parts of a scattering process. The Wilson lines contain vertical
links at inˇnity, if a TMD is considered. To perform resummation, a simple trick
is to vary the Wilson lines off the light cone into an arbitrary direction nμ with
n2 �= 0 [11]. The PDF or the TMD must depend on pμ and nμ through the Lorentz
invariants p · n and n2. When a parton kT is involved, the phase space of real
radiation is constrained, so the associated infrared enhancement does not cancel
completely that in virtual correction. The infrared enhancement then generates the
double logarithms of the ratio (p · n)2/(k2

T n2), and the variation of n turns into
the variation of the scale p+ or kT . The key is that all different choices of the
vector n are equivalent in the viewpoint of collecting the collinear divergences
associated with the beam particle. Therefore, the effect from varying n does not
involve the collinear divergences, which can then be factorized out of the PDF
or the TMD, leading to an evolution equation in n. The resummation technique
via the variation of the Wilson lines off the light cone will be reviewed in this
article, and its wide applications to the single- and double-logarithm summations
will be demonstrated.

It has been a long-standing challenge to predict substructures (including
masses and energy proˇles) of light-quark and gluon jets in the pQCD theory:
ˇxed-order QCD calculations cannot describe experimental data on jet substruc-
tures, especially in extreme kinematic regions, such as the region with a small-jet
invariant mass. Hence, it is a custom for experimentalists to compare measured
jet substructures with predictions from full event generators, such as PYTHIA or
HERWIG. While the full event generators (usually with speciˇc tuning) could de-
scribe data, it remains desirable to develop a theoretical framework for the study
of jet substructures. A novel approach to predicting jet substructures based on the
resummation formalism has been proposed recently [12]. It has been shown that
results of this formalism for light-quark and gluon jets are well consistent with the
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mass distributions measured by CDF [13], and with the energy proˇles measured
by CDF at Tevatron [14] and CMS at Large Hadron Collider (LHC) [15].

1. RESUMMATION FORMALISM

In this section, I explain the basic idea of the resummation formalism with
the Wilson lines off the light cone. Collinear and soft divergences in perturbation
theory may overlap to form double logarithms in extreme kinematic regions with
low pT and large x. The former includes low pT jet, photon, and W -boson
productions, which all require real gluon emissions of small pT . The latter in-
cludes top-pair production, deep inelastic scattering (DIS), DrellÄYan production,
and heavy-meson decays B → Xulν and B → Xsγ [16Ä18] at the end points,
for which parton momenta remain large, and radiations are constrained in the
soft region. Because of the limited phase space for real corrections, the in-
frared cancellation is not complete. The double logarithms, appearing in products
with the coupling constant αs, such as αs ln2(E/pT ) with the beam energy E and
αs ln (1−x)/(1−x)+, deteriorate perturbative expansion. Double logarithms also
occur in exclusive processes, such as Landshoff scattering [19], hadron form fac-
tors [20], Compton scattering [21], and heavy-to-light transitions B → π(ρ) [22]
and B → D(∗) [23] at maximal recoil. In order to have a reliable pQCD analysis
of these processes, the important logarithms need to be summed to all orders.

Take as an example a jet subprocess deˇned by the matrix element in the
covariant gauge ∂ · A = 0 [18],

J(p, n)u(p) = 〈0|P exp

⎡
⎣−ig

∞∫
0

dz n · A(nz)

⎤
⎦ q(0)|p〉, (1)

where q is a light-quark ˇeld with momentum p; u(p) is a spinor, and A is a gluon
ˇeld. The Abelian case of this subprocess has been discussed in [24]. The path-
ordered exponential in Eq. (1) is the consequence of the factorization of collinear
gluons with momenta parallel to p from a full process. For convenience, it is
assumed that p has a large light-cone component p+, and all its other components
vanish. A general diagram of the jet function J is shown in Fig. 1, a, where
the path-ordered exponential is represented by a double line along the arbitrary
vector n. As stated before, varying the direction n does not change the collinear
divergences collected by the Wilson line.

It is easy to see that J contains double logarithms from the overlap of
collinear and soft divergences by calculating the leading-order (LO) diagrams in
Fig. 1, b, the self-energy correction, and in Fig. 1, c, the vertex correction. In
the covariant gauge Fig. 1, b (Fig. 1, c) produces a single (double) logarithm. In
the axial gauge n · A = 0 the path-ordered exponential reduces to an identity,
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Fig. 1. a) Jet subprocess deˇned in Eq. (1). b, c) LO diagrams of a

Fig. 2. Derivative p+dJ/dp+ in the covariant gauge

and Fig. 1, c does not exist. The essential step in the resummation technique
is to derive a differential equation p+dJ/dp+ = CJ [18], where the coefˇcient
function C contains only single logarithms, and can be treated by renormalization-
group (RG) methods. Since the path-ordered exponential is scale-invariant in n,
J must depend on p and n through the ratio (p ·n)2/n2. The differential operator
d/dp+ can then be replaced by d/dn using a chain rule

p+ d

dp+
J = − n2

v · nvα
d

dnα
J, (2)

with vector v = (1, 0,0T ) being deˇned via p = p+v.
Equation (2) simpliˇes the analysis tremendously, because n appears only in

the Feynman rules for the Wilson line, while p may 
ow through the whole dia-
gram in Fig. 1, a. The differentiation of each eikonal vertex and of the associated
eikonal propagator with respect to nα,

− n2

v · nvα
d

dnα

nμ

n · l =
n2

v · n

(
v · l
n · l nμ − vμ

)
1

n · l ≡ n̂μ

n · l , (3)

leads to the special vertex n̂μ. The derivative p+dJ/dp+ is thus expressed as a
summation over different attachments of n̂μ, labeled by the symbol + in Fig. 2.
If the loop momentum l is parallel to p, the factor v · l vanishes, and n̂μ is
proportional to vμ. When this n̂μ is contracted with a vertex in J , in which all
momenta are mainly parallel to p, the contribution to p+dJ/dp+ is suppressed.
Hence, the leading regions of l are soft and hard.

According to this observation, we investigate some two-loop examples ex-
hibited in Fig. 3, a. Note that the third and the fourth diagrams in Fig. 3, a,
involving the crossing gluons, do not mean three-loop diagrams. If the loop



1362 HSIANG-NAN LI

Fig. 3. a) O(α2
s) examples for the differentiated J . b) Factorization of K at O(αs).

c) Factorization of K at O(α2
s). d) Factorization of G at O(αs)

momentum 
owing through the special vertex is soft but another is not, only
the ˇrst diagram is important, giving a large single logarithm. In this soft re-
gion the subdiagram containing the special vertex can be factorized using the
eikonal approximation as shown in Fig. 3, b, where the symbol ⊗ represents a
convoluting relation. The subdiagram is absorbed into a soft kernel K , and the
remainder is identiˇed as the original jet function J , both being O(αs) contribu-
tions. If both loop momenta are soft, the four diagrams in Fig. 3, a are equally
important. The subdiagrams, factorized according to Fig. 3, c, contribute to K
at O(α2

s), and the remainder is the LO diagram of J . If the loop momen-
tum 
owing through the special vertex is hard and another is not, the second
diagram in Fig. 3, a dominates. In this region the subdiagram containing the
special vertex is factorized as shown in Fig. 3, d. The right-hand side of the
dashed line is absorbed into a hard kernel G as an O(αs) contribution, and the
left-hand side is identiˇed as the O(αs) diagram of J . If both loop momenta
are hard, all the diagrams in Fig. 3, a are absorbed into G, giving the O(α2

s)
contributions.

Extending the above reasoning to all orders, one derives the differential
equation

p+ d

dp+
J =

[
K(m/μ, αs(μ)) + G(p+ν/μ, αs(μ))

]
J, (4)
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where the coefˇcient function C has been written as the sum of the soft kernel
K and the hard kernel G. In the above expression μ is a factorization scale, the
gauge factor in G is deˇned as ν =

√
(v · n)2/|n2|, and a gluon mass m has been

introduced to regularize the infrared divergence in K . Note that the function J
deˇned in Eq. (1) is not a physical object, and is not infrared safe, so the infrared
regulator m is needed [24]. For physical objects, such as the TMD discussed in
the next section, this infrared regulator is not necessary. The O(αs) contribution
to K from Fig. 3, b is written as

K = −ig2CF με

∫
d4−εl

(2π)4−ε

n̂μ

n · l
gμν

l2 − m2

vν

v · l − δK, (5)

where

δK = −αs

2π
CF

(
2
ε

+ ln 4π − γE

)

is an additive counterterm in the MS scheme, γE being the Euler constant. The
O(αs) contribution to G from Fig. 3, d is given by

G = −ig2CF με

∫
d4−εl

(2π)4−ε

n̂μ

n · l
gμν

l2

(
� p + � l

(p + l)2
γν − vν

v · l

)
− δG, (6)

where the second term in the parentheses acts as a soft subtraction to avoid double
counting, and δG is an additive counterterm. Because of the soft cancellation
between the two terms in the above expression, the infrared regulator m has been
dropped. A straightforward evaluation shows that Eqs. (5) and (6) contain only the
single logarithms ln (m/μ) and ln (p+ν/μ), respectively, as expected. Organizing
these single logarithms using the RG methods, and then solving Eq. (4), one
resums the double logarithms ln2(p+/m) in J .

To reproduce all the known resummations and evolution equations, we con-
struct a master equation for the TMD Φ(x, kT ) following the above procedures.
The dependence on a factorization scale μ is implicit. The factorization scale is
similar to a renormalization scale, but introduced in perturbative computations for
an effective theory. If the parton is a quark, Φ is deˇned by

Φq/N (x, kT ) =
∫

dy−

2π

∫
d2yT

(2π)2
e−ixp+y−+ikT ·yT ×

× 1
2
〈N(p, σ)|q̄(0, y−,yT )

1
2
γ+W (y−,yT , 0, 0T )q(0, 0, 0T )|N(p, σ)〉, (7)

where |N(p, σ)〉 denotes the bound state of the nucleon with momentum p and
spin σ, y = (0, y−,yT ) is the coordinate of the quark ˇeld after the ˇnal-state
cut, the ˇrst factor 1/2 is attributed to the average over the nucleon spin, and the
matrix γ+/2 is the spin projector for the nucleon. The Wilson links are deˇned
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as W (y−,yT , 0, 0T ) = W (0, 0T )I0,yT W †(y−,yT ), with the vertical link I0,yT

being located at y− = ∞ [25], and

W (y−,yT ) = P exp

⎡
⎣−ig

∞∫
0

dz n · A(y + zn)

⎤
⎦ . (8)

The two quark ˇelds before and after the ˇnal-state cut in Eq. (7) are separated
by a distance, so the above Wilson links are demanded by the gauge invariance
of the TMD as a nonlocal matrix element. More investigations on the vertical
Wilson links can be found in [26]. If the parton is a gluon, the nonlocal operator
in Eq. (7) is replaced by F+

μ (0, y−, yT )Fμ+(0, 0, 0T ).
Similarly, n is varied arbitrarily away from the light cone with n2 �= 0.

Then, Φ depends on p+ via the ratio (p · n)2/n2, so the chain rule in Eq. (2)
relating the derivative dΦ/dp+ to dΦ/dnα applies. One derives the master
equation

p+ d

dp+
Φ(x, kT ) = 2Φ̄(x, kT ), (9)

where Φ̄ contains the special vertex, and the coefˇcient 2 is due to the equality
of Φ̄ with the special vertex on either side of the ˇnal-state cut. The function Φ̄
is factorized into the convolution of the soft and hard kernels with Φ:

Φ̄(x, kT ) = Φ̄s(x, kT ) + Φ̄h(x, kT ), (10)

with the soft contribution

Φ̄s =
[
−ig2CF με

∫
d4−εl

(2π)4−ε

n̂ · v
n · ll2v · l − δK

]
Φ(x, kT )−

− ig2CF με

∫
d4−εl

(2π)4−ε

n̂ · v
n · lv · l2πiδ(l2)Φ(x + l+/p+, |kT + lT |), (11)

where the ˇrst term is the same as in Eq. (5), and the second term proportional
to δ(l2) arises from the real soft gluon emission. The hard contribution is given
by Φ̄h(x, kT ) = G(xp+ν/μ, αs(μ))Φ(x, kT ), in which the hard kernel G is the
same as in Eq. (6).

2. THE kT RESUMMATION AND BFKL EQUATION

The TMD deˇnition in Eq. (7) contains three scales: (1−x)p+, xp+, and kT .
We ˇrst consider the soft approximation corresponding to the rapidity ordering
of real gluon emissions in a ladder diagram. Assume that a parton carries the
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longitudinal momentum xp+ + l+2 + l+1 , which becomes xp+ + l+1 after emitting
a gluon of longitudinal momentum l+2 and transverse momentum l2T , and then
becomes xp+ after emitting a gluon of longitudinal momentum l+1 and transverse
momentum l1T . In the kinematic conˇguration with l+2 	 l+1 and l2T ∼ l1T ,
the original parton momentum is approximated by xp+ + l+2 + l+1 ≈ xp+ + l+2 .
The loop integral associated with the ˇrst gluon emission is then independent
of l+1 , and can be worked out straightforwardly, giving a logarithm. The loop
integral associated with the second gluon emission, involving only l+1 , also gives a
logarithm. Hence, a ladder diagram with N rung gluons generates the logarithmic
correction (αsL)N under the above ordering, where L denotes the large logarithm.
Following the rapidity ordering, we adopt the approximation for the real gluon
emission in Eq. (11):

Φ(x + l+/p+, |kT + lT |) ≈ Φ(x, |kT + lT |), (12)

where the l+ dependence has been neglected. The transverse momenta lT , being
of the same order as kT in this kinematic conˇguration, are kept. The variable l+

in K is then integrated up to inˇnity, such that the scale (1 − x)p+ disappears.
Equation (9) is Fourier transformed into the impact parameter b space, with

the deˇnition
∫

Φ(x, kT ) exp (ikT · b)d2kT /(2π)2 ≡ Φ(x, b). The convolution
in the transverse-momentum space in Eq. (11) then becomes a product under the
Fourier transformation. In the intermediate x region Φ involves two scales, the
large xp+ that characterizes the hard kernel G, and the small 1/b that characterizes
the soft kernel K . The master equation (9) becomes

p+ d

dp+
Φ(x, b) = 2

[
K(1/(bμ), αs(μ)) + G(xp+ν/μ, αs(μ))

]
Φ(x, b), (13)

whose solution with ν = 1 leads to the kT resummation

Φ(x, b) = Δk(x, b)Φi(x), (14)

with the Sudakov exponential

Δk(x, b) = exp

⎡
⎢⎣−2

xp+∫
1/b

dp

p

p∫
1/b

dμ

μ
γK(αs(μ))

⎤
⎥⎦ , (15)

and the initial condition Φi of the Sudakov evolution. The anomalous dimension
of K , λK = μdδK/dμ, is given, up to two loops, by [27]:

γK =
αs

π
CF +

(αs

π

)2

CF

[
CA

(
67
36

− π2

12

)
− 5

18
nf

]
, (16)

with nf being the number of quark 
avors and CA = 3 being a color factor.
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The kT resummation effect on the low pT spectra of the direct photon
production has been analyzed [28]. The initial-state and ˇnal-state radiations
are constrained in the low pT region, where the kT resummation is necessary
for improving the perturbation theory. Figure 4 shows the deviation, (DataÄ
Theory)/Theory, of the next-to-leading-order (NLO) pQCD predictions, obtained
using the CTEQ4M PDFs [29], from the experimental data as a function of
xt = 2pT /

√
s,

√
s being the center-of-mass energy. The deviation is huge

as expected, especially at low xt of each set of the data. After including the
kT resummation effect [28], it is clear that a signiˇcant improvement on the
agreement between the theoretical predictions and the data is achieved. As to the
intermediate- and high-pT regions of the direct photon production, NLO pQCD
works reasonably well in accommodating the data as shown in [30]. The threshold
resummation effect, which will be introduced in the next section, is more relevant
in these regions: it slightly improves the consistency between predictions and the
data [30].

In the small x region with xp+ ∼ kT , or xp+ ∼ 1/b in the b space, the
two-scale case reduces to the single-scale one. In this region, contributions from
gluonic partons dominate, so Φ represents the gluon TMD below. The source of
double logarithms, i.e., the integral containing the anomalous dimension γK , is
less important. Because only the soft scale exists, one drops the hard kernel G,
and keeps the soft kernel with an ultraviolet cutoff. The right-hand side of Eq. (9)
becomes

Φ̄(x, kT ) = −ig2Nc

∫
d4l

(2π)4
n̂ · v

n · lv · l×

×
[

Θ(k2
T − l2T )
l2

Φ(x, kT ) + 2πiδ(l2)φ(x, |kT + lT |)
]
, (17)

where the color factor CF has been replaced by Nc for the gluon TMD. The step
function Θ introduces the ultraviolet cutoff on lT mentioned above. To make
variation in x via variation in p+, a ˇxed parton momentum is assumed. Under
this assumption, the momentum fraction x is proportional to 1/p+, and one has
p+dΦ/dp+ = −xdΦ/dxΦ [31]. Performing the integrations over l+ and l− in
Eq. (17), the master equation (9) reduces to the BFKL equation [32],

dφ(x, kT )
d ln (1/x)

= ᾱs

∫
d2lT
πl2T

[
φ(x, |kT + lT |) − Θ(k2

T − l2T )φ(x, kT )
]
, (18)

with the coupling constant ᾱs = Ncαs/π.
A remarkable prediction of the above LO BFKL equation is that a high-energy

cross section increases with the center-of-mass energy,

σ ≈ 1
t

(s

t

)ωP −1

, (19)
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Fig. 4. Low pT direct photon spectra before (a) and after (b) including the kT resummation
effect

with the momentum transfer squared t. It turns out that Eq. (19), with the
Pomeron intercept ωP − 1 = 4ᾱs ln 2, violates the Froissart (unitarity) bound
σ < const × ln2 [33]. The unsatisfactory prediction of the LO BFKL equation
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called for the NLO corrections [34], which were, however, found to be dra-
matic [35]: the NLO effect is nearly as large as the LO result for x ∼ 0.001, and
becomes dominant at lower x. It even turns the derivative of the structure func-
tion dFL/d ln Q2 negative below x ∼ 0.0001. That is, the perturbative solution
is not at all stable.

3. THE THRESHOLD RESUMMATION AND DGLAP EQUATION

We then consider the soft approximation corresponding to the kT ordering
of real gluon emissions in a ladder diagram. Assume that a parton without
the transverse momentum carries −l1T after emitting a gluon of longitudinal
momentum l+1 and transverse momentum l1T , and then carries −l1T − l2T after
emitting a gluon of longitudinal momentum l+2 and transverse momentum l2T .
In the kinematic conˇguration with l2T 	 l1T and l+2 ∼ l+1 , the ˇnal parton
momentum can be approximated by −l2T−l1T ≈ −l2T , such that the loop integral
associated with the ˇrst gluon emission involves only l1T , and can be worked
out straightforwardly, giving a logarithm. The loop integral associated with the
second gluon emission involves only l2T , and also gives a logarithm. Therefore, a
ladder diagram with N rung gluons generates the logarithmic correction (αsL)N

under the above kT ordering. In this case, Φ is independent of lT , and we have
the approximation for the real gluon emission in Eq. (11):

Φ(x + l+/p+, |kT + lT |) ≈ Φ(x + l+/p+, kT ), (20)

in which x and l+/p+ are of the same order. The dependence on kT can then be
integrated out from both sides of the master equation (9), and the TMD Φ reduces
to the PDF φ. Similarly, the soft contribution Φ̄s in Eq. (10) reduces to φ̄s. The
scale kT disappears, and the scale (1 − x)p+ is retained.

The Mellin transformation is employed to bring φ̄s from the momentum
fraction x space to the moment N space,

φ̄s(N) =

1∫
0

dxxN−1φ̄s(x), (21)

under which the l+ integration decouples. In the large x region, φ involves two
scales, the large xp+ ∼ p+ from the hard kernel G and the small (1 − x)p+ ∼
p+/N from the soft kernel K . To sum ln (1/N), we rewrite the derivative
p+dφ/dp+ as

p+ dφ

dp+
=

p+

N

dφ

d(p+/N)
. (22)
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The solution of the master equation (9) then gives the threshold resummation,

φ(N) = Δt(N)φi (23)

with the exponential

Δt(N) = exp

⎡
⎢⎣−2

p+∫
p+/N

dp

p

p∫
p+

dμ

μ
γK(αs(μ))

⎤
⎥⎦ , (24)

or its equivalent expression

Δt(N) = exp

⎡
⎢⎣

1∫
0

dz
1 − zN−1

1 − z

1∫
(1−z)2

dλ

λ
γK(αs(

√
λp+))

⎤
⎥⎦ . (25)

It has been investigated that Eq. (24) becomes reliable as N is about or greater
than O(102) at the Tevatron energy [36]. Equation (24) is accurate up to next-
to-leading logarithms (NLL), so corrections to it appear at next-to-next-to-leading
logarithms (NNLL) and at powers of 1/N .

An application of the threshold resummation is found in the analysis of the
top-quark pair production, which was performed at the NNLL accuracy [37]. It
has been observed that the threshold resummation effect enhances the NLO total
cross section by few percents, which make an impact on the determination of the
top-quark mass.

In the intermediate x region the two-scale case reduces to the single-scale
one because of xp+ ∼ (1 − x)p+, and the source of double logarithms is less
important. Without the Mellin transformation, the sum in Eq. (10), with the
approximation in Eq. (20) being inserted, leads to the DGLAP equation [31],

p+ d

dp+
φ(x) =

1∫
x

dξ

ξ
P (x/ξ)φ(ξ), (26)

with the kernel

P (z) =
αs(p+)

π
CF

2
(1 − z)+

, (27)

where the variable change ξ = x + l+/p+ has been made. The argument of αs,
i.e., the factorization scale μ, has been set to the scale xp+ ∼ (1−x)p+ ∼ O(p+).
Note that the kernel P differs from the splitting function Pqq ,

P (1)
qq (x) = CF

(
1 + x2

1 − x

)
+

, (28)
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Fig. 5. Q2 evolutions of the valence quark PDFs for some parameter values in the DGLAP
solutions (solid and dashed lines)

by the term (z2 − 1)/(1 − z)+, which is ˇnite in the z → 1 limit. The reason
is that the real gluon emission was evaluated under the soft approximation as
deriving P , while it was calculated exactly as deriving Pqq .

Gluon emissions cause the mixing between the quark and gluon PDFs, giving
the complete set of the DGLAP equations with four splitting functions

∂

∂ ln Q2

(
φq

φg

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗

(
φq

φg

)
. (29)

The evolution of the u-quark and d-quark PDFs in Q2 predicted by the LO
DGLAP equation [38] is shown in Fig. 5, where the inputs at the initial scale
Q0 = 1 GeV were taken from MRST2001 [39]. It is observed that the valence
quark PDFs increase with Q2 at small x, namely, they become broader with Q2.

4. THE JOINT RESUMMATION AND CCFM EQUATION

At last, a uniˇed resummation formalism for large and intermediate x and a
uniˇed evolution equation for intermediate and small x can be derived by retaining
the l+ and lT dependencies of Φ in Eq. (11), which corresponds to the so-called
angular ordering. In this case, both the Fourier and Mellin transformations are
applied to Eq. (11), leading to

Φ̄s(N, b) = K(p+/(Nμ), 1/(bμ), αs(μ))Φ(N, b), (30)
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with the soft kernel [6]:

K = −ig2CF με

1∫
0

dz

∫
d4−εl

(2π)4−ε

n̂ · v
n · lv · l

[
δ(1 − z)

l2
+

+ 2πiδ(l2)δ
(

1 − z − l+

p+

)
zN−1eilT ·b

]
− δK, (31)

=
αs(μ)

π
CF

[
ln

1
bμ

− K0

(
2νp+b

N

)]
,

K0 being the modiˇed Bessel function. As p+b 	 N , we have K0 → 0,
and the soft scale inferred by the above expression approaches 1/b for the kT

resummation. As N 	 p+b, we have K0 ≈ − ln (νp+b/N), and the soft scale
approaches p+/N for the threshold resummation.

Following the procedures similar to Eqs. (13)Ä(15), we derive the joint re-
summation

Φ(N, b) = Δu(N, b)Φi, (32)

with the exponential

Δu(N, b) = exp

⎡
⎢⎣−2

p+∫
p+χ−1(N,b)

dp

p

p∫
p+χ−1(1,b)

dμ

μ
γK(αs(μ))

⎤
⎥⎦ . (33)

The dimensionless function [7],

χ(N, b) =
(

N +
p+b

2

)
eγE , (34)

is motivated by the limits discussed above. It is apparent that Eq. (33) reduces to
Eq. (15) and Eq. (24) in the b → ∞ and N → ∞ limits, respectively. The effect
from the joint resummation on the qT spectra of selectron pairs produced at the
LHC with

√
S = 14 TeV has been investigated in [40]. It is seen in Fig. 6 that

the joint and kT resummations exhibit a similar behavior in the small-qT region
as expected, but the jointly-resummed cross section is about 5Ä10% lower than
the kT -resummed cross section in the range 50 < qT < 100 GeV.

In the intermediate and small x regions, it is not necessary to resum the
double logarithms ln2(1/N). After extracting the kT resummation, the remaining
single-logarithm summation corresponds to a uniˇcation of the DGLAP and BFKL
equations, since both the l+ and lT dependencies have been retained. The function
Φ(x + l+/p+, b) in Eq. (11) is re-expressed, after the Fourier transformation, as

Φ(x + l+/p+, b) = Θ((1 − x)p+ − l+)Φ(x, b)+

+ [Φ(x + l+/p+, b) − Θ((1 − x)p+ − l+)Φ(x, b)]. (35)
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Fig. 6. Transverse-momentum distribution of selectron pairs at the LHC in the framework
of the joint (solid) and kT (dashed) resummations

The contribution from the ˇrst term is combined with the ˇrst term in Eq. (11),
giving the soft kernel K for the kT resummation. The second term in Eq. (35)
contributes

− iNcg
2

∫
d4l

(2π)4
n̂ · v

n · lv · l2πiδ(l2) eilT ·b×

× [Φ(x + l+/p+, b) − Θ((1 − x)p+ − l+)Φ(x, b)], (36)

which will generate the splitting function below. The color factor has been
replaced by Nc, since the gluon TMD is considered here.

The master equation (9) then becomes

p+ d

dp+
Φ(x, b) = −2

⎡
⎢⎣

xp+∫
1/b

dμ

μ
γK(αs(μ)) − ᾱs(xp+) ln (p+b)

⎤
⎥⎦Φ(x, b)+

+ 2ᾱs(xp+)

1∫
x

dzPgg(z)Φ(x/z, b), (37)

with the splitting function

Pgg =
[

1
(1 − z)+

+
1
z
− 2 + z(1 − z)

]
, (38)
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obtained from Eq. (36). The term −2 + z(1 − z) ˇnite as z → 0 and z → 1 has
been added. The exponential Δ is extracted from the kT resummation,

Δ(x, b, Q0) = exp

⎛
⎜⎝−2

xp+∫
xQ0

dp

p

⎡
⎢⎣

p∫
1/b

dμ

μ
γK(αs(μ)) − ᾱs(p) ln

pb

x

⎤
⎥⎦

⎞
⎟⎠ , (39)

Q0 being an arbitrary low-energy scale. It is trivial to justify by substitution that
the solution is given by

Φ(x, b) = Δ(x, b, Q0)Φi + 2

1∫
x

dz

p+∫
Q0

dμ

μ
ᾱs(xμ)Δk(x, b)Pgg(z)Φ(x/z, b), (40)

which can be regarded as a modiˇed version of the CCFM equation [10].

5. JET MASS DISTRIBUTION

Jets, abundantly produced at colliders [41], carry information of hard scat-
tering and parent particles, which is crucial for particle identiˇcation and new
physics search. Study of jet physics usually relies on event generators, which,
however, suffer ambiguity from parameter tuning. Hence, we are motivated to
establish an alternative approach free of ambiguity. I will demonstrate that jet
dynamics can be explored and jet properties can be predicted in the resummation
formalism with the Wilson lines off the light cone.

We start from the dijet production in the e−e+ annihilation, which is part of
its total cross section. The physical dijet ˇnal state contains two jet cones of half
angle δ and isotropic soft gluons within the energy resolution εQ, with Q being
the e−e+ invariant mass. With the constrained phase space for real gluons, the
infrared cancellation is not complete, and logarithmic enhancement appears. The
explicit NLO calculations imply that the isotropic soft gluons give a contribution
proportional to 2 ln2(2εQ/μ)−π2/6, the collinear gluons in the cones with energy
higher than the resolution give −3 ln (Qδ/μ) − 2 ln2(2ε) − 4 ln (Qδ/μ) ln (2ε) +
17/4 − π2/3, and the virtual corrections contribute −2 ln2(Q/μ) + 3 ln (Q/μ) −
7/4 + π2/6. The total NLO corrections indicate that the dijet cross section is
infrared ˇnite, but logarithmically enhanced [42]:

3 ln δ + 4 ln δ ln (2ε) +
π2

3
− 5

2
, (41)

where the double logarithm ln δ ln (2ε) is attributed to the overlap of the collinear
and soft logarithms.
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We then explain the factorization of a jet from the DIS, whose production is
expected to be enhanced by collinear dynamics as indicated by Eq. (41). A jet is
formed, as the gluon emitted by the initial-state or ˇnal-state quark is collimated
to the ˇnal-state quark. The restricted phase space of the ˇnal-state quark and the
gluon in a small angular separation renders an incomplete cancellation between
the virtual and real corrections. In this kinematic conˇguration the initial-state
quark propagator can be eikonalized, such that collinear gluons are detached
from the initial-state quark and absorbed into a jet function. To all orders, the
collinear gluons are collected by the Wilson link with an arbitrary vector n.
The collinear gluon emitted by the ˇnal-state quark can be factorized into the
jet function straightforwardly by applying the Fierz transformation. A more
sophisticated factorization formula for the jet production in the DIS is then written
as a convolution of a hard kernel H with a PDF and a jet function J . H denotes
the contribution with the collinear pieces for the initial and ˇnal states being
subtracted.

The light-quark and gluon jet functions are deˇned by [43]:

Jq(M2
J , PT , ν2, R, μ2) =

=
(2π)3

2
√

2(P 0
J )2Nc

∑
NJ

Tr
{
� ξ〈0|q(0)W (q̄)†|NJ〉〈NJ |W (q̄)q̄(0)|0〉

}
×

× δ(M2
J − M̂2

J(NJ , R)) δ(2)(ê − ê(NJ)) δ(P 0
J − ω(NJ)),

(42)

Jg(M2
J , PT , ν2, R, μ2) =

=
(2π)3

2(P 0
J )3Nc

∑
NJ

〈0|ξσF σν(0)W (g)†|NJ〉〈NJ |W (g)F ρ
ν (0)ξρ|0〉×

× δ(M2
J − M̂2

J(NJ , R)) δ(2)(ê − ê(NJ)) δ(P 0
J − ω(NJ)),

where |NJ〉 denotes the ˇnal state with NJ particles within the cone of size R
centered in the direction of the unit vector ê, M̂J(NJ , R) (ω(NJ)) is the invariant
mass (total energy) of all NJ particles, and μ is the factorization scale. The above
jet functions absorb the collinear divergences from all-order radiations associated
with the energetic light jet of momentum Pμ

J = P 0
J vμ, in which P 0

J is the jet

energy, and the vector v is given by vμ = (1, β, 0, 0) with β =
√

1 − (MJ/P 0
J )2.

ξμ = (1,−1, 0, 0) is a vector on the light cone. The coefˇcients in Eq. (42) have
been chosen, such that the LO jet functions are equal to δ(M2

J) in a perturbative
expansion.

Underlying events include everything but hard scattering, such as initial-state
radiation, ˇnal-state radiation, and multiple parton interaction (MPI). The Wilson
lines in Eq. (42) have collected gluons radiated from both initial states and other
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ˇnal states in a scattering process, and collimated to the light-particle jets. Gluon
exchanges between the quark ˇelds q (or the gluon ˇelds F σν and F ρ

ν ) correspond
to the ˇnal-state radiations. Both the initial-state and ˇnal-state radiations are
leading-power effects in the factorization theorem, and have been included in the
jet function deˇnition. A chance of involving more partons in hard scattering is
low, so the contribution from the MPI is regarded as being subleading-power.
This contribution should be excluded from data, but it is certainly difˇcult to
achieve in experiments. Nevertheless, it still makes sense to compare predictions
for jet observables based on Eq. (42) at the current leading-power accuracy with
experimental data. At last, pile-up events must be removed in experiments [44],
since they cannot be handled theoretically so far.

The NLO diagrams for the light-quark and gluon jet functions are displayed in
Figs. 7 and 8, respectively. Evaluating the jet functions up to NLO, a divergence,
compared to PYTHIA predictions, is observed at small jet invariant mass MJ

as shown in Fig. 9, that implies the nonperturbative nature of the jet functions.

Fig. 7. Some NLO real corrections to the quark jet function

Fig. 8. Some NLO real corrections to the gluon jet function, where the dashed line
represents a ghost ˇeld
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Fig. 9. Jet mass distribution at NLO

The total NLO corrections in the Mellin space indicate the existence of double
logarithms, which demand the implementation of the resummation technique.
Both the angular and energy resolutions are related to the jet mass: when MJ is
not zero, particles in a jet cannot be completely collimated, and the jet must have
ˇnite minimal energy. This accounts for the source of the double logarithms.
Recall that low pT spectra of direct photons, dominated by soft and collinear
radiations, are treated by the kT resummation. The jet invariant mass is attributed
to soft and collinear radiations, so the mass distribution can also be derived in
the resummation formalism.

Varying the Wilson line direction n, we derive the differential equation for
the light-quark jet function [12]:

− n2

v · nvα
d

dnα
Jq(M2

J , PT , ν2, R, μ2) = 2(K + G) ⊗ Jq(M2
J , PT , ν2, R, μ2). (43)

The above equation implies that the soft gluons in K are associated with the
jet function J , a prescription consistent with the anti-kT algorithm. The strate-
gy is to evolve n, i.e., ν2 from a low value ν2

in ∼ O(1/N) to a large value
ν2
fi ∼ O(1). The former deˇnes the initial condition of the jet function, which

can be evaluated up to a ˇxed order, because of the vanishing of the logarithm
ln (ν2N). The latter reproduces all important logarithms in the jet function, such
that the solution of Eq. (43) collects their resummation. One then convolutes
the light-quark and gluon jet functions with the constituent cross sections of
the LO partonic dijet processes at the Tevatron and the CTEQ6L PDF [45]. The
resummation predictions for the jet mass distributions at R = 0.4 and R = 0.7 are
compared to the Tevatron CDF data [13] in Fig. 10 [12] with the kinematic cuts
PT > 400 GeV and the rapidity interval 0.1 < |Y | < 0.7. The abbreviation NLL
refers to the accuracy of the resummation at next-to-leading logarithm, and NLO
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Fig. 10. Comparison of resummation predictions for the jet mass distributions to the
Tevatron CDF data with the kinematic cuts PT > 400 GeV and 0.1 < |Y | < 0.7 at
R = 0.4 and R = 0.7. The inset shows the detailed comparison in large jet mass region

to the accuracy of the initial condition of the jet function solved from Eq. (43).
The consistency of the resummation results with the CDF data is satisfactory.

6. JET ENERGY PROFILE

It is known that a top quark produced almost at rest at the Tevatron can be
identiˇed by measuring isolated jets from its decay. However, this strategy does
not work for identifying a highly-boosted top quark produced at the LHC. It has
been observed that an ordinary high-energy QCD jet [46,47] can have an invariant
mass close to the top-quark mass. A highly-boosted top quark, producing only a
single jet, is then difˇcult to be distinguished from a QCD jet. This difˇculty also
appears in the identiˇcation of a highly-boosted new-physics resonance decaying
into standard-model particles, or Higgs boson decaying into a bottom-quark pair.
Hence, additional information needs to be extracted from jet internal structures
in order to improve the jet identiˇcation at the LHC. The quantity, called planar

ow [48], has been proposed for this purpose, which utilizes the geometrical shape
of a jet: a QCD jet with large invariant mass mainly involves one-to-two splitting,
so it leaves a linear energy deposition in a detector. A top-quark jet, proceeding
with a weak decay, mainly involves one-to-three splitting, so it leaves a planar
energy deposition. Measuring this additional information, it has been shown with
event generators that the top-quark identiˇcation can be improved to some extent.
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Investigations on various observables associated with jet substructures are usually
done using event generators. For a review on recent theoretical progress and the
latest experimental results in jet substructures, see [49].

Here I focus on a jet substructure, called the energy proˇle, and explain how
to calculate it in the resummation formalism [12]. This quantity describes the
energy fraction accumulated in the cone of size r within a jet cone R, i.e., r < R.
Its explicit deˇnition is given by [14]:

Ψ(r) =
1

NJ

∑
J

∑
ri<r,i∈J

PTi∑
ri<R,i∈J

PTi
, (44)

with the normalization Ψ(R) = 1, where PTi is the transverse momentum car-
ried by particle i in the jet J , and ri < r (ri < R) means the 
ow of particle
i into the jet cone r (R). Different types of jets are expected to exhibit dif-
ferent energy proˇles. For example, a light-quark jet is narrower than a gluon
jet; that is, energy is accumulated faster with r in a light-quark jet than in a
gluon jet. A heavy-particle jet certainly has a distinct energy proˇle, which
can be used for its identiˇcation. The importance of higher-order corrections
and their resummation for studying a jet energy proˇle have been ˇrst empha-
sized in [50]. Another approach based on the soft-collinear effective theory and
its application to jet production at an electronÄpositron collider can be found
in [51Ä53].

We ˇrst deˇne the jet energy functions JE
f (M2

J , PT , ν2, R, r) with f = q(g)
denoting the light quark (gluon), which describe the energy accumulation within

the cone of size r < R. The deˇnition is chosen, such that J
E(0)
f = PT δ(M2

J)
at LO. The Feynman rules for JE

f are similar to those for the jet functions Jf

at each order of αs, except that a sum of the step functions
∑
i

k0
i Θ(r − θi) is

inserted, where k0
i (θi) is the energy (the angle with respect to the jet axis) of

particle i. For example, the jet energy functions JE
f are expressed, at NLO, as

JE(1)
q (M2

J , PT , ν2, R, r, μ2) =
(2π)3

2
√

2(P 0
J )2Nc

∑
σ,λ

∫
d3p

(2π)32p0

d3k

(2π)32k0
×

× [p0Θ(r − θp) + k0Θ(r − θk)]×

× Tr
{
� ξ〈0|q(0)W (q̄)†|p, σ; k, λ〉〈k, λ; p, σ|W (q̄)q̄(0)|0〉

}
×

× δ(M2
J − (p + k)2) δ(2)(ê − êp+k) δ(P 0

J − p0 − k0), (45)
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JE(1)
g (M2

J , PT , ν2, R, r, μ2) =
(2π)3

2(P 0
J )3Nc

∑
σ,λ

∫
d3p

(2π)32p0

d3k

(2π)32k0
×

× [p0Θ(r − θp) + k0Θ(r − θk)]×

× 〈0|ξσF σν(0)W (g)†|p, σ; k, λ〉〈k, λ; p, σ|W (g)F ρ
ν (0)ξρ|0〉×

× δ(M2
J − (p + k)2) δ(2)(ê − êp+k) δ(P 0

J − p0 − k0),

where the expansion of the Wilson links in αs is understood. The factorization
scale is set to μ = PT to remove the associated logarithms, so its dependence
will be suppressed below.

The Mellin-transformed jet energy function J̄E
q obeys a similar differential

equation [12]:

− n2

v · nvα
d

dnα
J̄E

q (N = 1, PT , ν2, R, r) =

= 2(K̄ + G)J̄E
q (N = 1, PT , ν2, R, r), (46)

which can be solved simply. Inserting the solutions to Eq. (46) into Eq. (44), the
jet energy proˇle is derived. Note that a jet energy proˇle with N = 1 is not
sensitive to the nonperturbative contribution, so the predictions are free of the
nonperturbative parameter dependence, in contrast to the case of the jet invariant
mass distribution. It has been found that the light-quark jet has a narrower energy
proˇle than the gluon jet, as exhibited in Fig. 11 for

√
s = 7 TeV and the interval

80 < PT < 100 GeV of the jet transverse momentum. The broader distribution
of the gluon jet results from stronger radiations caused by the larger color factor
CA = 3, compared to CF = 4/3 for a light-quark jet.

One then convolutes the light-quark and gluon jet energy functions with the
constituent cross sections of the LO partonic subprocess and CTEQ6L PDFs [45]
at certain collider energy. The predictions are directly compared with the Tevatron
CDF data [14] as shown in Fig. 12. It is evident that the resummation predictions

Fig. 11. Resummation predictions for the energy proˇles of the light-quark (solid curve)
and gluon (dotted curve) jets with

√
s = 7 TeV and 80 < PT < 100 GeV
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Fig. 12. Comparison of resummation predictions for the jet energy proˇles with R = 0.7
to the Tevatron CDF data in various PT intervals. The NLO predictions denoted by the
dotted curves are also displayed

Fig. 13. Resummation predictions for the jet energy proˇles with R = 0.7 compared to
the LHC CMS data in various PT intervals. The NLO predictions denoted by the dotted
curves are also displayed

agree well with the data in all PT intervals. The NLO predictions derived

from J̄
E(1)
f (1, PT , ν2

fi, R, r) are also displayed for comparison, which obviously
overshoot the data. The resummation predictions for the jet energy proˇles
are compared with the LHC CMS data at 7 TeV [15] from the anti-kT jet
algorithm [54] in Fig. 13, which are also consistent with the data in various PT

intervals. Since one can separate the contributions from the light-quark jet and the
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gluon jet, the comparison with the CDF and CMS data implies that high-energy
(low-energy) jets are mainly composed of the light-quark (gluon) jets. Therefore,
a precise measurement of the jet energy proˇle as a function of jet transverse
momentum can be used to experimentally discriminate the production mechanism
of jets in association with other particles, such as electroweak gauge bosons, top
quarks and Higgs bosons.

7. SUMMARY

In this article, I have reviewed the resummation through the variation of
the Wilson lines off the light cone, and its applications to the derivation of all
the known single- and double-logarithm summations, including their uniˇcations.
The idea is that the collinear dynamics involved in a collision subprocess is
independent of the Wilson line direction n, so the variation effect can be factorized
out of the subprocess, leading to an evolution equation in n. The solution to this
evolution equation then resums important infrared logarithms in the subprocess.
For the derivations of various logarithmic summations, the point is the treatment
of the real gluon contributions to the subdiagram containing the special vertex in
the resummation formalism. Simply adopting the soft approximations appropriate
in different kinematic regions, i.e., neglecting the l+ or lT dependence in the
TMD associated with the real gluon emission, the formalism reduces to the kT

resummation, the BFKL equation, the threshold resummation, or the DGLAP
equation. If keeping both the l+ and lT dependencies, the joint resummation
for large x and the CCFM equation for intermediate and small x are obtained.
The same technique has been applied to the study of jet substructures, and it has
been shown that the invariant mass distributions and the energy proˇles of the
light-quark and gluon jets can be calculated.

In this framework, only the one-loop subdiagrams were evaluated for demon-
stration, which corresponds to the summation of ladder graphs, or to the summa-
tion of real gluon emissions under strong kinematic orderings. To improve the
accuracy of resummation, nonladder graphs and contributions from the conˇg-
uration without strong kinematic orderings need to be included. By computing
the subdiagrams to two loops, the former give next-to-leading-logarithmic cor-
rections. The contribution from the region without, for example, the kT ordering
is taken into account by keeping the lT dependence of the TMD, similar to the
derivation of the BFKL equation appropriate for the multi-Regge region. That
is, theoretical extensions of the resummation formalism with the Wilson lines off
the light cone are also promising.
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