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SCATTERING AMPLITUDES OF QCD STRING
IN THE WORLDLINE FORMALISM

Yu. Makeenko∗

Institute of Theoretical and Experimental Physics, Moscow

The derivation of large-N QCD meson-scattering amplitudes in the Regge regime, where the
effective theory of long strings is applied in d = 4, is reviewed. A special attention is paid
to the reparameterization path integral which plays a crucial role in the consistency of off-shell
amplitudes. I show how the linear Reggeon trajectory is obtained for QCD string in the mean-ˇeld
approximation, which turns out to be exact for the NambuÄGoto string, and discuss the interrelation
with perturbative QCD.
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INTRODUCTION

QCD string is made from 	uxes of the gluon ˇeld and makes sense for the
distances larger than the conˇnement scale. There are two cases where QCD
string is described by an effective theory of long strings: the static potential
(reviewed in [1]) and meson scattering amplitudes in the Regge regime described
in this talk. I review the results of [2Ä9], where the scattering amplitudes of QCD
string were obtained in the Regge regime, using the worldline formalism.

For the consistency of the (off-shell) amplitudes, a very important role is
played by the reparameterization path integral (a synonym of the path integral
over boundary metrics or the path integral over boundary values of the Liouville
ˇeld). This issue is reviewed in Sec. 1 of this talk.

Sections 2 and 3 are devoted to scattering amplitudes of fundamental string
and QCD string in the Regge regime. I consider (polygonal) momentum Wilson

∗E-mail: makeenko@itep.ru
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loops, semiclassical 	uctuations about the associated minimal surface and the
mean-ˇeld approach to the Reggeon trajectory in d = 4. I also discuss off-
shell scattering amplitudes of fundamental string and the relative contribution of
perturbative QCD to QCD string.

1. REPARAMETERIZATION PATH INTEGRAL

1.1. Path Integral over Reparameterizations. It is commonly believed that
the Wilson loop of large size in large-N QCD equals the string disk amplitude.
As was emphasized by Polyakov [10], it is important to path-integrate over
reparameterizations of the boundary:

W [x(·)] =
∫

Ddifft(s) e−KS[x(t)] , (1)

i.e., over functions t(s) with ṫ(s) ≡ dt(s)/ds � 0 (here K = 1/2πα′ is the string
tension).

The necessity for reparameterizations of the boundary curve within the Polya-
kov string formulation was pointed out long ago by Polyakov [11] and Al-
varez [12]. The path integral over reparameterizations ˇrst appeared for an
off-shell propagator in [13].

The boundary action S[x(t)] in Eq. (1) reads explicitly

S[x(t)] =
1
4π

+∞∫
−∞

ds1ds2

(s1 − s2)2
[x(t(s1)) − x(t(s2))]

2 (2)

for the upper half-plane parameterization of the string worldsheet, where the
boundary is parameterized by the real axis. It is known from Douglas [14]
algorithm of solving the Plateau problem (ˇnding the minimal surface), which
prescribes to minimize the boundary functional (2) with respect to reparameteri-
zations t(s). The boundary curve in Eq. (2) is ˇxed, so the boundary action is a
functional of t(s).

A few comments are in order:
• The representation (1) can be derived for the Polyakov string in critical

dimension d = 26 by doing the Gaussian path integral over string worldsheets
with ˇxed boundary. The Liouville ˇeld ϕ, which enters through the conformal
factor of the 2D metric tensor gab = eϕδab, decouples then in the bulk, while its
boundary value is related to the reparameterizations as

dt(s)
ds

= eϕ(s,0)/2. (3)
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Thus, the path integral over reparameterizations is the same as that over boundary
metrics.

• For the function t(s) = t∗(s), minimizing Douglas' integral (2), the
embedding-space coordinates obey the conformal gauge (i.e., the Virasoro con-
straints), so the quadratic stringy action coincides with the NambuÄGoto action.
This is why the boundary action (2) reproduces the minimal area.

• The area law for asymptotically large loops can be obtained as a saddle
point in the reparameterization path integral (1) at t(s) = t∗(s). It can be shown
that the zig-zag (or backtracking) symmetry holds, as it should for the minimal
area, owing to an explicit form of t∗(s).

• The coordinates xμ(t) enter the boundary action (2) quadratically, which
makes it easy to further integrate over the boundary curves. The nonlinearities of
the problem then reside in the reparameterization path integral.

• In d < 26, the ansatz (1) has to be modiˇed by incorporating the path
integral over bulk ˇelds, as is given by the effective string theory of Polchinski,
Strominger [15] reviewed in [1]. The reparameterization path integral remains
crucial for the consistency.

Integrating by parts, Douglas' integral can be rewritten as

S[x(t(s))] =
1
2

+∞∫
−∞

dt1dt2 ẋ(t1) · ẋ(t2)G (s(t1) − s(t2)) ,

G (s1 − s2) = − 1
π

ln |s1 − s2|,

(4)

and the reparameterization path integral goes over the inverse functions s(t).
1.2. Nontrivial Example: Ellipse. A simple nontrivial example, showing the

need of the boundary reparameterization, is an elliptic boundary curve. Using the
unit-disk parameterization z = r eiφ, we write it as

x1 = a cos θ(φ), x2 = b sin θ(φ), (5)

where a and b are the major and minor radii of the ellipse and θ(φ) with θ̇(φ) � 0
reparameterizes the boundary.

Suppose θ∗(φ) = φ, then Douglas' integral equals

S[x(θ)] = π
a2 + b2

2
rather than πab. (6)

The equality is only for a circle a = b, when the unit-disk coordinates are
conformal (or isothermal).
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The minimization of Douglas' integral (2) for an ellipse gives for θ(φ) the
incomplete elliptic integral:

θ̇∗(φ) =
π

2K(ν)
1√

(1 − ν)2 + 4ν sin2 φ
,

πK
(√

1 − ν2
)

2K (ν)
= log

a + b

a − b
, (7)

where K(ν) is the complete elliptic integral of the ˇrst kind. These formulas can
be obtained by conformal mapping of a unit disk onto the interior of an ellipse.

We explicitly see from this simple example how the reparameterization of
the boundary is needed to recover the minimal area.

1.3. Large Loops and Minimal Area. The area law (= the exponential of
(minus) the minimal area) is thus recovered from the reparameterization path
integral (1) in the saddle-point approximation.

Gaussian 	uctuations about the saddle-point t∗(s) result in a pre-exponential
factor:

W [x(·)] large loops
= F

[√
Kx(·)

]
e−KSmin[x(·)] [1 + O

(
(KSmin)−1

)]
, (8)

which is contour-dependent. Its contribution for large loops is much less than
that of the minimal area.

This pre-exponential factor shows up, however, in more subtle effects (such
as the Léuscher term), coming from 	uctuations about t∗(s):

t(s) = t∗(s) +
β(s)√
KSmin

. (9)

For a R×T rectangle with TR � 1/K and T � R, it is possible to path-integrate
over β(s), as is done in [6], to obtain

F (rectangle) ∝ eπT/R for T � R (10)

reproducing the Léuscher term for bosonic string in d = 26. To this order we can
restrict ourselves with the quadratic approximation in β(s), so it is not essential
what is the actual measure in Eq. (1).

This demonstrates that the reparameterization path integral (1) knows about
the bulk 	uctuations.

1.4. Discretization of the Measure. To construct the measure on Diff (R) in
Eq. (1), we split the interval [s0, sf ] into N pieces and deˇne [3]

∫
s(τ0)=s0
s(τf )=sf

Ddiffs(τ) · · · = lim
N→∞

sf∫
s0

N−1∏
j=1

sj+1∫
s0

dsj
1

(sj+1 − sj)
1

(s1 − s0)
. . . , (11)
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where the integration goes over (N − 1) subordinated values s1, . . . , sN−1:
s0 � . . . � si−1 � si � . . . � sN = sf . Thus deˇned measure is covariant under
reparameterizations

s → t(s), t(s0) = s0, t(sf ) = sf ,
dt

ds
� 0. (12)

Discretizing s′ = exp [−ϕ] that relates reparameterizations to the boundary
value of the Liouville ˇeld ϕ by si − si−1 = exp [−ϕi], we write the mea-
sure (11) as

sf∫
s0

Ddiffs . . . = lim
N→∞

N∏
i=1

+∞∫
−∞

dϕi δ(1)
(
sf − s0 −

N∑
j=1

e−ϕj

)
. . . (13)

with the only restriction on ϕi's given by the delta function.
The integral over si in Eq. (11) is (logarithmically) divergent and can be

nicely regularized by changing

1
(si − si−1)

−→ 1
Γ(δi)(si − si−1)1−δi

, all δi = δ. (14)

The main integral for the integration at the intermediate point si is

si+1∫
si−1

dsi
Γ−1(δi)Γ−1(δi+1)

(si+1 − si)1−δi+1(si − si−1)1−δi
=

Γ−1(δi + δi+1)
(si+1 − si−1)1−δi−δi+1

. (15)

This is an analogue of the well-known convolution formula

+∞∫
−∞

dsi√
2π

e−(sf−si)
2/2ν1

√
ν1

e−(si−s0)2/2ν2

√
ν2

=
e−(sf−s0)2/2(ν1+ν2)√

(ν1 + ν2)
(16)

used for calculations of Feynman's path integral with the usual Wiener measure.
The functional limit is reached when N → ∞ with Nδ → 0:

sN=sf∫
s0

D(N)
diff s =

1
Γ(Nδ)

1

(sN − s0)
1−Nδ

Nδ→0−→ Nδ
1

(sf − s0)
, (17)

reproducing the projective-covariant result. This is an analogue of the free
propagator.
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1.5. Reparameterizations as L�evy Stochastic Process. What trajectories are
typical in the path integral over reparameterizations?

To answer this question, Buividivich and Makeenko [4] consider a subor-
dinated stochastic process (called the gamma-subordinator) with the probability
density function

P (Δsi) =
1

Γ(δ) (Δsi)
1−δ

, (18)

with δ > 0 being a time step. Then

dsf

sf∫
s0

D(N)
diff s (19)

has the meaning of a propagator from s0 to [sf , sf + dsf ] during the time τ = Nδ.
Introducing the scaling variable

z = τ ln
1

(sf − s0)
, (20)

which is analogous to (sf − s0)2/τ for the Gaussian random walks, we write

τ dsf

(sf − s0)
1−τ = dz e−z. (21)

Therefore, a scaling occurs with

(sf − s0) ∼ e−1/τ , (22)

and we conclude that the Hausdorff dimension dH = 0 in this case. This super-
sedes (sf − s0)2 ∼ τ for the Gaussian stochastic process of the Brownian motion
(whose dH = 2).

Typical trajectories for the gamma-subordinator can be obtained by the
MetropolisÄHastings algorithm in spite of several subtleties, such as the cen-
tral limit theorem and/or the law of large numbers are not applicable for the
probability density (18) which has an inˇnite dispersion. The results are depicted
in Fig. 1, a and b for δ = 0.5 and δ = 0.09, respectively. L
evy's 	ights are
seen in plot b. Their origin is that P (Δsi) is very large at small Δsi =⇒ most
of Δsi's are small. Then some of Δsi has to be large to satisfy the boundary
condition.

1.6. Hausdorff Dimension of Sample Trajectories. The Hausdorff dimen-
sion of the gamma-subordinator is expected to decrease from 1 to 0 with decreas-
ing δ, as discussed by Horowitz [16].
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Fig. 1. Typical trajectories for the gamma-subordinator obtained by the MetropolisÄHas-
tings algorithm. L
evy's 	ights are seen in plot b

The Hausdorff dimension of the discretized process is determined by its
(L
evyÄKhintchine) characteristic function as

dH = lim
q→∞

ln
(
−N ln

〈
e−qΔsi

〉)
ln q

. (23)

This deˇnition is equivalent to a more familiar one based on the covering by balls.
For the probability density (18), Buividivich and Makeenko [4] found

〈
e−qΔsi

〉
= 1F1(δ, δN ;−q), (24)

where 1F1 is the con	uent hypergeometric function. Substituting in Eq. (23), we
obtain the Hausdorff dimension plotted versus ln(1/δ) in Fig. 2, a. The values of
dH are extracted from the slope of the lines in Fig. 2, b. The Hausdorff dimension
decreases from 1 for δ � 1 to 0 for δN → 0, thus conˇrming the consideration
of Horowitz [16].

Fig. 2. Hausdorff dimension versus ln (1/δ) (a) extracted from the slope of the lines in
plot b for δ = 1, 10−1, 10−2, 10−3, 10−4, 10−5 from the top to the bottom
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1.7. Ambiguities of the Measure. The discretization of the measure displayed
on the right-hand side of Eq. (11) is not unique. A more symmetric discretization
of the measure reads

Ddiffs =
N−1∏
i=1

dsi
(si+1 − si−1)

(si+1 − si)(si − si−1)
Lovelace choice. (25)

Every multiplier is now invariant under the PSL(2; R) projective transformations

s ⇒ as + b

cs + d
with ad − bc = 1, (26)

which form a subgroup of the reparameterizations. For the measure (11) only the
product over j was invariant under PSL(2; R).

The measure (25) was considered in some detail in [6], and results in con-
sistent off-shell (Lovelace) string amplitudes of the intercept α(0) = (d − 2)/24
are described below in Subsec. 3.1.

It is worth noting that the results do not change if the next-to-neighbor points
are involved in the discretization, i.e.,

(si+1 − si) =⇒ (si+n − si)/n . (27)

This supports the expectation that a continuum limit exists in spite of the dis-
continuities of the trajectories. However, the measures (11) and (25) apparently
belong to different universality classes (which differ by the value of α(0)).

2. SCATTERING AMPLITUDES AS MOMENTUM LOOPS

2.1. Momentum Loops. As was ˇrst pointed out by Migdal [17], scatter-
ing amplitudes are given by the reparameterization-invariant functional Fourier
transformation

A[p(·)] =
∫

Dx exp
(

i
∫

p · dx

)
J [x(·)] W [x(·)],

with process-dependent J [x(·)]
(28)

of the Wilson loop (to be identiˇed with the string disk amplitude) for a piecewise
constant momentum loop

pμ(t) = Pμ
i for ti < t < ti+1, (29)

which is schematically depicted in Fig. 3.
Differentiating the step function, we obtain

ṗμ(t) = −
∑

i

pμ
i δ(t − ti), (30)
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Fig. 3. Piecewise constant momentum
loop

with pμ
i ≡ Pμ

i−1 − Pμ
i representing M mo-

menta of (all incoming) particles. Then mo-
mentum conservation is automatic while an
(inˇnite) volume V is produced, say, by in-
tegration over x0 = xM .

The Fourier transformation of the string
vertex operators can be reproduced as fol-
lows. For scalars we simply integrate

by parts ∫
dt p(t) · ẋ(t) = −

∫
dt ṗ(t) · x(t) =

∑
i

pi · xi . (31)

For vectors we ˇrst apply the variational derivative δ/δpμ(t) for an arbitrary
pμ(t), which inserts iẋμ(t), and then set pμ(t) to be piecewise constant. It is
similar for higher spins.

2.2. Momentum Disk Amplitude. After the Gaussian path integration over
Dxμ(t) (which produces an s-independent determinant) we get the amplitude

A[p(·)] =
∫

Ddiffs(t) exp

⎛
⎝α′

+∞∫
−∞

dt1

+∞∫
−∞


 dt2 ṗ(t1) · ṗ(t2) ln |s(t1) − s(t2)|

⎞
⎠,

(32)
which looks like the disk amplitude (1) (the Wilson loop) for the boundary curve

xμ(t) =
1
K

pμ(t). (33)

This can be seen by comparing the exponent in Eq. (32) with (4).
Actually, the discontinuities of the stepwise momentum loop are always

smeared by a regularization which involves the boundary Liouville ˇeld ϕi =
ϕ(si, 0) for the covariance as will be momentarily discussed:

pμ(t) =
1
π

∑
i

pμ
i arctan

(t − ti)
εi

εi→0−→ 1
2

∑
i

pμ
i sign (t − ti), εi = ε e−ϕi.

(34)
An embedding space image of thus smeared stepwise function is a polygon with
vertices

xμ
i =

1
K

Pμ
i , xμ

i − xμ
i−1 =

1
K

pμ
i, (35)

as is depicted in Fig. 4. This looks similar to the Wilson-loop/scattering-amplitude
duality for N = 4 SYM advocated by Alday, Maldacena [18], Drummond,
Korchemsky, Sokatchev [19], Brandhuber, Heslop, Travaglini [20].
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Fig. 4. Stepwise momentum loop (top left) smeared with the width εi (bottom left) and its
polygonal image in embedding space (right)

2.3. Invariant Regularization and the Liouville Field. The invariant reg-
ularization used in the previous subsection plays a very important role for the
consistency of scattering amplitudes. For smeared stepwise pμ(t) the Gaussian
exponent reads

− π

+∞∫
−∞

dt1 dt2 ṗ(t1) · ṗ(t2)G (s(t1), s(t2)) =

=
∑
k �=l

pk · pl log |sk − sl| − π
∑

j

p2
jG(sj , sj). (36)

The Green function G(si, sj) has to be regularized at coinciding arguments, say,
for |si − sj| � εi, εj , which must be done compatible with the boundary metric
for the regularization to be invariant. Therefore G(sj , sj) has to involve the
Liouville ˇeld ϕ (gab = eϕδab) as pointed out by Polyakov [11]:

G(si, sj) = − 1
π

ln |si − sj | for |si − sj | � εi, εj,

G(sj , sj) −→ Gε(sj , sj) =
1
π

log
1
ε

+
1
2π

ϕ(sj , 0).
(37)

For critical open bosonic string (in d = 26) Aoyama, Dhar, Namazie [21]
wrote explicitly

A (p1, . . . , pM ) =

=
∫

Dϕ(s)
∫ ∏

m

dsm eϕ(sm,0)/2−πα′p2
mG(sm,sm)

∏
j �=m

|sj − sm|α′pj ·pm , (38)

where the integration over sm also involves the boundary metric eϕ/2. In view of
Eq. (37), the path integration over ϕ(s, 0) Å the boundary value of the Liouville
ˇeld Å decouples, but only on shell, i.e., for tachyonic scalar, massless vector,
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etc. For off-shell amplitudes it has to be properly taken into account as is
described in this paper.

2.4. Classical (Long-String) Limit. At the classical level we are interested
in the saddle-point approximation to Eq. (32). The minimal surface spanned by
a rectangle with stepwise pμ(t) displayed in Eq. (34) is given by the harmonic
function

Xμ(x, y) =
1

πK

∑
i

pμ
i arctan

(x − si)
y

, si = s(ti), (39)

as found in [7]. It is T -dual to a more familiar (pure imaginary) one

Xμ(x, y) =
i

2πK

∑
i

pμ
i ln

[
(x − si)2 + y2

]
, si = s(ti) (40)

in coordinate space, known from the early days of string theory [22].
Douglas' minimization with respect to si's results (for pi ·pj � p2

i , p
2
j ) in the

set of equations ∑
j �=i

pi · pj

si − sj
= 0. (41)

Only M − 3 of these are independent because of the PSL(2; R) projective in-
variance.

For M = 4, we set s1 = 0, s3 = 1, s4 = ∞ in the usual way and obtain

s2 ∗ =
s

s + t
. (42)

Otherwise the projective-invariant ratio is ˇxed to be(
s21s43

s31s42

)
∗

=
s

s + t
. (43)

This value is well known from the saddle point of the Veneziano amplitude at
large −s,−t.

The polygon bounds the minimal surface of the area

KSmin = α′s ln
s

s + t
+ α′t ln

t

s + t

−s�−t→ −α′t ln
s

t
, (44)

whose exponential reproduces the classical Regge behavior:

A(s, t) = e−KSmin ∝ sα′t. (45)
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2.5. Momentum Léuscher Term. It is easy to account for semiclassical
	uctuations about the minimal surface. To make a connection with the usual
computation of the Léuscher term for a T ×R rectangle, we perform the SchwarzÄ
Christoffel map of the upper half-plane onto the rectangle:

ω(z) =
√

s42s31

z∫
s2

dx√
(s4 − x)(s3 − x)(x − s2)(x − s1)

, (46)

with

R = 2K
(√

1 − r
) r→1→ π, T = 2K

(√
r
) r→1→ ln

16
1 − r

, (47)

where
r ≡ s43s21

s42s31
=

s

s + t
, sij = si − sj, (48)

is the projective-invariant ratio. Therefore, the ratio

T

R
=

K (
√

r)
K
(√

1 − r
) r→1→ 1

24π
ln

16s

t
(49)

is also projective invariant.
Like for the static potential, each degree of freedom results in the momentum-

space Léuscher term computed by Janik [23], Y.M. [7]

πT

24R
=

1
24

ln
16s

t
, (50)

where in the Regge regime we have used the asymptote (49).
2.6. Semiclassical Reggeon Intercept. There are (d−2) such sets of degrees

of freedom for bosonic string, so we obtain the linear Regge trajectory

α(t) =
d − 2
24

+ α′t. (51)

Here α′t comes from the classical amplitude (45), while the intercept comes from
exponentiating the momentum Léuscher term on the right-hand side of Eq. (50).

In the effective string theory description of QCD string, the parameter

ln
1

1 − r
= ln

s

t
(52)

plays for scattering amplitudes the role of T for the static potential. The Regge
behavior is like the area law:

A ∝ eα(t) ln(s/t) is similar to W ∝ e−TV (R), (53)
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while the expansion of α(t) in (−1/t) is like the expansion of V (R) in 1/R.
This is one more manifestation of the Wilson-loop/scattering-amplitude duality.

The semiclassical correction to the Regge trajectory of the effective string
theory in d < 26 can be alternatively computed for the upper-half plane parame-
terization, repeating that of Durhuus, Olesen, Petersen [24] for the static potential
of the Polyakov string. Now the same result emerges as

α(0) = 1 +
d − 26

24
=

d − 2
24

, (54)

where 1 comes from the boundary Liouville ˇeld and (d − 26)/24 comes from
the bulk 	uctuations of the effective string.

We thus see the important difference in how the Léuscher term emerges for
the worldsheet and upper-half plane parameterizations: for the former it is due to
quantum 	uctuations of Xμ(τ, σ), while for the latter it comes entirely from the
classical part of the Liouville ˇeld (= the induced metric).

2.7. Mean-Field Approximation. To sum up all orders in −1/t, we apply the
mean-ˇeld method, which works very well for the static potential (for a review,
see [1]).

The (variational) mean-ˇeld ansatz with 	uctuations included reads

Xμ(x, y) =
1

πK

∑
i

pμ
i arctan

(x − si)
y

+ Xμ
q (x, y). (55)

The momenta pi's and, correspondingly, the Mandelstam variables s and t are
ˇxed, while the ratio r (deˇned in Eq. (48)) is a variational parameter:

Smf = α′s ln r + α′t ln (1 − r) +
(d − 2)

24
ln (1 − r) valid as r → 1. (56)

The ˇrst two terms on the right-hand side result from the classical quadratic action
(in the conformal gauge), while the third term is the momentum Léuscher term
computed by Janik [23], Makeenko [7].

Minimizing with respect to r, we ˇnd

r∗ = 1 − α′t + (d − 2)/24
α′s

(57)

which results in the linear Regge trajectory

α(t) =
(d − 2)

24
+ α′t, (58)

coinciding with the semiclassical one (51).
The mean ˇeld usually works at large d, but is expected to be exact for

bosonic string at any d. The arguments are given in [8]. Quadratic 	uctuations
about this mean ˇeld are stable for α(t) < 0, that is −α′t > (d− 2)/24. We can
go beyond this domain by an analytic continuation.
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3. FROM BOSONIC STRING TO QCD

3.1. Consistent Off-Shell Amplitudes. We have already seen in Subsec. 2.3
that off-shell scattering amplitudes involve the reparameterization path integral.
Choosing the Lovelace choice (25) of the discretization of the measure and of the
Green function at coinciding arguments:

D(N)
diff s =

N∏
i=1

dsi (si+1 − si−1)
(si+1 − si)(si − si−1)

(59)

and
G (sj , sj)

Lovelace=
1
π

ln
(sj+1 − sj−1)

(sj+1 − sj)(sj − sj−1)ε
, (60)

it is possible to integrate over si's at the intermediate points, at which pμ(t) has
no discontinuities.

As is shown by Makeenko, Olesen [6], this results in the scattering amplitude

A(p1, . . . , pM ) =

=
∫

si−1<si

M∏
i=1

dsi

M∏
k �=l

|sk − sl|α
′pk·pl

M∏
j=1

(
|sj − sj−1| |sj+1 − sj |

|sj+1 − sj−1|

)α′p2
j−1

. (61)

The remaining integration over si's (the KobaÄNielsen variables), at which pμ(t)
has discontinuities, is inherited from the path integral over reparameterizations.

Remarkably, the off-shell amplitude (61) is a consistent off-shell projective-
invariant tree string amplitude known from [25]. It is invariant under PSL(2; R)
for arbitrary p2

i . For the tachyonic case, when all p2
i = 1/α′, the last factor on

the right-hand side of Eq. (61) equals 1 and the amplitude (61) reproduces the
KobaÄNielsen one.

3.2. Application to QCD. Meson scattering amplitudes in QCD can be ex-
tracted from Green's functions of M colorless composite quark operators of
the type

q̄(xi)q(xi), q̄(xi)γ5q(xi), q̄(xi)γμq(xi), q̄(xi)γμγ5q(xi), etc. (62)

These Green functions are given by the sum over Wilson loops, passing via the
points xi (i = 1, . . . , M ) at which the operators are inserted:

G ≡
〈

M∏
i=1

q̄(xi)q(xi)

〉
conn

large N
=

∑
paths �{x1,...,xM≡x0}

J [x(τ)] W [x(τ)]. (63)

Here the Wilson loop W [x(τ)] is in pure YangÄMills at the large number of
colors N (or quenched). This important observation by Makeenko, Migdal [26]
is a consequence of the large-N factorization. The correlators of several Wilson
loops are present at ˇnite N .
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There exist many ways of representing the weight for the path integration in
the worldline formalism. I shall use a momentum-space disentangling of gamma
matrices, where

J [x(τ)] =
∫

Dk(τ) sp P exp

⎧⎨
⎩i

T∫
0

dτ [ẋ(τ) · k(τ) − γ · k(τ)]

⎫⎬
⎭ (64)

for spinor quarks and scalar operators. Here τ is the proper time and sp is the
trace of the path-ordered product of gamma matrices. This representation is most
convenient for dealing with the momentum loops as we shall shortly see.

Doing the functional Fourier transformation (28), we obtain, as shown by
Makeenko, Olesen [2], the following representation for the meson scattering
amplitude:

A (p1, . . . , pM ) =
∑
paths

exp

⎡
⎣i

T∫
0

dτ ẋ(τ) · p(τ)

⎤
⎦ J [x(τ)] W [x(τ)], (65)

where pμ(τ) is the piecewise constant momentum loop (29).
Substituting for W [x(τ)] the reparameterization path integral (1) and inter-

changing the integrals over x(τ) (Gaussian) and s(τ), we ˇnd

A (p1, . . . , pM ) ∝
∞∫
0

dT T M−1 e−mT
+∞∫

−∞

dsM−1

1 + s2
M−1

M−2∏
i=1

si+1∫
−∞

dsi

1 + s2
i

×

×
∫

Dk(t) sp P exp
[
−iT

∫
dt

γ · k(t)
1 + t2

]
W
[
x(t) =

1
K

(p(t) + k(t))
]
. (66)

It looks like the stringy amplitude (32), but with an additional path integral
over kμ(τ).

The latter path integral over kμ(τ) remarkably factorizes for small quark
mass m∗ and/or large M since the integral over T is dominated by large T ∼
(M − 1)/m and typical k ∼ 1/T . We thus obtain just the same Lovelace-type
string amplitude

A (p1, . . . , pM ) ∝ W
[
x(t) =

1
K

p(t)
]

(67)

as discussed in the previous subsection.
This result, however, cannot be exact for QCD string since the reparameter-

ization path integral (1) applies only for large loops. Perturbative QCD applies
instead for small loops. Nevertheless, large loops dominate the path integral over
xμ(τ) in Eq. (28) in the Regge kinematical regime, as is shown by Makeenko,

∗A similar observation was ˇrst made by Janik, Peschanski [27] (see also [28]), using a different
representation of the spinor weight.
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Olesen [9]. This is a pure stringy phenomenon that large momenta are associated
with large distances. In perturbation theory there is no dimensional parameter
like the string tension and large momenta are associated with small distances.

3.3. Effective ρ-Trajectory and pQCD Prediction. The above results on the
linear Reggeon trajectory in large-N QCD can be compared with experiment. We
should bear in mind that the string disc amplitude is associated with planar graphs
and therefore with the ρ-meson type Regge trajectories. It is to be distinguished
from the Pomeron trajectory, which is associated with cylinder graphs.

Fig. 5. Effective ρ-meson trajectory extracted from the exclusive process π−p → π0n.
The ˇgure taken from [29]

The effective ρ-meson trajectory, extracted from the exclusive process π−p →
π0n, is reproduced in Fig. 5. The ˇgure is taken from [29]. It is seen in the
ˇgure that the linear trajectory of the intercept ≈ 0.5, known from the spectrum
for positive t, continues to negative t down to t ≈ −2 GeV2. The (almost
horizontal) line to the left in Fig. 5 corresponds to perturbative QCD reggeization
of q̄q by Kirschner, Lipatov [30], which is expected to work for t � −few GeV2.
As we argue in the next subsection, such a behavior of the experimental results
is because the value of s was not large enough.

3.4. Separation of pQCD and QCD String. Let us consider a very simple
model of QCD string, when the Wilson loop equals 1 for KSmin < 1 and is
given by Eq. (1) for KSmin > 1. We have thus disregarded gluon interactions
and restricted ourselves with the free contribution for small loops. The motivation
is that the interaction is then small (owing to asymptotic freedom) and the quark
counting rule (the Bjorken scaling) applies for large −t, resulting in the Reggeon
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trajectory α(t) = 0. For large loops, we substitute a dual description by the string
disk amplitude (1). An analogy with the AdS/CFT correspondence is as if we
were to substitute either the Wilson loop in N = 4 super YangÄMills at small
values of the coupling constant or IIB open superstring in AdS5 × S5 at large
couplings.

We can yet simplify the model, separating large and small loops by the value
of their length rather than the minimal area. This is legitimate because QCD
string is smooth (not crumpled) so the typical values of the minimal area are
proportional to the length squared, Smin ∝ L2. We thus substitute

W (C) =

{
1 for

√
KL < 1,

Eq. (1) for
√

KL > 1.
(68)

In practice this means that when the proper time T is smaller than τmax ∼
1/K , we pick up the contribution from small loops and when it is larger than
τmax ∼ 1/K , we pick up the contribution from large loops. Thus τmax ∼ 1/K
plays the role of an infrared cutoff in perturbative QCD instead of the usual
transverse mass μ.

A nice feature of the ansatz (68) is that the meson scattering amplitude
(65) can now be straightforwardly computed and equals the sum of the contri-
bution of perturbative QCD and QCD string with a certain relative coefˇcient,
which is of most importance at ˇnite s. It is the only parameter to be ˇxed
below by comparing with experimental data. At inˇnite s, there remains the
contribution from either perturbative QCD or QCD string, depending on whose
exponent is larger at given t. However, at ˇnite s, both contributions are essen-
tial and the lower s is the more essential the QCD string contribution becomes at
−t ≈ few GeV2.

In Fig. 6, we compare the experimental data by Kennett et al. [31] for the
ρ-meson trajectory, extracted from the inclusive process π−p → π0x0, with the
prediction of the model (68). The relative coefˇcient is ˇxed to ˇt the data at
s = 400 GeV2 (the lower line in the bottom ˇgure). The upper the line is the
larger s is. As s → ∞, the two regimes separate. The model we have considered
quantiˇes the idea of Brodsky, Tang, Thorn [32] about the mixing of the two
regimes in QCD at ˇnite s.

4. CONCLUSION AND OUTLOOK

The Regge behavior of meson scattering amplitudes can be derived for QCD
string under practically the only assumption that N is large. Great simpliˇcations
occur for small quark mass and/or large number of colliding mesons.

It was crucial for the success of calculations that all integrals are Gaussian
except for the one over reparameterizations which reduces to the integration over
the KobaÄNielsen variables.
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Fig. 6. Experimental data by Kennett et al. [31] (a) and their description by pQCD + QCD
string (b). The smaller the value of s the lower is the line

The mean-ˇeld approximation results for QCD string in the linear Reggeon
trajectory of the intercept α(0) = (d − 2)/24. The actual Reggeon intercept of
α(0) ≈ 0.5 has to be obtained, most probably, by accounting for spontaneous
breaking of chiral symmetry.

When −t � s becomes large, there are no longer reasons to expect the
contribution of QCD string to dominate over perturbation theory. The relative
contribution of the two changes with increasing s.∗

∗It would be most interesting to extend this kind of consideration to the singlet channel, where
the next order of pQCD is known for the BFKL (BalitskyÄFadinÄKuraevÄLipatov) pomeron.
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At the end I shall mention some existing extensions of Douglas' boundary
functional and the reparameterization path integral to

Å closed string (with a possible application to gravity) by Caputa, Hi-
rano [33],

Å the RNS (RamondÄNeveuÄSchwarz) superstring by Caputa [34],
Å the GS (GreenÄSchwarz) superstring in the AdS5 ×S5 background (dual

to N = 4 super YangÄMills) by Ambj�rn, Makeenko [35] and Kristjansen,
Makeenko [36].
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