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We present a lattice-discretization procedure which is based on the simplicial lattice and preserves
diffeomorphism invariance. The presented procedure is the straightforward generalization for the
procedure used for discretization of the spinor gravity [7]. As a stable way to guarantee the removing
of the lattice regularization, i.e., the continuum limit, for lattice diffeomorphism-invariant theories, we
propose to tune the system to the point of phase transition. We expect that the Einstein gravitation is
achieved at this point.

�·¥¤¸É ¢²¥´  ¶·μÍ¥¤Ê·  ·¥Ï¥ÉμÎ´μ° ¤¨¸±·¥É¨§ Í¨¨, ¸μÌ· ´ÖÕÐ Ö ¤¨ËË¥μ³μ·Ë´ÊÕ ¨´¢ -
·¨ ´É´μ¸ÉÓ ¤¥°¸É¢¨Ö, μ¸´μ¢ ´´ Ö ´  ¨¸¶μ²Ó§μ¢ ´¨¨ ¸¨³¶²¥±É¨Î¥¸±¨Ì ·¥Ï¥Éμ±. „ ´´ Ö ¶·μÍ¥¤Ê· 
Ö¢²Ö¥É¸Ö ¶·Ö³Ò³ μ¡μ¡Ð¥´¨¥³ ¤¨¸±·¥É¨§ Í¨¨, ¨¸¶μ²Ó§Ê¥³μ° ¢ ¸¶¨´μ·´μ° £· ¢¨É Í¨¨ [7]. ‚ ± -
Î¥¸É¢¥ £ · ´É¨¨ ¸´ÖÉ¨Ö ·¥Ï¥ÉμÎ´μ° ·¥£Ê²Ö·¨§ Í¨¨, É. ¥. ¸ÊÐ¥¸É¢μ¢ ´¨Ö ´¥¶·¥·Ò¢´μ£μ ¶·¥¤¥² ,
³Ò ¶·¥¤² £ ¥³ Éμ´±ÊÕ ´ ¸É·μ°±Ê ¸¨¸É¥³Ò ¢ ÉμÎ±Ê Ë §μ¢μ£μ ¶¥·¥Ìμ¤ . ŒÒ É ±¦¥ ¶·¥¤¶μ² £ ¥³,
ÎÉμ ¢ ÔÉμ° ÉμÎ±¥ ¡Ê¤¥É ·¥ ²¨§μ¢ ´  £· ¢¨É Í¨Ö �°´ÏÉ¥°´ .

PACS: 04.60.-m

INTRODUCTION

Diffeomorphism invariance, or reparametrization invariance, is the key fea-
ture of general relativity. However, perturbative expansion about a background
metric usually breaks diffeomorphism invariance: one has to ®ˇx the gauge¯.
In order to quantize gravity, one needs nonperturbative approaches that preserve
diffeomorphism invariance explicitly.

The most straightforward nonperturbative approaches preserving diffeomor-
phism invariance are based on lattice regularization of the path integrals over
quantum 	uctuations; in addition, they usually allow direct numerical simula-
tions. Many well-known quantum gravity theories, such as the PonzanoÄRegge
model [1] and the BarrettÄCrane model [2], are based on the lattice discretiza-
tion of the classical diffeomorphism-invariant action. Most part of those models
have the BF-type action, or can be related to a model with the BF action (see,
e.g., (24)). This helps to discretize the action without loosing the diffeomorphism
invariance. However, the BF-like models are sensitive to the change of the action,
and it is difˇcult to consider coupling of matter within such models.



1440 VLADIMIROV A.A., DIAKONOV D.

Lattice versions of the diffeomorphism invariance require the independence
of the lattice action on the particular realization of the lattice grid in curved space,
i.e., the independence of the positioning of the lattice vertices in space. There are
several ways to construct such a lattice, see, e.g., [3Ä5]. In this paper we present
a lattice-discretization procedure that preserves the diffeomorphism invariance of
any action.

In most lattice approaches the continuum action is replaced by the sum over
lattice vertices, where the ˇeld derivatives are replaced by the ˇnite differences
of the ˇelds between neighboring lattice points. In this way, the construction
of the diffeomorphism-invariant lattice action is hardly possible. We propose to
replace the action over a manifold by a sum over the lattice cells, and to adjust
the Lagrangian to a cell, rather than to a vertex. We show that in this way any
diffeomorphism-invariant action involving only covariant ˇelds can be discretized
in the way that preserves the diffeomorphism invariance in the continuum limit.
In this approach, it is necessary to use simplicial lattices rather than hyper-
cubic ones.

The discretization procedures similar to the present one were described in
several recent papers [5, 7] for particular models. Here, we formalize the proce-
dure in a more general way. The essential point is that the lattice action should
not only represent the continuum Lagrangian locally but also should correctly
restore the integration over the whole volume. By using simplicial lattices and
by summing up actions over all lattice cells, we get conˇdent that the full action
contains neither holes nor overlaps.

The structure of the paper is as follows: in Sec. 1 we formulate the procedure
of lattice discretization supporting diffeomorphism invariance and give examples
of the discretization for a simple bosonic theory and a theory with gauge sym-
metry. We also compare our method with that of dual lattice discretization. In
Sec. 2 we discuss the continuum limit of the lattice models, the problem of the
restoration of the low-energy EinsteinÄHilbert action, the appearance of scales,
and the possible solutions to those problems.

1. DIFFEOMORPHISM-INVARIANT ACTIONS ON A LATTICE

The diffeomorphism invariance means the independence of the action under
general coordinate transformation,∫

ddxL(x)
diffeomorphism−−−−−−−−−→

∫
ddx′ L(x′), (1)

where x′μ(x) are differentiable bijective functions. The lattice-regularized version
of the action is deˇned on a graph which we shall call the lattice, with ˇelds
assigned either to the vertices or to the edges of the graph. The lattice version of
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the diffeomorphism invariance is the invariance of the action under the arbitrary
continuous vertex displacement. It means that the lattice action should depend
only on the topology, i.e., on the neighborhood structure of the lattice. We call
the lattice the ®number space¯.

1.1. General Construction. It is possible to cover the whole d-dimensional
space by (d + 1)-cells or simplices, although the number of edges entering one
vertex may not be the same for all vertices. Alternatively, the number of edges
coming from all vertices is the same but then the edges lengths may vary, if one
attempts to embed the lattice into 	at space. Since only the set of the nearest
neighbors matters and the abstract ®number space¯ does not need to be 	at, this
is also acceptable. The important thing is that the chosen set of cells should ˇll
in the space without holes and without overlapping.

All vertices in a simplicial lattice can be characterized by a set of d integers.
For brevity, we label these d numbers by a single integer i. Each vertex has
its unique integer label i, supplemented with a rule what labels are ascribed to
the neighbor vertices forming elementary cells. We shall denote the d + 1 labels
belonging to one cell by i = 0, 1, . . . , d.

Each vertex in the abstract number space corresponds to the real world
coordinate by a certain map xμ

i . The goal is to write possible action terms
in such a way that, if the ˇelds vary slowly from one vertex (or link) to the
topologically neighbor one, the action reduces to desired continuum action.

To perform this task, we introduce the set of vectors Δxμ
ij = xμ

i −xμ
j , i �= j.

A vector Δxμ
ij is adjusted to a particular cell, which is in our case simplex and

has d+1 vertices and d(d+1)/2 edges. The upper index μ is a Lorentz index of
®usual¯ space and runs from 1 to d. The lower indices are runs over the vertices
of the cell 0, 1, . . . , d to which Δxμ

ij belongs. The meaning of the vector Δxμ
ij is

the following: it is a vector (in ®usual¯ space) pointing from vertex i to vertex j;
in other words, it is a vector representing the link (ij). Fixing the label i on
some vertex, say 0th vertex, the set of vectors Δxμ

j0 forms the matrix d×d which
mixes the Lorentz index with the index enumerating the rest vertices (1, . . . , d).
The determinant of this matrix gives the volume of a simplex:

Vd-simplex =
1
d!

εμ1μ2...μd
Δxμ1

10Δxμ2
20 · · ·Δxμd

d0 . (2)

It does not matter which vertex is taken as a base: for any base the result would
be the same up to a general sign. Only the numeration of the vertices plays a
role; one can ˇx the vertices enumeration such that Vd-simplex > 0 for each cell.
Therefore, introducing additional (d + 1)-indexed totally antisymmetric symbol,
we remove the preferential position of 0th vertex:

Vd-simplex =
1

(d + 1)!d!
εi0i1i2...idεμ1μ2...μd

Δxμ1
i1i0

Δxμ2
i2i0

· · ·Δxμd

idi0
. (3)
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The volume element in this form will be our main ingredient for lattice regular-
ization.

The next ingredient is the lattice derivative which, for some scalar ˇeld ϕ, is
deˇned on a lattice edge as follows:

Δij(ϕ) = φ(xi) − φ(xj). (4)

In the case of slowly varying ˇeld from xi to xj , one has Δij(ϕ) � Δxμ
ij ∂μϕ(xj).

In this limit the inverse relation reads

∂μϕ(xi) �
(
Δx−1

i

)j

μ
Δji(ϕ), (5)

where
(
Δx−1

i

)j

μ
is the inverse matrix for Δxμ

ji with ˇxed base vertex i. Note
that this matrix is always invertible, except in the case of zero-volume simplices,
and, therefore, unambiguously deˇned. At the same time, the expression (5) is
not attached to speciˇc lattice vertices.

The vector and tensor ˇelds can be ascribed to the edges and to sides of the
simplices, respectively. First of all, we pick out some vertex j of the simplex
and construct the d× d matrix with indices μ and i: Δxμ

ij , where j is the chosen
vertex. The matrix Δxμ

ij can be viewed as a ˇeld that connects the coordinate
frame with the local frame built from the vectors formed by the edges of a
simplex, pointing out of a given vertex xi. With the help of this matrix we obtain
the arbitrary tensor ˇeld:

Tμν..(xi) =
(
Δx−1

i

)j

μ

(
Δx−1

i

)k

ν
· · ·Tjk...,i. (6)

All coordinate-dependent properties of the ˇeld, such as gauge transformations,
are related to the space point xi. The contravariant vectors and tensors are
constructed in the same way but with the help of the direct matrix:

T μν..(xi) = Δxμ
jiΔxν

ki · · ·T jk...,i. (7)

Any diffeomorphism-invariant combinations discretized in such a way pre-
serve the lattice diffeomorphism invariance since all ®curved¯ (Greek) indices
arising from the matrix Δx are combined into some tensor in vertex numbering,
which is independent of the coordinate x. The quantities that transform as the
inverse Jacobian, such as the Lagrangian, obtain the inverse volume factor.

Strictly speaking, the objects (6) and (7) are not tensors, because matrices

Δxμ
ji and

(
Δx−1

i

)j

μ
do not transform as vectors. These matrices remain vectors

only in the limit then sizes of all links are inˇnitesimal. This conjecture is ir-
relevant for a diffeomorphism-invariant theory. Indeed, applying diffeomorphism
transformation, one can make any inˇnitesimal distance ˇnite. Nevertheless,
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our construction would reproduce correct properties of any indexless composi-
tion of ˇelds and volumes; i.e., it would transform with a Jacobian in a proper
power under diffeomorphism transformations. Only these objects are interest-
ing in a quantum diffeomorphism-invariant theory: they are terms of action and
operators for which one can calculate expectation values. An average for non-
diffeomorphism-invariant object is presumably zero.

Let us illustrate the scheme in a simple example. We consider the simplest
diffeomorphism-invariant action, namely, the cosmological term in four dimen-
sions. In terms of the frame ˇeld or the tetrad eA

μ , the cosmological term is

Scosm =
∫

d4xdet(e) =
∫

d4x
1
4!

εABCDεμνκλeA
μ (x) eB

ν (x) eC
κ (x) eD

λ (x), (8)

where the indices run from 1 to 4. Under the diffeomorphism transformation the
frame ˇeld transforms as a covariant vector:

eA
μ (x)

diffeomorphism−−−−−−−−−→ eA
μ′(x′)

∂x′μ′

∂xμ
. (9)

The action (8) is also invariant under the local SO(4) or Lorentz transformation:

eA
μ (x) Lorentz−−−−−→ OAB(x) eB

μ (x). (10)

Since A, B, . . . = 1, . . . , d are 	at group indices in Euclidean signature, we
can equivalently write them either as subscripts or superscripts. The lattice version
of the tetrad ˇeld is ascribed to the edges: eA

μ (xi) = (Δx−1
i )j

μ eA
ji. Substituting

this expression into (8), we obtain

det e(xi) =
1
4!

εABCDεμναβ(Δx−1
i )j

μ (Δx−1
i )k

ν (Δx−1
i )l

α (Δx−1
i )m

β ×

× eA
ji eB

ki eC
li eD

mi =
V −1

cell

4!
εABCDεi,jklm eA

ji eB
ki eC

li eD
mi

∣∣
no sum over i

. (11)

The integral over space is the sum of cell volumes. Therefore, we have

SΛ
lattice−−−−→

∑
cells

1
5!

εABCDεi,jklm eA
ji eB

ki eC
li eD

mi, (12)

where we have also performed summation over i. This expression is gauge-
invariant, since all group transformations ®live¯ in the same vertex xi.

In such a way any continuum diffeomorphism-invariant action can be put on
a lattice. The diffeomorphism-equivalent degrees of freedom are removed from
the action. The ˇelds involved into the lattice action, e.g., the set of eA

ij , are not
related to each other by a continuous transformation.
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The procedure described above can be generalized to lattice constructions
involving other polyhedra whose volume can be expressed through the ε-tensor.
For example, one can consider elementary cells in the form of octahedra and its
higher-dimensional analogs (dual cubes). Such a construction is presented in [5].
However, for dimensions higher than two one cannot cover the space only by one
kind of geometrical ˇgures, except the simplices. Instead, one can use a combined
lattice built from different polyhedra, but then the resulting action must contain
nonuniform constructions. In this sense, our version of the action discretization
is the most compact, and it can be applied to any number of space dimensions
and to any topology of the background manifold.

1.2. Lattice Spinor Gravity. The spinor gravity model has only the fermion
spinor ˇelds and the gauge ˇelds. The action of the spinor gravity is the same
as the usual action of the ˇrst-order gravity, but with the tetrad ˇeld being a
bilinear fermion combination. One can take two distinct bilinear combinations of
the fermion ˇelds, transforming as the frame ˇeld

eA
μ = i(ψ†γA∇μψ + ψ†←−∇μγAψ), (13)

fA
μ = ψ†γA∇μψ − ψ†←−∇μγAψ. (14)

Here ∇μ is the covariant derivative in the spinor representation,

∇μ = ∂μ − i

2
ωAB

μ ΣAB,
←−∇μ =

←−
∂ μ +

i

2
ωAB

μ ΣAB, (15)

where ωAB
μ is the spin connection in the adjoint representation of the SO(d)

group, and ΣAB are its generators: ΣAB = (i/4)[γAγB]. Under local Lorentz
transformations and under the diffeomorphisms, the tetrad ˇelds (13) and (14)
transform as (9) and (10).

One can now construct a sequence of many-fermion actions that are invariant
under local Lorentz transformations and also are diffeomorphism-invariant, using
either eA

μ or fA
μ (or both) as building blocks:

Sk =
∫

ddx
1
d!

εμ1μ2...μd εA1A2..Ad

(
FA1A2

μ1μ2
· · · FA2k−1A2k

μ2k−1μ2k

) (
eA2k+1

μ2k+1
· · · eAd

μd

)
,

(16)
k = 0, 1, . . . , [d/2],

where the YangÄMills curvature tensor is

FAB
μν = ∂μωAB

ν + ωAC
μ ωCB

ν − (μ ↔ ν). (17)

Note that S0 is the analog of the cosmological term, but there are many of
them since one can replace any number of eA

μ 's by fA
μ 's; S1 is the analog of the
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EinsteinÄHilbertÄCartan action linear in curvature, and the last action term S[d/2]

for even d is a full derivative. Apart from full derivatives, there are 3 possible
action terms in 2d, 6 terms in 3d, 8 terms in 4d, 12 terms in 5d, etc. One can
also add the number of P - and T -odd term, which we do not consider here.

In the spinor gravity we have an additional gauge ˇeld. On a lattice, the
gauge ˇeld is represented by the parallel transporter Uij . As in any lattice gauge
theory, we replace the connection ωμ by a unitary matrix ®living¯ on lattice
links [6],

Uij = P exp

⎛
⎝− i

2

xj∫
xi

ωAB
μ ΣABdxμ

⎞
⎠ , Uji = U †

ij . (18)

By this link variable we connect the γ matrix at point xi to the next spinor ˇeld.
Applying the derivative rule (5) to the composite tetrad, we obtain its descretized
version:

ẽA
i,j = i(ψ†

jUjiγ
AUijψj − ψ†

i γ
Aψi), (19)

f̃A
i,j = ψ†

i γ
AUijψj − ψ†

jUjiγ
Aψi. (20)

The difference between ẽ and f̃ is that the ˇrst has both fermions in the same
vertex, whereas in the second fermions are residing in the neighbor vertices.

We also need the discretized version of the curvature tensor FAB
μν : it is a

plaquette. For the simplicial lattice the plaquettes are triangles, and we deˇne the
parallel transporter along a closed triangle spanning the i, j, k vertices:

Pijk = UijUjkUki, PAB
ijk =

1
df

Tr (ΣABPijk). (21)

For the slowly varying gauge ˇelds, we have

Pijk = 1 − i

4
Δxμ

jiΔxν
kiFμν(x) + . . . ,

and
PAB

ijk = − i

4
Δxμ

jiΔxν
kiFAB

μν (x).

Using the above ingredients, one can easily construct the lattice-regularized
version of the action terms (16). For example, the action terms Sk of Eq. (16)
reads

S̃k = (4i)k
∑
cells

εi0i1...id

(d + 1)!
εA1A2...Ad

d!
×

×
(
PA1A2

i0i1i2
PA3A4

i0i3i4
· · ·PA2k−1A2k

i0i2k−1i2k

) (
ẽ

A2k+1
i0i2k+1

· · · ẽAd

i0id

)
, (22)

where the total number of plaquette factors P (21) is k, k = 0, 1, . . . , [d/2].
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The lattice-regularized partition function for the spinor quantum gravity is
quite similar to that of the common lattice gauge theory. One integrates with the
Haar measure over link variables Uij living on lattice edges, and over anticom-

muting fermion variables ψi, ψ
†
i living on lattice sites. The partition function is

Z =
∏

vertices i

∫
dψ†

i dψi

∏
links ij

∫
dUij exp

(∑
cells

λ
(m)
k S̃

(m)
k (ψ†, ψ, U)

)
, (23)

where S̃
(m)
k are lattice actions of the type (22) with any number of composite

frame ˇelds ẽ (19) replaced by the other composite frame ˇelds f̃ (20). Path
integrals for the spinor gravity are well deˇned, and that overcomes the problem
of a bottomless action, which is one of the principal problems in the quantization
of the diffeomorphism-invariant actions.

Because of the requirement of the diffeomorphism invariance, the lattice
action has certain similarities with but in fact is different from those used in
common lattice gauge theory. Typically, one has many-fermion terms in the
action. There are no action terms without fermions. One can write 3 action terms
in 2d (all of them are 4-fermion), 6 terms in 3d (four are 6-fermion and two
are 2-fermion), 8 terms in 4d (ˇve are 8-fermion and three are 4-fermion), etc.
Therefore, it is difˇcult to simulate this theory numerically; however, one can
successfully apply various mean-ˇeld procedures [7].

1.3. Diffeomorphism-Invariant Lattice vs. Spin-Foam Models. There are
several quantum gravity theories based on the so-called spin foams. Roughly
speaking, the spin foam is a lattice ˇeld theory with only gauge ˇelds (links),
for a review see [8] and references therein. Originally the spin-foam models
were obtained as a solution of the canonical quantization approach to the three-
dimensional gravity [9]. Later on, the same construction was applied to many
diffeomorphism-invariant gravity-like actions. It is well known that the same
constructions can be obtained by lattice regularization on a dual lattice for a cor-
responding action. Here, we want to review brie	y the dual lattice regularization
and compare it with the regularization presented above.

The main idea of obtaining a spin-foam model from the action is well il-
lustrated by the PonzanoÄRegge model [1]. The PonzanoÄRegge model is a
topological BF model in three-dimension with the action

SPR =
∫

d3x εμνρ εABC BA
μ FBC

νρ , (24)

where B is a vector ˇeld, and F is the curvature tensor (17) in 3d. To regularize
the theory, one covers the space with simplices (tetrahedra in 3d) with the vector
ˇeld B living on the simplices edges. The ˇeld strength tensor F is presented
by plaquettes corresponding to the faces of the dual lattice. Each dual face is in
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one-to-one correspondence with an edge of the simplex. Therefore, discretization
of the action (24) is

εμνρεABCBA
μ FBC

νρ
lattice−−−−→ εμνρεABCΔxμ

ijB
A
ijP

BC
faceS

νρ
face,

where Δxμ
ij is the difference of the coordinates of the edge endpoints, and Sνρ

face

is the area of the dual face. One can see that the convolution of the vector indices
gives the volume of the ®tops¯ stretched on the edge and its dual face. These
®tops¯ ˇll the space without holes, and the complete lattice action has the form

SPR =
∑
edges

εABCBA
edgeP

BC
face . (25)

Integrating this expression over the B ˇeld, one obtains the system of links on the
dual lattice, which forms the classical spin-foam model of PonzanoÄRegge [10].
Other spin-foam models are constructed in a similar way.

As one can see, in this approach it is necessary to split the space into two
lattices: the regular and the dual one. One keeps the dynamical ˇelds on the dual
lattice, whereas the auxiliary ˇelds live on the regular lattice. It is impossible
to avoid such a splitting: the dual cells are polyhedra with an arbitrary number
of faces and one cannot construct the volumes of these cells in the closed form.
Therefore, although the dual lattice simpliˇes many calculations, this approach is
not universal. It seems that the most general action requesting the dual lattice is
the BF action with a polynomial in B [11].

In contrast, the approach presented in this paper can be applied to any action
with any set of ˇelds, which makes the method more powerful. The application
of our approach, to the action (24) leads to the Penrose spin network, which is
known to be equivalent to the PonzanoÄRegge spin-foam model. Additionally,
in our approach, fermion or other matter ˇelds can be easily added to the action.
For the spin-foam models the implementation of fermions is a big problem. So
far it has been solved only perturbatively, with the help of the hopping-parameter
expansion.

2. CONTINUUM LIMIT AND THE EINSTEINÄHILBERT ACTION

A successful construction of a lattice model does not guarantee the proper
continuum limit. Lattice diffeomorphism invariance implies the diffeomorphism
invariance in the continuum limit only for slowly varying ˇelds. How can one
guarantee the continuum limit for such lattice models? Or at least, how can
one guarantee the restoration of the rotational invariance in large lattices? The
key property of the diffeomorphism-invariant models is the absence of any fun-
damental length parameters Å this is one of the necessary requirements of the
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diffeomorphism invariance which includes invariance under dilatations. In the
lattice gauge theory there are also no explicit dimensional parameters; however,
taking the dimensionless lattice parameter β → ∞ (the inverse gauge coupling
constant) guarantees the continuum limit. In the diffeomorphism-invariant models
there is no such obvious handle. The standard lattice gauge theory tools, such as
the lattice renormalization group, are not applicable.

A typical situation in lattice models of gravity is that correlation functions
decay exponentially over a few lattice cells. It means that the ˇelds vary strongly
from one lattice cell to another, which prevents the gradient expansion of the ˇelds
on the way to obtaining the continuum limit. Lattice models have a continuum
limit when and if ˇeld correlations are long-ranged in lattice units.

A standard way to guarantee long-range correlations and hence the continuum
limit is to show that there is a second-order phase transition. Second-order phase
transitions occur in theories where there is an order parameter usually related to the
spontaneous breaking of a continuous symmetry. The corresponding Goldstone
particles propagate to long distances. However, this is not enough: in order
for the system to totally loose memory about the original lattice, all degrees of
freedom have to propagate to long distances in lattice units. This happens only
exactly at the phase transition point when all correlation functions are long-range.

In [7] the presence of phase transitions of the BerezinskyÄKosterlitzÄThouless
type has been demonstrated in the 2d spinor gravity. In particular, it was shown
that the space of the (dimensionless) coupling constants has two distinct regions
with and without the spontaneous breaking of chiral symmetry. This was shown
by a lattice mean-ˇeld method. The method allows one to calculate local quantities
such as the chiral condensate, with a possibility to systematically improve the
accuracy. However, it is still unclear if there can be other phase transitions in
the model, for example, the spontaneous breaking of Lorentz symmetry, which
is difˇcult to search for on lattice models. Evidence of a possibility to have
spontaneous breaking of the Lorentz symmetry in diffeomorphism-invariant lattice
models has been recently shown in [12].

If long-range correlations in a lattice model of quantum gravity are guaran-
teed in this way or another, the classical metric tensor gcl

μν and the effective action

functional Γ[gcl
μν ] can be introduced by means of the Legendre transform [7] (pro-

posed in this context also by Wetterich [5]). One introduces ˇrst the generating
functional for the stress-energy tensor Θμν as an external source,

eW [Θ] =
∫

dψ† dψ dωμ exp
(

S +
1
2

∫
ĝμν Θμν

)
, (26)

where ĝμν is a metric operator of the theory, possibly a composite ˇeld. The
classic metric ˇeld is by deˇnition

gcl
μν = 〈ĝμν〉 = 2

δW [Θ]
δΘμν

. (27)
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This equation can be solved back to give the functional Θμν [gcl]. Using it, one
can construct the effective action as the Legendre transform,

Γ[gcl] = W [Θ] − gcl
μν Θμν . (28)

At the phase transition all 	uctuations are long-ranged. For long-range
	uctuations, it is legal to take the continuum limit of the lattice, which is
diffeomorphism-invariant. The low-energy limit of diffeomorphism-invariant ac-
tions for a quantity transforming as a metric tensor is uniquely given by the
expansion

Slow =
∫

dx
√

gcl(−c1 + c2R(gcl) + . . .), (29)

where the constants c1,2 are certain dimensionless constants expressed through

the dimensionless couplings λ
(m)
k of the original microscopic lattice theory, e.g.,

given by Eq. (23).
The next important question for the diffeomorphism-invariant lattice theories

is the appearance of the dimensions. The historic tradition in General Relativity
is that the space-time at inˇnity is supposed to be 	at; therefore, one can safely
choose the coordinate system such that gμν is a unity matrix there. This sets
the traditional dimensions of the ˇelds. In particular, the scalar curvature has
the dimension 1/length2, the fermion ˇelds have the dimension 1/length3/2, etc.
However, in a diffeomorphism-invariant quantum theory where one can perform
arbitrary change of coordinates xμ → x′μ(x), this convention is neither natural,
nor convenient.

The natural dimensions of the ˇelds are those that are in accordance with
their transformation properties: any contravariant vector transforms as xμ and
has the dimension of length, a covariant vector, in particular, the frame ˇeld
eμ transforms as a derivative and has the dimension 1/length, gμν has the di-
mension 1/length2, etc. World scalars like the scalar curvature and the fermion
ˇelds are dimensionless. In fact, it is a tautology: a quantity invariant under
diffeomorphisms is in particular invariant under dilatations and hence has to be
dimensionless.

In this convention, any diffeomorphism-invariant action term is by construc-
tion dimensionless and is accompanied by a dimensionless coupling constant,
as in (23).

Let us suppose that we have a microscopic quantum gravity theory at hand
that successfully generates the ˇrst terms in the derivative expansion of the ef-
fective action (29). The ground state of that action is the space with constant
curvature R = 2c1/c2, represented, e.g., by a conformal-	at metric

gμν =
6c2

c1

(
2ρ

((x − x0)2 + ρ2)

)2

δμν , (30)
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where x0 and ρ are arbitrary. At the vicinity of some observation point x0, it can
be made a unity matrix by rescaling the metric tensor,

gcl
μν = m2 ḡμν , ḡμν = δμν , m ∼

√
c2

c1

1
ρ
. (31)

The rescaling factor m has the dimension of mass, that is 1/length, such that ḡμν

has the conventional zero dimension. At this point one can rescale other ˇelds
to conventional dimensions, in particular, introduce the new fermion ˇeld ψ̄ of
conventional dimension m3/2:

ψ = m−3/2 ψ̄, ψ† = m−3/2 ψ̄†. (32)

One can now rewrite the action (29) together with the fermionic matter in terms
of the new rescaled ˇelds denoted by a bar,

S = − c1 m4︸ ︷︷ ︸
2Λ=λ4

∫
d4x

√
ḡ + c2 m2︸ ︷︷ ︸

M2
P =1/

√
16πGN

∫
d4x

√
ḡR̄+

+ m0

∫
d4x

√
ḡ ēAμ

(
ψ̄†γA∇μψ̄ + h.c.

)
. (33)

Underbraced are the cosmological constant and the Planck mass squared, respec-
tively; numerically, λ = 2.39·10−3 eV, MP = 1.72·1018 GeV. The dimensionless
ratio of these values,

λ

MP
=

(
c1 m4

c2
2 m4

)1/4

=
(

c1

c2
2

)1/4

= 1.39 · 10−30, (34)

is the only meaningful quantity in pure gravity theory, independent of the arbitrary
scale parameter m.

If a fermion obtains an effective mass, e.g., as a result of the spontaneous
chiral symmetry breaking, leading to an additional term in the effective low-
energy action

Sm =
∫

d4x
√

g ψ†Mψ = mM︸ ︷︷ ︸
fermion mass mf

∫
d4x

√
ḡ ψ̄†ψ̄, (35)

then the theory has to predict also other dimensionless ratios. For example, taking
the top quark mass mt = 172 GeV, one has to be able to explain the ratio

mt√
λMP

=
M

c
1/4
1 c

1/2
2

= 0.0848. (36)
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In other words, one can measure the Newton constant (or the Planck mass)
or the cosmological constant in units of the quark or lepton masses or the Bohr
radius. Only dimensionless ratios make sense and can be, as a matter of principle,
calculated from a microscopic theory. It is convenient and legitimate to use natural
dimensions when gμν has the dimension 1/length2 whereas all world scalars are
dimensionless, be it the scalar curvature R, the interval ds, the fermion ˇeld ψ
or any diffeomorphism-invariant action term.

Finally, we would like to remark that, if the standard Einstein's gravity
is obtained as a low-energy effective theory arising from a microscopic well-
deˇned diffeomorphism-invariant lattice theory at its phase-transition point, the
cosmological term, by construction, needs to have zero coefˇcient, c1 = 0.
Otherwise, the graviton would propagate to a ˇnite distance

√
c2/c1, which

contradicts the masslessness of the 	uctuations at the phase transition. This is
how one can recover Einstein's gravity from the lattice-regularized theory.

CONCLUSIONS

We have formulated the general method of lattice discretization for the
diffeomorphism-invariant quantum ˇeld theories. The method is based on simpli-
cial lattice and suitable for regularization of any diffeomorphism-invariant theory.
As an example of application, we apply the presented method to the spinor grav-
ity theory: the local Lorentz invariant and diffeomorphism-invariant theory based
on fermions. The resulting action is very difˇcult for the direct numerical sim-
ulations, due to the dominant contribution of the multi-fermion interaction. The
details on the lattice-regularized spinor gravity can be found in [6,7].

Applying the lattice regularization to the quantum theory, one supposes that
the lattice regularization can be removed in ˇnal result; i.e., one supposes that the
continuum limit exists. In the diffeomorphism-invariant theories the continuum
limit is not under control, due to the lack of natural scale, such as lattice spacing
in lattice QCD. The continuum limit shows up if all degrees of freedom or at least
some of them are slowly varying ˇelds from one lattice cell to another. This is,
generally, not fulˇlled: generically, all correlation functions decay exponentially
over a few lattice cells. For such ®massive¯ degrees of freedom the theory is
at the ®strong coupling¯ regime where the continuum limit is not achieved and
remains dormant.

There must be special physical reasons for massless excitations in the the-
ory, for which the continuum limit makes sense and diffeomorphism invariance
becomes manifest. One such reason is spontaneous breaking of continuous sym-
metry where the existence of massless ˇelds is guaranteed by the Goldstone
theorem. To obtain the low-energy Einstein limit, one has to stay at the second-
order phase transition surface in the space of the coupling constants. We expect
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that at the phase transition surface the effective low-energy action for the classical
metric tensor, derived through the Legendre transform, is just the EinsteinÄHilbert
action, with the zero cosmological term.

The described situation takes place in the spinor gravity [7], where one has
the second-order phase transition, in plane of constants λ1,2. This fact allows us
to consider the spinor gravity as a serious candidate for the theory of microscopic
general relativity.
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