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Nearly a recent century of work is devoted to NucleonÄNucleon (NN ) interaction issue. We
review some overall perspectives of NN interaction with a brief discussion about deuteron, gen-
eral structure, and symmetries of NN Lagrangian as well as equations of motion and solutions.
Meanwhile, the main NN -interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a similar way, discuss
more on various commonly used plain forms for two-nucleon interaction with an emphasis on the
phenomenological and meson-exchange potentials as well as the constituent-quark potentials and new
ones based on chiral effective ˇeld theory and working in coordinate space mostly. The potentials
are constructed in a way that ˇts NN -scattering data, phase shifts, and are also compared in this way
usually. An extra goal of this study is to start comparing various potential forms in a uniˇed manner.
So, we also comment on the advantages and disadvantages of the models and potentials partly with
reference to some relevant works and probable future studies.

�·¥¤¸É ¢²¥´ μ¡§μ· ¶¥·¸¶¥±É¨¢ μ¶¨¸ ´¨Ö ´Ê±²μ´-´Ê±²μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° (NN ) ¢ · §-
²¨Î´ÒÌ ¶μ¤Ìμ¤ Ì. Š· É±μ μ¡¸Ê¦¤ ÕÉ¸Ö ¤¥°É·μ´, μ¡Ð Ö ¸É·Ê±ÉÊ·  ¨ ¸¨³³¥É·¨¨ ² £· ´¦¨ ´ 
NN -¢§ ¨³μ¤¥°¸É¢¨°,   É ±¦¥ Ê· ¢´¥´¨Ö ¤¢¨¦¥´¨Ö ¨ ¨Ì ·¥Ï¥´¨Ö. � ¸¸³ É·¨¢ ÕÉ¸Ö ´ ¨¡μ²¥¥
¨§¢¥¸É´Ò¥ ³μ¤¥²¨ ´Ê±²μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨°, μ¸´μ¢ ´´Ò¥ ´  ¨¸¶μ²Ó§μ¢ ´¨¨ NN -¶μÉ¥´Í¨ ²μ¢.
�· ±É¨Î¥¸±¨ ¢¸¥ Ï¨·μ±μ ¨§¢¥¸É´Ò¥ ¶μÉ¥´Í¨ ²Ò · ¸¸³ É·¨¢ ÕÉ¸Ö ¥¤¨´Ò³ μ¡· §μ³: ± ± Ë¥´μ-
³¥´μ²μ£¨Î¥¸±¨¥ ¨ ³¥§μ´-μ¡³¥´´Ò¥, É ± ¨ ³μ¤¥²¨ ¸ ±μ´¸É¨ÉÊ¥´É´Ò³¨ ±¢ ·± ³¨ ¨ ´μ¢Ò¥, μ¸´μ-
¢ ´´Ò¥ ´  ±¨· ²Ó´μ° ÔËË¥±É¨¢´μ° É¥μ·¨¨ ¨ ¶·¨³¥´¨³Ò¥ Éμ²Ó±μ ¢ ±μμ·¤¨´ É´μ³ ¶·μ¸É· ´¸É¢¥.
� · ³¥É·Ò ¶μÉ¥´Í¨ ²μ¢ ¢ÒÎ¨¸²ÖÕÉ¸Ö ¨§ μ¶¨¸ ´¨Ö Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ NN -· ¸¸¥Ö´¨Ö
(Ë §μ¢ÒÌ ¸¤¢¨£μ¢) ¨ μ¡ÒÎ´μ ¸· ¢´¨¢ ÕÉ¸Ö ¤·Ê£ ¸ ¤·Ê£μ³ ¶μ ·¥§Ê²ÓÉ É ³ ÔÉμ£μ μ¶¨¸ ´¨Ö. „μ¶μ²-
´¨É¥²Ó´μ° Í¥²ÓÕ ÔÉμ£μ ¨¸¸²¥¤μ¢ ´¨Ö Ö¢²Ö¥É¸Ö ¶μ¶ÒÉ±  ¶μ²μ¦¨ÉÓ ´ Î ²μ ¸· ¢´¥´¨Õ · §²¨Î´ÒÌ
¶μÉ¥´Í¨ ²μ¢ ¥¤¨´Ò³ μ¡· §μ³. �¡¸Ê¦¤ ÕÉ¸Ö ¶·¥¨³ÊÐ¥¸É¢  ¨ ´¥¤μ¸É É±¨ ³μ¤¥²¥° ¨ ¶μÉ¥´Í¨ ²μ¢
¸μ ¸¸Ò²± ³¨ ´  ¸μμÉ¢¥É¸É¢ÊÕÐ¨¥ · ¡μÉÒ.

PACS: 21.45.-v; 21.30.Fe; 11.80.Et

INTRODUCTION

In 1953, Bethe stated [1] that in the quarter of the current century, many
experiments, labor and mental works are allocated to the NucleonÄNucleon (NN )
problem; probably more than any other question in the history of humankind.

∗E-mail: m.naghdi@mail.ilam.ac.ir
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NN interaction is the most fundamental problem in nuclear physics yet. In fact,
since the discovery of neutron by Chadwick in 1932, the subject has been in the
focus of attention; as, at the ˇrst, ®nuclear physics¯ was often equal to ®nuclear
force¯. The reasons for this outstanding role are clear. The main reason is that
describing the atomic-nuclei properties in terms of the interactions between the
nucleon pairs is indeed the main goal of nuclear physics.

In nuclear structure studies, ®nucleons¯ are always considered as ®fundamen-
tal¯ objects, which is of course reasonable in the scale of nuclear physics with
MeV energies. Although by the coming of Quantum Chromo Dynamics (QCD),
it is established that nucleons are not fundamental, but by comparing the results
from this traditional approach with the more fundamental ones, one may still
understand better the advantages and disadvantages of the approaches. NN in-
teraction is nowadays known more than any other parts of strong interaction both
because of long-term researches (more than 80 years) and many experimental
data as well as improved theoretical understanding of its various aspects.

The oldest theory of nuclear forces was presented by Yukawa [2] based on
which the mesons mediate the NN (pp, pn, nn) interactions. Again, although
the meson theory is not fundamental in the view of QCD, the meson-exchange
approach has improved our understanding of nuclear forces besides giving some
good qualitative results. Still, the mesons need in today's standard NN mod-
els/potentials, with the quarks and gluons, is avoidable to describe well many
nuclear interactions and to build better models/potentials with more satisfactory
results. In fact, by the advent of Effective Field Theory (EFT) and applying it
to the low-energy QCD, we are somehow coming back to the meson-exchange
theories with the aid of Chiral Perturbation Theory (ChPT).

Most basic questions were settled in the 1960sÄ1990s. In recent years, the
focuses are on the subtleties and various extensions of the idea for this special
force leading to setting up more sophisticated two- and few-nucleon potentials.
As a result, various high-quality models and forms for NN interaction are present
nowadays. According to this, we can absolutely not address all on this rich and
long-lived subject here but some basic facts and important issues of our favorite
of course. By the way, we will discuss various potentials in more detail in that
one may intend to study and compare them in future studies Å for some general
and up-to-date views to the subject, look, for instance, at [3Ä5].

This note is organized as follows. In Sec. 1, we brie	y discuss some basics
of NN interaction, deuteron as the unique bound-state of two-nucleon systems,
the symmetries of two-nucleon Lagrangian, general forms of NN potentials in
conˇguration/coordinate-space (r-space from now on), equations of motion and
partial-wave analysis. There, we also present a brief view to the scattering-
length, effective-range and momentum-space (p-space from now on) formalisms
as well as relativistic NN scattering. In Sec. 2, we review the four main NN
interaction models qualitatively. There are the phenomenological models with
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many free parameters to be ˇtted to experimental NN data, the Boson-exchange
models based on the ˇeld-theoretical and dispersion-relations methods, the QCD-
inspired models based on the fundamental quark and gluon degrees of freedom,
and the models based on EFT by using the chiral symmetry of QCD. As there are
many NN interaction models and potential forms and detailed studies need more
times and places so, in Sec. 3, we try to review almost all-important two-nucleon
potentials together with addressing the original papers for technical studies. There,
we also mention the road of modeling and improving exact NN potentials. In
addition, we study some high-precession potentials in more detail as samples of
the various existing potentials to do further studies and comparisons in an almost
common scheme. Next, in Sec. 4, we mention few other models and potentials not
mentioned in Sec. 3, which are the Mean Field Theory (MFT) methods and the
Renormalization Group (RG) approaches as well as the lattice QCD techniques.
Finally, in Sec. 5, we make few comments about the current status and problems
as well as the probable futures tries to be made on the rich way of nuclear force
studies.

1. A BRIEF OF NUCLEONÄNUCLEON INTERACTION

One can estimate, with an introductory evaluation (e.g., by uncertainty princi-
ple) that two-nucleon interaction has the greatest contribution to nuclear force and
four- and few-body interactions have almost negligible roles in the most nuclear
calculations.

In this section, we discuss some basics about NN interaction mainly in
r-space and nonrelativistic theory. The aim is to introduce the beginners with the
subject by referring the interested readers to the relevant textbooks and lecture
notes for various technical and advanced studies.

1.1. Three Interaction Parts in Two-Nucleon Systems. NucleonÄnucleon
interaction is always divided into three parts, ˇrst in [6], as follows:

a) The long-range (LR from now on) part (r � 2 fm): In the most models, it
is considered as One-Pion-Exchange Potential (OPEP) and is added to the other
parts of the potential as a tail. In a simple form in r-space, it reads

V
(1)
OPEP(r) =

g2
pi

3
(τ 1 · τ 2)

[
e−μr

r
(σ1 · σ2) +

(
1 +

3
μr

+
3

(μr)2

)
e−μr

r
S12

]
,

(1.1)
where μ = 1/r0, r0 = �/mpic, and S12 = 3(σ1 · r̂)(σ2 · r̂) − (σ1 · σ2) is the
usual tensor operator; and gpi is the coupling constant, which is obtained from the
experiments with mesons (mesonÄnucleon scattering). This potential has earned
some improvements such as considering the difference between the neutral and
charged pions and that it is different for pp, nn, np interactions besides the clear
forms raised from some new models of NN interaction.
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b) The intermediate/medium (MR from now on)-range part (1 � r � 2 fm):
It comes from the various single-meson exchanges and mainly from the scalar-
meson exchanges (two pions and heavier mesons).

c) The short-range (SR from now on) part (r � 1 fm): It is always given
by exchanges of the vector bosons (heavier mesons and multipion exchanges) as
well as the QCD effects.

Fig. 1. A general scheme for nucleonÄnucleon potential

In some of the potential forms, various Feynman diagrams, depending on the
considered exchanges, in each of the three mentioned parts, are used. A general
scheme for NN potential is shown in Fig. 1.

1.2. Deuteron: The Sole Bound-State of Two-Nucleon Systems. One way
to study the nuclear two-body interactions is using a two-nucleon system such as
deuteron (the 2H nuclei). Detailed studies need a general system of two-nucleon,
which is, in turn, framed through scattering a nucleon from another nucleon.
Nevertheless, deuteron is still fundamental to understand some basic proper-
ties of NN interaction. Deuteron is the exclusive loosely bound-state of two-
nucleon system. From the symmetry considerations, 3S1 and 3D1 are its states.
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Its nonzero electric quadrupole-moment [7],

Q =
√

2
10

∞∫
0

uwr2 dr − 1
20

∞∫
0

w2r2 dr, (1.2)

conˇrms the presence of D-state and leads to introduce the tensor force. As a
partial way to measure the quality of a potential, one may insert the wave functions
for the S-state (u(r)) and the D-state (w(r)), gained from a special potential,
into the last equation and then compares the results with the experimental values.
For a technical study of a deuteron, look at [8].

1.3. General Symmetries of Two-Nucleon Hamiltonian. In general, the in-
variance of NN interaction under both rotation of coordinate system (the isotropic
property of space) and translation of the origin of coordinate system (the homo-
geneous property of space) as well as time reversal, charge-independent (CI), and
charge-symmetry (CS) are considered commonly. There are already some wit-
nesses for symmetry breaking of the interaction, such as violating CI and CS [9]
(look also at Sec. 3 for more references). Nowadays, almost all accurate and high-
precession NN potentials include these violations Å we remember that charge
dependence (CD) of NN interaction means that the interactions of pp (Tz = 1),
np (Tz = 0), and nn (Tz = −1) are different, whereas CS of NN interaction
means that just the interactions of pp and nn are different.

From symmetry considerations, one can ˇnd out the various two-nucleon
states under the condition that

PrPσPτψ(r, σ1, σ2, τ 1, τ 2) = −ψ(r, σ1, σ2, τ 1, τ 2), (1.3)

where Pr, Pσ, Pτ are the space-exchange (Majorana), spin-exchange (Bartlett),
and isospin-exchange operators, respectively. For instance, in np system, some
states read{
S = 0 : 1P1,

1F3,
1H5,

1K7,
1M9, . . . ,

S = 1 : (3S1− 3D1), 3D2, (3D3− 3G3), 3G4, (3G5− 3I5), 3I6, (3I7− 3L7), . . .
(1.4)

The references [10Ä14] and [15] may be useful to earn more basic and general
information about NN interaction.

1.4. More about NN Interaction. 1.4.1. Potential Forms, Equations of Mo-
tion, and Wave Functions in r-Space. Generally, one can construct the following
combinations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A · B (scalar),
A× B,A ± B (vector),

Sij =
1
2
(AiBj + AjBi) −

1
3
δijA · B (rank-2 spherical tensor)

(1.5)
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from two vectors of A,B. For spin, isospin, space, and momentum vectors and
also their combinations, one can consider many cases that obey the symmetry
conditions as well. General form for the central potential is a linear combination
of I , σ1 · σ2, τ 1 · τ 2 by multiplying each operator in a suitable radial function
such as V (r/a), where the range parameter a is different for various operators.
In general, these spinÄisospin operators make the potential state-dependent.

The generic forms for the central and noncentral terms always read

Vcentr = Vc(r)+Vσ(r)(σ1 ·σ2)+Vτ (r)(τ 1 ·τ 2)+Vστ (r)(σ1 ·σ2)(τ 1 ·τ 2), (1.6)

Vnon-centr = Vls(r)L · S + Vt(r)S12 + Vlsτ (r)(L · S)(τ 1 · τ 2)+
+ Vlsσ(r)(L · S)(σ1 · σ2) + Vlsστ (r)(L · S)(σ1 · σ2)(τ 1 · τ 2) + . . . (1.7)

On the other hand, the matrix elements for some of the operators

I
τ 1 · τ 2

}
× V

( r

a

)
×

⎧⎪⎪⎨
⎪⎪⎩

I,
σ1 · σ2,
(r × p) · (σ1 · σ2) (spin-orbit),
S12 = 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2

(1.8)

are as follows:

〈σ1 · σ2〉 =
{

1; S = 1 (spin-triplet state),
−3; S = 0 (spin-singlet state), (1.9)

〈�′Sjm, TMT |L · S|�Sjm, TMT 〉 =
1
2
δ��′ [j(j + 1) − �(� + 1) − S(S + 1)] ,

(1.10)

〈�, S = 1, jm|S12|�′, S = 1, jm〉 =

=
�\�′ j
j 2

,

�\�′ j − 1 j + 1

j − 1
−2(j − 1)

2j + 1
6
√

j(j + 1)
2j + 1

j + 1
6
√

j(j + 1)
2j + 1

−2(j + 2)
2j + 1

. (1.11)

The uncoupled radial Schréodinger equation (without the Coulomb force) reads

d2u

dr2
− j(j + 1)

r2
u − 〈jSjm, TMT | υ| jSjm, TMT 〉 u + k2u = 0, (1.12)

in which υ = −(M/�
2)V and k2 = (M/�

2)E, where M and E are the nucleon
mass and center-of-mass (c.m. from now on) energy, respectively. The potential
of V is indeed from the already mentioned forms of (1.6) and (1.7). Actually,
that is composed of a form-function as V (r/a), a linear combination of the
various exchange operators and noncentral operators such as (L · S), (L · S)2,
S12, and so on.



1670 NAGHDI M.

Then, the asymptotic solutions to the equations read

r → 0 ⇒ u(r) =

{
r−�,

r�+1;
r → ∞ ⇒ u =

1
k

A� sin
(

kr − 1
2
�π − 1

2
+ δ�

)
.

(1.13)
As one could ˇnd an asymptotic solution, the solution for all r's is obtained by
numerical integration. Next, with phase shifts, one can earn a potential from the
Schréodinger equation.

For the coupled states (without the Coulomb force), in turn, we also have

d2u

dr2
− j(j − 1)

r2
u + k2u + F (r)u + H(r)w = 0,

d2w

dr2
− (j + 1)(j + 2)

r2
w + k2w + G(r)w + H(r)u = 0.

(1.14)

It is notable that the ground state of deuteron is a special case of the last
equation with k2 = −γ2 and j = 1, where γ2 = (M/�

2)EB with EB for
deuteron binding energy, and u and w stand now for the radial functions of 3S1-
and 3D1-states, respectively. Because two partial-wave channels are coupled, an
incoming wave in either � = j − 1 or � = j + 1 channel is scattered into either
� = j − 1 or � = j + 1 channel. Therefore, we have two phase shifts (proper
phases) δα

j , δβ
j , and a mixing parameter of ε. In the presence of the Coulomb

potential, a Coulomb phase shift is also added and the problem becomes a little
more complicated [13].

On the other hand, as the c.m. kinetic energy of two-nucleon system is larger
than the necessary amount to produce a meson, inelastic reactions become possible

Fig. 2. The energy dependence of the cross section for pion production in the np scattering
through the reactions of p+p → d+π+, p+p → p+p+π+ and p+p → p+p+π0 [16]
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(see Fig. 2). Since the lightest meson (π) mass is about 140 MeV, we expect, when
the bombarding energy is upper than the threshold, some kinetic energy in the
system transfers into the pion. By increasing the energy, the excitations because
of the nucleon internal degrees of freedom, and the probable production of other
particles, become more and more important. The inelastic scattering shows losing
the 	ow from the incident channel and so, the probability amplitude is no longer
conserved. Such a condition may be described by a complex scattering potential
while some other relativistic effects come into account; therefore the Schréodinger
equation for two-nucleon system is no longer enough. When discussing various
direct potential forms, we return to the issue partly.

1.4.2. Scattering Length and Effective Range. One can simply show, by
semiclassical reasonings, that for the low-energy scatterings, only the S-state
is important. By increasing the energy, the high-momentum states come into
play because of the short-range properties of NN interaction. If we show the
range by a and the momentum by 	p, the maximum angular momentum, which is
affected by the scattering potential, is pa trivially. By squaring the last quantity
and equating it with �(� + 1)�2, one can easily get the energy in which a given �
comes into play. A rough estimate says that, for � = 1 state, that energy is nearly
10 MeV.

For np scattering below this energy, we have the following expression (see,
for instance, Sec. II.C of [7], or Sec. 9.a of [13]):

k cot δ = −1
a

+
1
2
rek

2 − Pr3
ek

4. (1.15)

As the term in k4 becomes important (for E � 10 MeV), the P - and D-waves
come into the play and so, it is not easy to break the k4 dependence of k cot δ
for the S-wave phase shift. Therefore, the useful energy region for the legality
of (1.15) is where the ˇrst two terms answer. In the case where the Coulomb
potential is present (pp scattering), a near effective-range expansion reads (see,
for instance, Sec. IV.C of [7], or Sec. 9.b of [13], or see [17]):

C2k cot δ + 2kηh(η) = −1
a

+
1
2
rek

2 − Pr3
ek

4, (1.16)

where

C2 =
2πη

(e2πη − 1)
, η =

Me2

(2�2k)
,

h(η) = −γ − log η + η2
∞∑

M=1

[
M

(
M2 + η2

)]−1
, γ = 0.577.

(1.17)

By using these relations (or similar ones) and three low-energy 1S0 phase shifts,
one can hold the parameters of a (scattering length), re (effective range), and P
(e.g., for a special potential).
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1.4.3. P -Space, Relativistic Scattering and So On. For many calculations
associated with NN interaction, it is suitable to express the Schréodinger equa-
tion as an integral equation in momentum space; look, for instance, at [18, 19]
for some typical studies. The nonrelativistic scattering theory that leads to the
LippmannÄSchwinger (LS) equation and T -matrix are useful in this approach.
The BetheÄSalpeter (BS) equation in relativistic scattering theory, as relativistic
counterpart of LS equation, studying separable potentials, separable expansions
for arbitrary potentials, inverse scattering problem (see, for instance, [20,21] for
some particular studies with references therein), are among the topics covered in
this theory. The interested readers may also refer to [7, 13, 14] for more funda-
mental discussions Å as a side, we should note that many modern NN potentials
(mainly meson-exchange and chiral EFT potentials) are always written in p-space
originally and then Fourier transform into r-space. So, the p-space formalism
is important and commonly used in the standard and relativistic approaches to
NN interaction.

By the way, let us discuss a little more on the need for relativistic approaches
to the problem. In fact, one may adjust the LS equation by including relativistic
considerations. At the ˇrst sight, one may suppose that these corrections are
not so important below the ˇrst inelastic threshold. That is because the c.m.
energy of the system is an almost small fraction of the nucleon rest mass. But,
for the high momenta, it does not seem that describing the interaction through
just nonrelativistic equations is satisfactory. In other words, the short-range
repulsion of NN interaction, known from the various models based on at least
phenomenological investigations, rapidly reduces the S-wave functions at the
distances less than almost 0.5 fm. Therefore, it brings the high-momentum
components into the wave functions for all energies. Meanwhile, one should note
that to regularize the potentials at the origin, various parameterizations or form
factors with cutoffs are used; although in the potentials based on chiral EFT,
more standard approaches are employed.

Nevertheless, as one uses the phenomenological approach to describe NN
interaction, the shortages in nonrelativistic approaches are not so important. That
is because the parameterizations of the phenomenological models/potentials have
enough 	exibility to describe NN scattering in terms of the mesons with various
coupling constants, masses and other free parameters. These phenomenological
approaches are valid until they provide at least good quantitatively descriptions
of experimental scattering data, and then they could be good alternatives for the
complete relativistic descriptions.

On the other hand, while there is not a comprehensive theory for strong
interactions, looking for a relativistic equation is somehow notional. Indeed,
one may start from adapting the LS equation to satisfy the least needs of every
relativistic equation. The basic want is that the scattering amplitude must satisfy
the relativistic unitary along the elastic cutoff. The resultant equation is not
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unique ever; though, it is a relativistic version of the LS equation. For some
studies on the relativistic NN scattering, look, for instance, at [22, 23] and
references therein.

2. NUCLEONÄNUCLEON INTERACTION MODELS

There are some substantial models to build NN interaction potentials. In
this section, we specify some qualitative features and, for more technical and
quantitative studies, refer the interested readers to other relevant studies.

2.1. Almost Full Phenomenological Models. These models always use the
general form of a potential allowed by the symmetries like rotation, translation,
isospin, and so on. In general, the phenomenological potentials often have the
following features:

a) They are somewhat in a similar spirit as EFT, as we describe below, but
much older and restricted to the spaceÄtime, spin, and isospin symmetries.

b) Four important terms in the potentials are the central (I), spinÄspin
(σ1 · σ2), spinÄorbit (L · S), and tensor (S12) interactions.

c) Each term occurs twice; one time without isospin dependence and one
time with the dependence (τ 1 · τ 2), which in turn measures total isospin of NN
system.

d) The potential terms are responsible for describing various phenomena re-
marked in NN interactions. For example, the tensor term is important for the
LR part of a potential and arises naturally from pion exchange.

In these potentials, the MR and SR parts are usually determined in a fully
phenomenological way, while for the LR part, an OPEP is often used. Examples
for the potentials are HamadaÄJohnston potential [24], Yale-group potential [25],
Reid potentials (Reid68 [26], Reid68-Day [27], Reid93 [28]), Urbana-group po-
tentials (e.g., UrbanaV14 [29]), Argonne-group potentials (e.g., ArgonneV14 [30],
ArgonneV18 [31]), etc. Look at [32] for a new study of phenomenological NN
potentials. In the next section, we concentrate more on some samples of these
phenomenological potentials.

The phenomenological potentials have almost many free parameters to be
ˇtted to experimental scattering data and phase shifts. Less physics one may earn
from them rather than the physics one may earn from the other potentials with
tight theoretical grounds. Nevertheless, their ability to describe the practical facts
of NN (pn, nn, pp) interactions, their 	exibility and convenience for using in
nuclear structure calculations, are notable. These properties have still kept them
in work more than the other potentials nowadays.

2.2. Boson-Exchange Models. The potential acting between a pair of par-
ticles, because of a meson exchange, has the range of the meson's Compton
wavelength; which is in turn proportional to the meson-mass inversely. Because
the pion π is the lightest meson exchanged between nucleon pairs, it contributes
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the LR part of NN interaction, beyond its Compton's wavelength. So, the resul-
tant potential is called OPEP. Similarly, to describe the MR and SR parts of the
interaction, one should consider the exchanges of the heavier mesons than the pion
as well as two, three and more pion exchanges. However, because considering
these exchanges exactly is rather difˇcult, most people consider them phenom-
enologically while, in meson-exchange potentials, they are included clearly. Look
at [33,34] for the ˇrst meson and multipion exchange NN potentials.

On the other hand, it is already known that multipion systems have some
strongly correlated resonances that behave often as a single meson. So, it is
supposed that multipion resonances, when exchange between two nucleons, may
contribute to the MR and SR parts of interactions. The potentials built in this
way, by including single-meson exchanges, are called One-Boson-Exchange Po-
tentials (OBEP). Besides the traditional one π(138) exchange, various meson
exchanges are considered in OBEPs. There are the exchanges of ρ(769) meson
(as a 2π resonance), ω(783) meson (as a 3π resonance), η(549) meson (the same
quantum numbers with π but its isospin that is T = 0), ή(958) meson (the same
quantum numbers with η but heavier and a resonance of ηππ), δ(983) (as a
4π resonance), φ(1020) meson (the same quantum numbers as ω but a resonance
of K+K− system), and S∗(975) meson (as 2π, KK̄ resonances). In addition,
one always considers the experimentally undetermined scalarÄisoscalar boson of
σ(500−700), which is usually considered as a good parameterization of 2π sys-
tem in S-state. Still, there are two other mesons with the mass above 1 GeV that
may act as 2π resonances. They are ε(1300) (or f0) meson (with the same quan-
tum numbers as S∗(975) but just as a 2π resonance) and f(1274) meson. Some
other two-boson resonances may come from the mesons of A1(1275), A2(1318)
(as ρπ resonances), B(1234) (as a ωπ resonance) and D(1283) (as ηππ, 4π res-
onances). But, because of the importance of the hadrons' structure in the energy
region of 1 GeV and with respect to the energies involved in the common NN
interactions, the roles of the heavier mesons may not be so important.

In general, π-meson (and also φ-meson) exchange provides the most LR
(tensor) force, whereas ω-meson exchange provides the most SR repulsive force
and SR spin-orbit force. The intermediate attractive force is often explained by 2π
(as ρ- and/or ˇctitious σ-meson) exchanges, whereas the potential contribution by
η meson is weak and always ignorable. Therefore, these few mesons describe the
main features of NN interaction; but to describe well experimental data and other
subtle properties, depending on the case, the exchanges of the other mentioned
mesons are also included.

From the differences among various NN potentials, based on meson theory,
are their methods to deal with the 2π exchange. In one approach, its effect is
simulated through one or two scalar and isoscalar mesons. Considering the 2π
environmental effects as well as employing scattering-length and effective-range
formalism for the S-state of the system are the efforts in the line. By the way,
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each group uses its own methods and details to evaluate the potential. In general,
the settled ®ˇeld theoretical techniques¯ and the methods based on ®dispersion
relations¯ are two main ways for handling the problem. Look at [35] for a
senior ˇeld-theoretical NN model, [36] for an old review on OBEP, [37] for a
comprehensive review, and [38] for another useful typical study. See also [39Ä42]
for some other relevant studies.

In other words, by discovering the vector mesons of ρ and ω, with the masses
in the ranges of 770Ä780 MeV, more progresses in understanding NN interaction
were archived and led to expand OPEPs. In OBEPs, mostly, the unrelated
contributions of the single-meson exchanges of the pseudoscalar mesons π, η
and the vector mesons ρ, ω as well as the scalar meson δ(983) are considered
and iterated into scattering equation. There are also 2π exchanges, which are
always parameterized by the artiˇcial σ meson with the masses in the range of
400Ä800 MeV. The core (SR) region of the potentials is always parameterized
through phenomenological parameters and the form factors related to the mesonÄ
nucleon vertices. The form factors in turn hold on fundamental relations to QCD.
Then, such OBEPs provide good (at least quantitative) description of scattering
data. Many types of these potentials, each with its own characteristics and
features, already exist. Nowadays, it is almost clear that the meson-exchange
potentials (MEPs) are almost the standard NN potentials. Some examples are the
PartoviÄLomon model [35], and Stony Brook-group [43], Paris-group [44], Bonn-
group [45], Padua-group [46], Nijmegen-group [28] and Hamburg-group [47]
potentials.

Boson-exchange methods are nowadays extended, besides NN systems, to
many baryonÄbaryon (BB) interactions such as pionÄnucleon, pionÄpion,
hyperonÄnucleon (Y N ) and hyperonÄhyperon (Y Y ) interactions as well. Al-
though these models do not refer to QCD deeply, but the baryon and meson
ˇelds are already considered as the asymptotic states that absorb all effects from
the quark and gluon dynamics. It is also notable that not only phenomenological
models but also the advanced models of NN interactions, such as QCD-inspired
and chiral EFT models, which we describe below, use boson exchanges in some
parts of studies.

To summarize, we note that in the quarkÄantiquark pair (= meson) exchange
model, there are the following features: a) It is similar to the quark exchange but
the reverse direction of one quark. b) It gives a good description of many aspects
of NN interaction. c) It is preferred because the meson states are colorless and
have almost lower masses or larger ranges. d) It studies OPEP and generalizes it
to other mesons that results in OBEPs and more. e) Next to full phenomenological
potentials and chiral EFT potentials, BEPs are the best physical potentials that
give perfect agreement with the data for the LR and MR parts, especially.

2.3. The Models Based on QCD. In these models, the aim is to connect
hadronic processes to the underlying theory of strong interactions, that is, QCD.
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In other words, hadronÄhadron interactions are described in terms of quark and
gluon degrees of freedom; see [48Ä52] and [53,54] for some reviews and typical
studies of NN interaction in QCD and quark models.

At low energies, relevant to NN interaction, QCD is nonperturbative and
could not be solved exactly. Chiral Perturbation Theory (ChPT) (see, e.g., [55]),
Skyrme Model (see, e.g., [56,57]), and NambuÄJona-Lasinio (NJL) models (see,
e.g., [58]) are examples of this approach. The models describe the characteristic
phenomena observed in nucleonÄnucleon, pionÄnucleon, and pionÄpion scattering
well qualitatively but they fail quantitatively. Common features of the ®QCD-
inspired¯ models, that reduce the demand for them, are cumbersome mathematics,
large numbers of parameters and limits in applying especially to very low energies.
Therefore, if one wants a good quantitative description of experimental data, phe-
nomenological approaches such as boson-exchange and phenomenological models
are preferred. Nevertheless, in some models just for the short distances, the QCD
approach is used whereas for the remaining parts of interaction, the two former
approaches are used with satisfactory results. We deal with the issue more when
discussing plain potentials.

In summary, there are two subsets of QCD-inspired models, with basic fea-
tures and main characteristics, as follows:

1) The gluon and quark exchange among nucleons plus the Pauli repulsion
between similar quarks in overlapping nucleons, with the following features:

a) The gluon exchanges based on ®constituent quark model¯ (CQM) besides
one-gluon-exchange potential (OGEP). It does not give a good description for
reasonable distances because of conˇning the colorless singlets.

b) The Pauli repulsion is related to a minimum energy to excite a nucleon
(that is to move a quark into a different state) of 300 MeV.

c) The quark exchanges between two nucleons and may change nucleon
charges (i.e., n → p and, at the same time, p → n).

d) It gives a reasonable and semiquantitative description of the SR repulsive
part and may be the MR part of NN interaction. Look, for instance, at [50Ä54]
for some general studies. Among the exact potentials of this type are the Moscow-
group [59] and Oxford-group [60] potentials.

2) Chiral symmetry and ChPT can also be considered as a subset of QCD
methods, with the following features:

a) That is based on chiral symmetry of QCD Lagrangian. That symmetry
means that the quarks with opposite helicity are indistinguishable and do not
couple to each other except for their masses.

b) Chiral symmetry is spontaneously broken because QCD prefers the quarkÄ
antiquark pairs with negative parity to the quarkÄquark pairs with positive parity.
Thus, the low-mass modes (zero-mass theoretically) of the ®quark condensation¯
are called ®Goldstone bosons¯ (pions, kaons, etc.). This, in turn, limits the
Lagrangian to the processes involving nucleons and pseudoscalar mesons. In other
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words, for the energies around ΛQCD ≈ 1 GeV, there is a ®phase transition¯ from
®fundamental¯ theory to an ®effective¯ theory through spontaneous breaking of
the chiral symmetry of QCD Lagrangian. During this procedure, pseudoscalar
®Goldstone¯ bosons are produced. As a result, in low energies (E < ΛQCD),
the proper degrees of freedom are the pseudoscalar mesons and other similar
hadrons, and not the quarks and gluons of the original theory. The standard
effective theory to describe this process is called ChPT.

c) Chiral symmetry is also violated by the (small) quark masses; so, the
Goldstone bosons are not massless totally. Nevertheless, one can expand the
interaction in small parameters to make deˇnite predictions (as in ChPT). For
some related studies, see [61, 62] and [55] and also references therein. In the
following subsection, we discuss this issue further. Still, we should note some
other studies, on NN interaction, in the language of ®lattice QCD¯, for instance,
in [63Ä66] and [67].

2.4. Effective-Field-Theory Approach. Effective-ˇeld theories (EFTs) are
the low-energy descendants to the high-energy parent theories. Some of their
features are as follows:

a) In general, one notes that there are different/separate energy scales in the
nature each with its own degree of freedom. At each energy level, just some
degrees of freedom are relevant and as the energy decreases, some others are
frozen and become irrelevant. An example of this is the chiral symmetry.

b) About NN interaction, as ˇrst hinted by Weinberg [68], EFT means
applying all symmetries including the chiral symmetry of QCD Lagrangian but
not directly considering the underlying degrees of freedom like pions or quarks.
This gives the most general Lagrangian that contains many parameters to be
constrained with data. In other words, the Lagrangian must include all possible
terms to guarantee that the ®effective¯ theory is indeed the low-energy limit of
the ®fundamental¯ high-energy theory. So, no presumptions about, for example,
renormalizability or simplifying the Lagrangian are permissible. This, in turn,
means that we probably have an inˇnite set of interactions. Therefore, to have
a reasonable theory with well-deˇned results, one must organize the perturbative
expansion up to some deˇned orders. See, for instance, [69Ä72] and references
therein, for some reviews of EFT approach to NN interaction.

In general, a systematic improvement of the ability of the model to reproduce
NN data is observed when the orders of chiral expansion increase. One of
the ˇrst extended models (in Next-to-Next-to-Leading Order: NNLO) of ChPT
described np phase shifts well up to the energies about 100 MeV; but, for the
higher energies, some inconsistencies occurred in some partial waves, see [73]
for a recent study of this approach and developments. Although NNLO and the
most recent higher-order chiral NN potentials show signiˇcant progress towards
the earlier ones and are almost perfect (in fact, the new NNNLO potentials
describe data well up to 350 MeV with similar quality as the high-precession
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phenomenological and boson-exchange potentials), still, in order to apply well
the resultant potentials to all nuclear structure calculations, more quantitative and
even qualitative improvements are necessary. We should, of course, note that
chiral EFT models have more standards and great theoretical bases to be known
as the most reasonable models to describe the strong nuclear interactions.

In summary, we can say that ChPT from EFT in low energies is as funda-
mental as QCD in high energies. In addition, because of the perturbative nature
of ChPT, it can be evaluated order by order in chiral expansions. As long as
we are looking for a substantial theory of nuclear forces, applicable to nuclear
structure calculations as well, ChPT is likely able to overcome the discrepancies
between experiment and theory. For some other typical studies on the subject of
EFT and ChPT, look, for instance, at [69, 74, 75] and [3, 55, 76] for some recent
views. Meanwhile, among the high-quality potentials of this type are those by
Texas group [77], Sao Paulo group [78], Munich group [79], Idaho group [80],
and BochumÄJulich group [81].

3. NUCLEONÄNUCLEON INTERACTION POTENTIALS

3.1. Basic Potentials and General Remarks. In this subsection, we discuss
the main preliminary potentials and brie	y the methods of making them. As al-
ready mentioned, the range of nucleonÄnucleon interaction is divided into three
parts, which are the short range (SR), the intermediate or medium range (MR)
and the long range (LR). For the MR and LR parts, many workers have always
taken the phenomenological and boson-exchange pictures. However, in the most
models, for the LR part, one-pion exchange (OPE) is usually included. For the SR
part, phenomenological parameterizations are often employed. In some models,
form factors are included to regularize the potentials at the origin; whereas, in
some other models, severe hard cores are included. The ˇrst major approach to
describe the MR part was to include two-pion-exchange (TPE) contributions. The
ˇrst samples of TPE potentials were given by TaketaniÄMachidaÄOhnuma [33]
and BruecknerÄWatson [34]. However, those TPE potentials did not provide good
descriptions of NN scattering data, as one reason was the lack of a spin-orbit
potential therein. Next, Gammel, Christian, and Thaler [82] discovered the need
to include a spin-orbit potential when they tried to ˇt the NN scattering data at
that time with a velocity-dependent local phenomenological NN potential as

V = Vc(r) + Vt(r)S12, (3.1)

for each of the four combinations of the spin and isospin. Nevertheless,
they failed!

In 1957, the efforts to build further phenomenological potentials, by includ-
ing the phenomenological spin-orbit potentials as well, got started. The purely
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phenomenological potential of GammelÄThaler [83] provided a good description
of the scattering data at that time below Tlab = 310 MeV (note that we use
throughout this note the laboratory energy unless otherwise be told). At the
same time, the semiclassical potential of SingellÄMarshak [84], which consisted
of the TPE potential of Gartenhaus [85], next to the phenomenological spin-orbit
potential, provided a satisfactory description of the data below 150 MeV.

Then, OkuboÄMarshak [86] showed that the most general two-nucleon po-
tential, by considering symmetry conditions, reads

V (r,p, σ1, σ2, τ 1, τ 2) = Vc(r) + Vσ(r)(σ1 · σ2) + Vτ (r)(τ 1 · τ 2)+
+ Vστ (r)(σ1 · σ2)(τ 1 · τ 2) + Vls(r)(τ 1 · τ 2) + Vlsτ (r)(L · S)(τ 1 · τ 2)+

+ Vt(r)S12 + Vtτ (r)S12(τ 1 · τ 2) + Vq(r)Q12 + Vqτ (r)Q12(τ 1 · τ 2)+
+ Vpp(r)(σ1 · p)(σ2 · p) + Vppτ (r)(σ1 · p)(σ2 · p)(τ 1 · τ 2), (3.2)

where L · S is the usual spin-orbit operator and

Q12 =
1
2
{(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)} (3.3)

is the quadratic spin-orbit operator. The twelve terms in the potential are given
by the twelve radial functions Vc(r), . . . These functions can be obtained from
our knowledge about the nature of nuclear forces. Information to ˇnd out V (r)'s
could be from, for example, the exchanges of various mesons or phenomenologi-
cal mechanisms in which some given radial functions, with maybe some arbitrary
free parameters to be ˇxed to experimental data, exist. Once our understanding of
underlying theories (such as QCD) improves further, we may be able to get these
functions from the basics. The ˇrst four terms in (3.2) stand for the complete
central potential and, in the case, L and S are the good quantum numbers. By
adding other terms, the good quantum number is J , as the two-nucleon system is
now invariant under the combined space of L and S. The main reason for two
terms in the spin-orbit potential of

Vspin-orbit(r) = Vls(r)L · S + Vlsτ (r)(L · S)(τ 1 · τ 2) (3.4)

is that the radial dependence of the potentials may be different for the isospin-
independent and isospin-dependent parts, for example, because of different meson
exchanges. The seventh and eighth terms stand for the tensor forces while the
ninth and tenth terms are for the quadratic spin-orbit forces. The latter two terms
enter just when momentum dependence exists in the potential. The last, 11th
and 12th, terms are always omitted because, at least for elastic scattering, they
can be written as linear combinations of the other terms. So, their role cannot
be determined from elastic scattering, from which most of our information about
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NN interaction comes. For a useful study about NN interaction, including the
potentials and ideas, before 1960, see also [15].

Soon after, better potentials were constructed. Among the 1960s meson-
exchange and ˇeld-theoretical potentials, the NN potential by Sugawara and
others [87,88] are also mentionable. Other important phenomenological potentials
then were HamadaÄJohnston [24] and Yale [25] potentials and also various hard-
and soft-core potentials by Reid [26].

Before going more into discussing some other potentials, it is useful to
mention that almost all experimental elastic phase shifts are derived from the
differential cross sections of pp and np scatterings. For the most potentials the
data are often ˇtted in the energy range of 0Ä350 MeV. That is because, in
the higher energies, inelastic processes (with the threshold of about 280 MeV),
such as pion production and other relativistic effects, come into play and so, the
two-body Schréodinger equation is no longer enough. It should be mentioned that
the modern analyses with more improved relativistic equations (for example, with
BS equation) have tried to account for all effects at once.

To know the methods of making the early potentials, we note that, for
instance, the HamadaÄJohnston (HJ) [24] and Yale group [25] determined all
two-nucleon scattering data and polarization parameters as a function of energy
for the energies of a few hundred MeV. The Yale-group potential was initially
framed to reproduce the phase shifts in various states as a smooth function
of energy. As a ˇrst step, the phase parameters (that is the phase shifts and
mixing parameters of the coupled states) were determined as functions of energies
by ˇtting to all experimental scattering and polarization data. The procedure
was performed by several groups, mainly by Yale group [89] and Livermore
group [90], then for an updated analysis of NN scattering data by the latter
group [91]. As a second step, the potentials, with their adjusted parameters,
reproduced the phase parameters. The more standard procedure is to present
scattering amplitudes as a sum of all partial waves up to a maximum orbital
angular momentum, which is more or less �max = 5. The contributions of the
higher partial waves are always indicted by OPE contribution to the scattering
amplitude. In the Yale-group potential, OPEP was used as a ˇxed part, while
the remaining parts of the potential were ˇxed by ˇtting the energy-dependent
phase parameters up to �max. It is mentionable that, for the current up-to-date
potentials, the basic analyses are drastically improved although the procedures are
more or less similar.

By the way, in the most NN potentials, for the LR part, OPEP is usually
used, while for the MR part, the multipions and single mesons such as ρ, ω, σ, . . .
are often used. Still for the SR repulsive part, various methods including neutral
vector-meson exchanges, velocity-dependent potentials, phenomenological para-
meterizations and QCD substructure techniques are used.
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3.2. NN Potential's Road. The original try to ˇnd the fundamental the-
ory of nuclear forces was started around 1935 by Yukawa. The Yukawa [2]
meson-exchange model for nuclear force and the other old pion-exchange poten-
tials, such as those by TaketaniÄMachidaÄOhnuma [33], BruecknerÄWatson [34],
SingellÄMarshak [84], Gartenhaus [85], etc., were not so successful. That
was both because of the failing of their structures and of the pion dynam-
ics, which, as we now know, is restricted by chiral symmetry. By discov-
ering heavy mesons in the early 1960s, modeling better one-boson-exchange
potentials (OBEPs) was started in [92Ä94] as well, and was then developed
more by framing some better potentials. Therefore, the ˇeld-theoretical and
quantum-dispersion methods were involved with making the potentials such as
PartoviÄLomon model [35], Stony Brook-group [43], Paris-group [44], Nijmegen-
group [95] and Bonn-group [45] potentials∗. But there were still some problems
with the boson-exchange potentials. Among them was the σ-boson exchange for
which experimental evidence was polemic. Nevertheless, because that equals a
2π resonance, there were many efforts to ˇnd two-pion contributions to the in-
teractions. Anyhow, then, more high-precession potentials such as parameterized
Paris potential [98], the high-quality potentials of Nijm93, NijmI, NijmII [28],
CD-Bonn [99] and many other interesting potentials based on meson-exchange
pictures were constructed. So, it seemed that the nuclear force problem was
solved! But, no!

With the coming of QCD and its underside quarks and gluons degrees of
freedom, the studies came into new phases. Still, the problem with QCD
was its nonperturbative structure when applying to the MeV low-energy limit,
where nuclear physics is valid. The QCD-inspired quark models were the
ˇrst tries in the phase [48]. Lattice QCD was/is also a way to deal with the
problem; see, for instance, [63]. Still, the QCD-inspired potentials were/are
qualitatively successful but not quantitatively well as they are the phenomeno-
logical meson-exchange potentials. Among these potentials, the potential set
up by some members of the Paris group in [100], the Moscow-group poten-
tials [59], and the Oxford potential [60] are mentionable. Nevertheless, some
potentials, such as the high-quality Nijmegen-group ones [28] (and even two
former ones) use a mixture of the mesons and quarks in some parts of the
interaction.

Meanwhile, many phenomenological potentials composed of meson-
exchanges, operators and functions with adjusted parameters to ˇt experimental
data, with wide applications in nuclear computations, were constructed. Among

∗Among the other boson-exchange potentials are those in [96] and [97], where the former is a
relativistic OBE model and the latter is constructed from the meson-exchange and nucleon structure
properties.
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them are the Reid [26] and UrbanaV14 [29] potentials, and the high-precession
Nijmegen-group potentials [28] and ArgonneV18 [31] potential.

By coming EFT and applying it to the low-energy QCD, ˇrst by Wein-
berg [68], the new phase to set up NN potentials got started. In such models,
one usually starts by writing the most general Lagrangian including the assumed
symmetries and especially chiral symmetry of QCD. In low-energies, chiral sym-
metry breaks down and then the suitable degrees of freedom are not quarks and
gluons but there are pions and nucleons, while heavy mesons and nucleon res-
onances are integrated out. So, it seems that we are going back to the meson
theory! of course, with much more experiences.

The chiral effective Lagrangian is composed of a set of the sentences in-
creasing in derivative terms or nucleon ˇelds. Indeed, one uses a perturbative
expansion in (Q/ΛQCD)ν , where Q refers to the soft scale associated with ex-
ternal momenta or pion mass, ΛQCD ≈ 1 GeV is the chiral symmetry break-
ing scale and ν � 0. By applying the Lagrangian to NN scattering, there
are the suiting Feynman diagrams whose importance becomes less as the or-
der of the chiral perturbation theory (χPT) expansion increases. Besides de-
scribing the nuclear two-body problem, the model makes some good predic-
tions for nuclear few-body forces as well. The ˇrst potential of this type was
constructed by Texas group (Ordonez, Ray, and van Kolck) [77] and among
the further developed ones are those by Idaho group [80] and BochumÄJulich
group [81] up to NNNLO. These new ChPT potentials are quantitatively and
qualitatively best so far candidates to describe two-nucleon as well as few-nucleon
interactions.

It is also notable that there are some tries to construct NN potentials based on
renormalization group (RG) approach to NN interaction by another StonyÄBrook
group [101]. As a result, they have earned many creditable and satisfactory results
that we comment more in Sec. 3. Anyway, in what follows we continue studying
some of the potentials which are, of course, more important with established
results in nuclear structure calculations, brie	y.

3.3. HamadaÄJohnston Potential. The HamadaÄJohnston (HJ) potential [24]
is a leading phenomenological NN (pp + np here) energy-independent potential.
It described well the scattering data below 350 MeV and deuteron properties as
well as the effective-range parameters. The general form of HJ potential [24]
reads

V = Vc(r) + Vt(r)S12 + Vls(r)L · S + Vll(r)L12, (3.5)

where

S12 = 3(σ1 · r̂)(σ2 · r̂)− (σ1 ·σ2), L12 = (δ�j + σ1 · σ2)L2− (L ·S)2, (3.6)
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vc(r) = 0 · 08
(

1
3
mpi

)
(τ 1 · τ 2) (σ1 · σ2)Y (x)

[
1 + acY (x) + bcY

2(x)
]
,

Vt(r) = 0.08
(

1
3
mpi

)
(τ 1 · τ 2)Z(x)

[
1 + atY (x) + btY

2(x)
]
,

Vls(r) = mpi GlsY
2(x) [1 + blsY (x)],

Vll(r) = mpi Gllx
−2Z(x)

[
1 + allY (x) + bllY

2(x)
]
,

(3.7)
in which mpi, x, and M are the pion mass (139.4 MeV), the internucleon distance
measured in the units of the pion Compton's wavelength (r0 = 1.415 fm), and
the nucleon mass (taken to be 6.73μ), respectively. Note also that x = μr,
μ = mpic/� = r−1

0 with respect to Eq. (1.1), and that

Y (x) =
e−x

x
, Z(x) =

(
1 +

3
x

+
3
x2

)
Y (x). (3.8)

We should note that the quadratic spin-orbit potential was mainly introduced to
describe np data satisfactorily. For the r large enough, Vc(r) and Vt(r) reduce
to the well-known OPEP with the pseudovector coupling constant of 0.08. The
coefˇcients ac, bc, at, and bt represent the potential diversion from OPEP at
small r's. Gls is the strength of the short-ranged spin-orbit potential Vls(r) and
depends on the parity of state. Gll, as the strength of Vll(r), originated from
special evaluations, is determined phenomenologically. All the coefˇcients are
determined from the detailed ˇt to scattering data and are given in the original
paper [24]. The hard cores are considered for all states with their radius at
xc = 0.343. The HJ potential, as originally proposed, included a strong long-
range quadratic spin-orbit potential in triplet-even states, and also a strong short-
range spin-orbit potential in triplet (� = j)-odd states, where it is known that
the latter does not exist. So, the potential for triplet-odd states was modiˇed as
follows [102]: It was deˇned to be Ä0.26744 mpi around xc < x � 0.487 and by
above standard relations for x > 0.487. The values of the binding energy, electric
quadratic moment, effective range, D-state probability and the asymptotic D-wave
to S-wave ratio of deuteron were determined by the potential to be 2.226 MeV,
0.285 fm2, 1.77 fm, 6.97% and AD/AS = 0.02656, respectively.

An improvement of HJ potential was made in [103] (we call it Massachusetts-
group potential) to replace mainly the HJ hard cores (for x � xc) by ˇnite square-
well cores. Outside the square-well radius (for x > xc), the potential is the same
as HJ except for a few changes in parameters such as considering the pion mass
differences, and that the ac values of the singlet-even and triplet-odd states as
well as the triplet-odd bc are changed slightly. The pion mass splitting leads
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to charge-independent breaking (CIB), while CS is still preserved. Now, mpi is
replaced by the effective pion mass and xc = 0.4852, which in turn implies the
larger core radius of 0.7 fm. Descriptions of NN scattering data and deuteron
properties with the potential were good. Indeed, the main aim to form the latter
potential was to show that the hard cores were not necessary since all data could
be described by the ˇnite soft-core potentials.

3.4. Yale-Group Potential. The Yale-group potential [25] is a pp + np
phenomenological potential similar to HJ potential [24] that is ˇtted to its time
phase parameters as well. There, an OPEP is included directly and the quadratic
spin-orbit potential is considered in a somewhat different form than that of HJ.
The whole NN potential reads

V = V
(2)
OPEP + Vc(r) + Vt(r)S12 + Vls(r)L · S + Vql(r)[Q12 − (L · S)2], (3.9)

where [
Q12 − (L · S)2

]
= (L · S)2 + L · S − L2 (3.10)

and

V
(2)
OPEP =

(
g2
pi

12

)
mpic

2
(mpi

M

)2

(τ 1 · τ 2)
[
(σ1 · σ2) + S12

(
1 +

3
x

+
3
x2

)]
e−x

x
.

(3.11)
This OPEP is used for the distances larger than nearly 3 fm, with the same
parameter deˇnitions as in HJ potential. For the coupling constant, g2

pi/14 = 0.94
is used in singlet-even states and 1 elsewhere. For singlet-even and triplet-
odd states, the neutral-pion mass (mpi = mπ0) is used, while for singlet-odd
and triplet-even states, a mean of the charged- and neutral-pion masses [mpi =
(mπ0 + 2mπ±)/3] is used. The hard-core radius is considered at xc = 0.35,
and except in the OPEP part, all the radial functions Vc, Vt, Vls, and Vql are
taken as

V =
7∑

n=1

an
e−2x

xn
. (3.12)

The potential's parameters are determined by ˇtting to data for various states and
involved potentials. It is also notable that HJ and Yale potentials are OPEP for
L > 5, and that the Yale potential sets Vls = 0 for J > 2.

3.5. Reid68 and ReidÄDay Potentials. 3.5.1. Reid68 Potential. Among the
failures of HJ [24] and Yale [25] hard-core potentials were that they could not
reproduce reasonable results when applying to many-body calculations. It ap-
peared that the Reid soft-core potentials [26] were better. The Reid poten-
tials are static and local phenomenological potentials similar to those of HJ



NUCLEONÄNUCLEON INTERACTION: A TYPICAL/CONCISE REVIEW 1685

and Yale. Reid determined the potential for each two-nucleon state indepen-
dent of the other states. So, one may suppose that this approach is problem-
atic in that, with many two-nucleon states each with its own potential, ˇtting
the experimental data could be probably meaningless. But, because the high-
est energy in the analyses was about 350 MeV, just the two-nucleon states
with J � 2, which are more important in nuclear calculations, were considered
in practice.

Reid used only a central potential in the singlet and uncoupled triplet states,
while for the coupled triplet states, he used

V = Vc(r) + Vt(r)S12 + Vls(r)L · S, (3.13)

which has the central, tensor, and usual spin-orbit components. For the LR part,
he used the OPEP of (3.11) as a tail attached to the potential, with g2

pi = 14,
mpi = 138.13 MeV, M = 938.903 MeV, and μ = 0.7 fm−1. On the other
hand, to remove the x−2 and x−3 behaviors at small distances, an SR potential
was subtracted from the tensor part of the potential. For the MRs, the potentials
were expressed as the sums of the Yukawa functions of e−nx/x, where n was
an integer. The SR repulsions were also some combinations of the severe hard-
core and the Yukawa soft-core potentials. It is mentionable that the criterion for
a potential to be soft-core is that the wave functions do not vanish in nonzero
radiuses. For the hard-core radius, when needed, the radii of xc � 0.1 could be
used there. One should, of course, note that because of ˇtting the potentials to
the energies often below 350 MeV, ˇnding a unique formalism for the SR part
was almost difˇcult. Finally, it is notable that the Reid potentials did not describe
well some of the scattering data and deuteron properties at that time. It was
also hinted the need for velocity dependence and nonlocality in NN potentials,
imposed by experimental data.

3.5.2. ReidÄDay Potential. In 1980, B.D.Day [27] expanded the Reid68
soft-core potentials up to the higher partial waves to solve three-body equation
in nuclear matter calculations. In fact, he used three two-nucleon potentials in
calculations. The ˇrst one (called V2) was just the central part of the Reid68
potential in 3S1−3D1 channel for all states. The second one (called V6(Reid))
had four forms for the four (S, T ) states. Indeed, in the latter case, for all S = 0
states, just two central Vc(r) potentials (Reid68 1S0 and 1P1 for T = 1 and
T = 0, respectively) were used; meanwhile for all S = 1 states, just two central
Vc(r) and two tensor Vt(r) potentials (Reid68 3P2−3F2 and 3S1−3D1 for T = 1
and T = 0, respectively) were used. The third one (called Full-Reid potential
that we call Reid-Day potential) used the original Reid68 potentials for all J � 2
states; meanwhile for the states with J � 3, he set up the potentials based on the
Reid68 ones almost roughly. Clearly, for the states up to J = 5, the potential
structures were similar to the original Reid68 ones. For example, in the coupled
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sate of 3D3−3G3, he used

Vc(r) = −10.463Y (x) − 103.4Y 2(x) − 419.6Y 4(x) + 9924.3Y 6(x), (3.14)

Vt(r) = −10.463
[
Z(x) −

(
12
x

+
3
x2

)
Y 4(x)

]
+ 351.77Y 4(x) − 1673.5Y 6(x),

(3.15)

Vls(r) = 650Y 4(x) − 5506Y 6(x), (3.16)

where x = 0.7r, and r is the internucleon distance measured in fm as usual. For
all other not clearly mentioned states, he used the V6(Reid) potentials. Therefore,
that new expansion was not based on any fundamental underlying argument on
NN interaction, and was just for the sake of applying the wanted potentials in
some nuclear calculations.

3.6. PartoviÄLomon Potential. PartoviÄLomon potential [35] is among the
early NN potentials based on quantum ˇeld theory methods. The advantages
of boson exchanges and multipion resonances especially in short distances were
considered. They also considered some TPEPs and OPEPs to improve the quality
of previous similar potentials. The resultant (Schréodinger-equation) potential was
originated from reducing BS equation to an LS equation. In fact, by starting from
a relativistic tow-body equation, they arrived in a nonrelativistic LS equation and
presented a potential as a solution of the integral equation. Then, they tried
to build r-space potentials with momentum operators, resulting in a potential
composed of the central, spinÄorbit, tensor and spinÄspin parts. Contributions
of ρ, ω, η bosons were included and then, by using experimental masses and
coupling parameters, the complete potential was calculated. The potential has
some likeness to HamadaÄJohnston potential [24], and appears to dissolve some
of the problems hinted in Reid68 potential [26].

3.7. Paris-Group Potentials. Paris-group potentials are based on disper-
sion relations and ˇeld-theoretical techniques. In their ˇrst major potential,
Paris72 [44], they included some TPE contributions for the potentials by consider-
ing pionÄnucleon phase shifts and pionÄpion interactions. They also included π-
and ρ-meson exchanges. Indeed, for the LR and MR parts, the accurate poten-
tials of π + 2π + ρ exchanges were used; while for the SR part of r � 0.8 fm,
a constant soft-core potential was used. The Paris72 potential includes the cen-
tral, spinÄspin, spinÄorbit, tensor and quadratic spinÄorbit components for each
isospin state. Fitting the potential to the pp, np scattering data of the Livermore
group [104] of 1969, needed 12 adjustable parameters. The potential described
the data with similar qualities as the phenomenological potentials of HJ and Yale
group with more adjustable parameters. Describing the LR and MR parts by
the potentials was more sensible. Nevertheless, describing short distances was
not satisfactory besides the problems in its applications to many-body nuclear
calculations.
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The next improved version of the potential came in 1979, named as ®para-
meterized Paris potential¯ or Paris79 potential. In that version, they employed a
unique expression for the whole potential, which was a sum of the Yukawa func-
tions that had simple forms in both conˇguration and momentum spaces. Indeed,
those 12 local Yukawa functions could provide a semiphenomenological descrip-
tion of the Paris72 potential. Meanwhile, the older contributions for the LR and
MR parts were used yet. The potentials for both values of isospin (T = 1, 0)
have the following nonrelativistic forms in r-space:

V (r, p2) = V0(r, p2)SS1 + V1(r, p2)SS2 + Vls(r)L · S + Vt(r)S12 + Vq(r)Q12,
(3.17)

where

SS1 =
(

1 − σ1 · σ2

4

)
, SS2 =

(
3 + σ1 · σ2

4

)
. (3.18)

Clear forms for the velocity-dependent functions of V0 and V1, and especial forms
for the Yukawa functions of Vls, Vt, Vq , as well as coupling constants and other
parameters, under special conditions, are given in the original paper [98]. The
potential in p-space, by Fourier transform of (3.17), reads

Ṽ (pi,pf ) = Ṽ0(pi,pf )SS1 + Ṽ1(pi,pf )SS2+

+ Ṽls(k2)L̃S1 + Ṽt(k2)S̃12 + Ṽq(k2)Q̃12, (3.19)

where

L̃S1 = iS · n, S̃12 =
[
k2(σ1 · σ2) − 3(σ1 · k)(σ2 · k)

]
,

Q̃12 = (σ1 · n)(σ2 · n),
(3.20)

with the deˇnitions

k = pf − pi, q =
1
2
(pf + pi), n = pi × pf = q × k, S =

1
2
(σ1 + σ2),

(3.21)
and especial Fourier transformations for the velocity-dependent central and non-
central components. Note that pf and pi are in- and outgoing two-nucleon mo-
mentum transfers, respectively. The results for ˇtting its time pp- and np-scat-
tering data were good up to the energies about 350 MeV except for the low
energies below about 13 MeV.

In the next related work [105], in 1984, a separable representation of the
Paris79 potential, through using a special method, was presented. That represen-
tation offered a good approximation of the on-shell and off-shell properties of
the potential. In 1985, another adjustment of the separable representation for the
states of 1S0 and 3P0 was performed [106] to improve the previous problem in
representations.
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3.8. Stony Brook Potential. Stony Brook potential is also among the original
NN potentials based on dispersion relations and ˇeld theory. The group included
the contributions from π, ω, and ππ exchanges. They tried to set up a local and
energy-dependent regularized potential in p-space by using the ˇeld theoretical
elastic NN scattering amplitudes. Indeed, by solving BlankenbeclerÄSugar (BbS)
equation, by using a proposed interaction potential, they estimated NN -phase
parameters. Some phenomenological parameters were adjusted to get satisfactory
results compared with experimental data. The short-range repulsion was weaker
than the phenomenological potentials such as HJ and Reid68 as well as its time
OBE potentials, mainly because of ω-boson exchange. It is also mentionable that
describing experimental data and deuteron properties by the potential was not as
good as the phenomenological potentials at that time. For detailed studies on the
potential and the techniques used there, see [7] and [43].

3.9. dTRS Supersoft-Core Potentials. The earlier super-soft-core (SCC)
potential, called dTS potential in [107], described physical observables better
than the harder-core potentials. But in dTS potential, only the OPEP was purely
theoretical while in the next SCC potential [108], called dTRS B potential, by
the same group, more theoretical components were added. In addition, dTRS
B improved ˇtting NN scattering data besides giving better results for nuclear-
matter and many-body calculations rather than dTS potential.

In dTRS B, the OBEPs, because of π, ρ, ω exchanges, were considered di-
rectly; and the remaining contributions for the MR part due to the other probable
OBEs and TPEs were parameterized phenomenologically by special OBE func-
tions that we mention below. In other words, the OBEP functions with 32 free
ranges and amplitudes were used instead. In the SR part, below about 1 fm,
the potential components were regularized, and the core region phenomenological
potentials were chosen so that the previous results for the LR and MR parts could
not be disrupted. The general form of dTRS B potential in (S, T ) space, reads

V = Vc(r) + Vt(r)S12 + Vls(r)L · S + Vq(r)Q12 + Vll(r)L2, (3.22)

in which the L2 potential term is to account the difference between 1S0 and 1D2

potentials. In the LR part, the radial dependence of every component reduces to
the OPE contribution of Vc, Vt. For the phenomenological OBEPs, they used the
radial functions of Vc(r), . . . as linear combinations of the following functions:

Yc(x) =
e−x

x
= Y (x), Yls(x) =

(
1
x

+
1
x2

)
Y (x),

Yq(x) =
(

1
x2

+
2
x3

)
Y (x), Yt(x) =

(
1 +

3
x

+
3
x2

)
Y (x) = Z(x),

(3.23)

and

F (r) =
(1.2r)20

[1 + (1.2r)20]20
, (3.24)
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for various states in subspaces of (S, T ) independently. x is the same as that we
already used in HJ, Yale, and Reid68 potentials except that we have to use mλ

with λ = pi, ρ, ω here instead of mpi there. The constant coefˇcients in the
linear combinations are, in turn, some functions of the involved masses and other
parameters determined by ˇtting to experimental data and from other sources. In
the last relation, F (r) is a step-like function that is used as a cutoff to deˇne
the core region. Meanwhile, for pp scattering, M = Mp, mpi = mπ0 ; and for
np scattering, M = Mr = 2MpMn/(Mp + Mn) and mpi = t(mπ0 + 2mπ±)/3
are used.

Descriptions of the experimental data below 350 MeV and NN bound states
were good as compared with the other phenomenological potentials at that time.
Meanwhile, although describing nuclear matter and some many-body results by
using TRS B potential, as seen further in [109], were reasonable, more improve-
ments were yet required. It is also mentionable that there are some likenesses
between this and Paris72 potential [44] framed ˇrst.

It is good here to mention another potential built in 1981, with a similar
meson content and operators as dTRS potentials, which we call Melbourne poten-
tial [110]. In fact, it is especially a np potential that includes the OBEs of π, ρ, ω
and TPE of 2π next to some phenomenological features to reproduce experimen-
tal elastic scattering data and neutron properties (mainly its binding energy) and
low-energy parameters (mainly scattering length). There, a special form function
was used for each meson contributing to a special energy range. Reproducing the
data and deuteron properties as well as the basic results from nuclear-structure
and nuclear-matter calculations were satisfactory.

3.10. Funabashi Potentials. Funabashi potentials are among meson-exchange
potentials based on ˇeld-theoretical methods. They included the OBEP of π, ρ,
ω, η and the scalar mesons of δ, σ for LR and MR parts. For the core region,
they included the hard cores, Gaussian soft cores, and velocity-dependent cores.
Indeed, the potentials are nonstatic OBEPs with retardation in r-space. The non-
stationary, mainly because of recoiling, is considered by including the spinÄorbit,
quadratic spinÄorbit and velocity-dependent terms; whereas the retardation of the
meson propagations causes the off-energy shell effects that, in turn, contribute to
two-nucleon processes, and are even more important in many-body systems.

The general form of the Funabashi OBEPs in r-space reads [111]

V = Vcore + Vc(r) + Vt(r)S12 + Vls(r)L · S + Vqll(r)Q̀12+

+ Vll(r)L2 − 1
M

[∇2Vp + Vp∇2], (3.25)

in which

Q̀12 = Q12 −
2
3
L2S, Vi(r) = Ui(r) + Ri(r), i = c, t, ls, qll, ll, p, (3.26)
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where Ui(r) and Ri(r) stand for the usual Yukawa and Retarded potential func-
tions, respectively. These functions are in turn expressed as combinations of
the functions in (3.23) where the involved masses, coupling constants, and other
parameters are used in combinations as coefˇcients in various two-nucleon states
and for the various included mesons. The core potential also reads

Vcore = V c
core(r) + V ls

core(r)L · S, (3.27)

where, depending on the case, three different cores are included.
a) The hard core (step-like) potential (OBEH) plus a spin-orbit core as

V c
core(r) =

{
8, r � rc,
0, r > rc,

V ls
core(r) = −V ls

(0) exp

[
−

(
r

rls

)2
]
. (3.28)

b) The Gaussian soft core (OBEG) plus a special spin-orbit core as

V c
core(r) = V G

(0) exp

[
−

(
r

rG

)2
]
, V ls

core(r) =
1

M2

1
r

∂V c
core(r)
∂r

. (3.29)

c) The velocity-dependent core (OBEV) plus a spin-orbit core as

V c
core(r) =

p2

M
φ(r) + φ(r)

p2

M
, φ(r) = φp

0 exp

[
−

(
r

rp

)2
]
,

V ls
core(r) = −V ls

(0) exp

[
−

(
r

rls

)2
]
.

(3.30)

In addition, to remove singularities and to make OBEPs in the core region, the
Vi(r)'s in (3.26) are multiplied by the following cutoff factor:

Fi(r) = 1 − exp

[
−

(
r

rcc

)2
]n

, n =
{

1, when i = c, t, ls,
6, when i = qll, ll.

(3.31)

The parameters of rc, rcc, rls, rG, rp, φ
p
0, V

ls
(0), V

G
(0), . . . are the constants properly

chosen for the potentials. It is also mentionable that, to have nonrelativistic
potentials, the higher-order terms than p2/M2 are avoided, where p = pi here is
the nucleon momentum.

Next, in [112], the velocity-dependent tensor potentials were included to
discuss better nonstatic effects. So, the improved potential reads

V (2) = V − 1
M

([
∇2VptS12 + VptS12∇2

])
. (3.32)
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In addition, the core potentials were modiˇed, rather than those in the ˇrst version
of [111], to improve the phase shifts of 3P3 state by including the attractive
spin-orbit cores in (3.27), which were in turn set to zero in the ˇrst potentials.
With these improvements, the properties of neutron- and nuclear-matter were
evaluated. Describing experimental scattering data and low-energy parameters as
well as deuteron properties with the latter potential was better than the ˇrst one.
More improvements to give even better results in nuclear structure calculations
were then done in [113].

Later, a development of the potentials was given in [114]. In fact, it was
shown that the radial dependence of the OBEPs, which was smooth and ˇnite at
origin, could be represented by a superposition of special Gaussian functions. In
other words, the Yukawa functions in Funabashis potentials were expanded as

Y (μr) =
e−μr

μr
=

N∑
n=1

an exp

[
−

(
r

rn

)2
]
, (3.33)

where the coefˇcients of an were determined by ˇtting the data; and for N
and rn, some special ˇnite values were chosen. As the authors have claimed, the
new potentials give better ˇt of NN -scattering data.

3.11. Urbana-Group Potentials. UrbanaV14 (Urb81) potential [29] is a
charge-independent fully phenomenological potential including the operators of
central, spinÄspin, tensor, spinÄorbit, centrifugal, centrifugal spinÄspin with gen-
eral dependence on isospin. Besides an LR OPE part and a representation of MR
part as TPEs with 14 parameters, the SR part is described by two WoodsÄSaxon
potentials with free parameters ˇtted to experimental data. The whole potential
reads

V =
n∑

i=1

V iOi, (3.34)

in which the fourteen operators (n = 14 here) read

Oi=1,...,14 = 1, σ1 · σ2, τ 1 · τ 2, (σ1 · σ2)(τ 1 · τ 2), S12, S12(τ 1 · τ 2), (L · S),

(L · S)(τ 1 · τ 2), L2, L2(σ1 · σ2), L2(τ 1 · τ 2),

L2(σ1 · σ2)(τ 1 · τ 2), (L · S)2, (L · S)2(τ 1 · τ 2), (3.35)

and the radial potentials are

V i = V i
π(r) + V i

M (r) + V i
S(r), (3.36)

where Vπ , VI , VS stand for the pion-exchange potential, MR, and SR potentials,
respectively. Further, we should note that the ˇrst eight operators of (3.35) are
obtained from ˇtting the phase shifts of � < 4 up to the laboratory energies of
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425 MeV, and deuteron properties. The next six ®quadratic-L¯ operators are
introduced to do many-body calculations with the potentials and have almost
weak effects. We shorten the operators as c, σ, τ, στ, t, tτ, ls, lsτ, ll, llσ, llτ, llστ,
ls2, ls2τ , to simplify their using, from now on.

The LR OPEP of V i
π(r) is nonzero just for i = στ, tτ with

V στ
π (r) = 3.488

e−0.7r

0.7r
(1 − e−cr2

), (3.37)

V tτ
π (r) = 3.488

(
1 +

3
0.7r

+
3

(0.7r)2

)
e−0.7r

0.7r
(1 − e−cr2

)2 = 3.488Tπ(r),

(3.38)

with a note that x = μr with μ = 0.7 fm−1 being considered. The cutoff
parameter of c is obtained by ˇtting the experimental phase shifts, and that
the 1/r and 1/r3 singularities of OPEPs are removed. A remarkable point is that

(1 − e−cr2
)2, as argued in [115], simulates ρ-meson exchange effect. Another

point is that because nucleon is not a point source, the two-nucleon interaction
should not have the singular behavior of 1/r at small distances.

The MR potential of V i
M (r) is considered as

V i
M (r) = SiT 2

π (r). (3.39)

With respect to the T 2
π(r) included, this potential is usually owned to the second-

order OPEPs. This form of V i
M (r) is suitable to include three-nucleon (3N )

interactions as argued in [116]. Besides, the strengths of Si are determined by
ˇtting experimental phase shifts.

For the SR potential of V i
S(r), in contrast to the custom method where

Yukawa functions are used, here a sum of two WoodsÄSaxon potentials is con-
sidered as

V i
S(r) = Si

1W1(r) + Si
2W2(r), (3.40)

where

W1(r) =
(

1 + exp
(

r − R1

a1

))−1

, W2(r) =
(

1 + exp
(

r − R2

a2

))−1

.

(3.41)
For all i's, except for ls and lsτ , a good ˇt of data is achieved with Si

2 = 0.
There are some likenesses between parameterizing the Urb81 potential with

those used in HamadaÄJohnston [24], Yale-group [25], Reid68 [26], and also
Bressel et al. [103] potentials. The values of free parameters are obtained mainly
by ˇtting the np phase shifts by Arndt et al. [117] and its time analysis by
Bugg et al. [118], with some differences and adjustments. Describing scattering
data and deuteron properties with Urb81 potential is satisfactory with similar
results as the Reid68 and Paris79 [98] potentials. For more details, see [29].
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3.12. Argonne-Group Potentials. 3.12.1. ArgonneV14 and ArgonneV28
Potentials. The basic potential of Argonne-group, ArgonneV14 (Arg84) poten-
tial [30], has a similar structure with UrbanaV14 (Urb81) [29] potential with a
few differences. The ˇrst difference is that the used πNN coupling is larger
than that used in Urb81 potential. Second, in Arg84, contrary to Urb81 potential,
Si

2 is nonzero for i = t, tτ . Third, as a probable result of the former constraint,
that is no need to insert a second SR WoodsÄSaxon function for i = ls, lsτ as is
in Urb81 potential. As a result, in high energies (low distances), the phase shifts
are ˇtted well and especially the D state of deuteron takes more contribution
than that in Urb81 potential. Further, the effects of the six quadratic-L operators
are conˇrmed in some nuclear structure calculations. The potential was ˇtted to
the phase-shift analyses of Arndt and Roper in 1981 (an update of the analyses
in [117]). Still, in the energy range of 25Ä350 MeV, the Arg84 potential provides
an improvement over Urb81 potential.

It is good to mention another potential of Argonne group, called
ArgonneV28 [30], framed simultaneously with ArgonneV14 potential. It in-
cludes the Δ(1232) degrees of freedom, which play important roles in both TPE
processes in the MR part of NN systems as well as TPE and repulsive parts
of 3N systems. The effects because of including these degrees of freedom are
shown by 14 extra operators next to the 14 operators used in Arg84 potential.
From these 14 extra operators, 12 transition operators are for all πNΔ and πΔΔ
couplings, while 2 central operators are for NΔ and ΔΔ channels. The extra
operators are so chosen that no other free parameters than those used in Arg84,
but the coupling constants of πNΔ and πΔΔ, are required to ˇt the experimen-
tal scattering data. In general, ArgonneV28 potential has a more complicated
structure and gives better results especially in many-body calculations.

3.12.2. ArgonneV18 Potential. ArgonneV18 (Arg94) NN potential [31] is
an improved and updated version of Arg84 NN potential [30]. In addition to
14 operators of Urb81 and Arg84 potentials, it includes three charge-dependent
and one charge-asymmetry operators next to a complete electromagnetic interac-
tion. Arg94 potential has the following general form:

V = VEM + VN = VEM + Vπ + VR, (3.42)

where Vπ is for an LR OPEP, VR is for MR and SR parts (called the Remaining
part), and VEM is for electromagnetic (EM) part.

The EM part, in turn, reads

VEM = VC1(r) + VC2(r) + VDF(r) + VV P (r) + VMM(r), (3.43)

where the terms with the indices C1, C2, DF, V P , and MM stand for one-photon,
two-photon, DarwinÄFoldy, vacuum-polarization and magnetic-moment interac-
tions. In these interactions, some short-range terms and the effects due to ˇnite
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size of nucleon are also included. The terms of VC2, VDF, VVP are used just for
pp scattering, while the other terms have their own forms for each three scattering
cases; and that for nn scattering, just VMM is used. The various EM potentials
are given through some combinations of the following functions, with masses,
coupling constants, coefˇcients and other constants determined from other sources
or from experimental data,

Fc(r) = 1 −
(

1 +
11
6

x +
3
16

x2 +
1
48

x3

)
Y (0), (3.44)

Fδ(r) = b3

(
1
16

+
1
16

x +
1
48

x2

)
Y (0), (3.45)

Ft(r) = 1 −
(

1 + x +
1
2
x2 +

1
6
x3 +

1
24

x4 +
1
44

x5

)
Y (0), (3.46)

F�s(r) = 1 −
(

1 + x +
1
2
x2 +

7
48

x3 +
1
48

x4

)
Y (0), (3.47)

where x = br, b = 4.27 fm−1. They are related as

Fδ = −∇2

(
Fc

r

)
, Ft =

(
Fc

r

)′′
−

(
Fc

r

)′/
r, Fδ = −∇2

(
Fc

r

)
, (3.48)

and for a point-like nucleon go to 1. In other words, these SR functions show
the ˇnite size of the nucleon charge distribution with a dipole form factor. It
is also mentionable that for pp case, VC1, VC2, VVP are in terms of Fc, with the
mentioned adjusted parameters; VDF is in terms of Fδ , while VC1 is in terms of

Fnp(r) =
b2

384
(15x + 15x2 + 6x3 + x4)Y (0). (3.49)

VMM(pp) includes Fδ, Ft, Fls together with spinÄspin (σ1 ·σ2), spinÄorbit (L ·S)
and tensor (S12) operators, while VMM(np) includes the same functions and
operators as in pp case besides the CS operator of L · A with A = (1/2)×
(σ1 − σ2) [119]; and VMM(nn) includes Fδ, Ft with just spinÄspin (σ1 · σ2)
and tensor (S12) operators. One should note that the radial dependences, various
coefˇcients and combinations are different for all three cases. It is also notable
that the vacuum-polarization and two-photon interactions are useful to ˇt the low-
energy scattering data, and that Fc, F

2
c used in VVP, VC2 are the estimated ways

to remove the singularities of 1/r, 1/r2, respectively.
The LR OPE part of Arg94 potential (Vπ) is charge-dependent, because of

the differences between the neutral- and charged-pion masses. It reads

Vπ(N1N2) = fN1N1fN2N2V
(3)
OPEP(mπ0) + (−1)T+12f2

c V
(3)
OPEP(mπ±), (3.50)



NUCLEONÄNUCLEON INTERACTION: A TYPICAL/CONCISE REVIEW 1695

where the second term on the RHS is used just for np system, i.e., with N1 =
n, N2 = p and that fpp = −fnn = fc ≡ f [120] with f2 = 0.075, and

V
(3)
OPEP(mpi) =

(
mpi

mπ±

)2 1
3
mpic

2[Yμ(r)σ1 · σ2 + Tμ(r)S12], (3.51)

in which

Yμ(r) =
e−μr

μr

(
1 − e−cr2

)
, (3.52)

Tμ(r) =
(

1 +
3
μr

+
3

(μr)2

)
e−μr

μr
(1 − e−cr2

)2, (3.53)

where Yμ(r) and Tμ(r) are the common Yukawa and tensor functions with ex-
ponential cutoffs similar to those in Urb81 and Arg84 potentials, μ = mpic/� as
before (with mpi = mπ0 , mπ± in the formulas); and the scaling mass of mπ±

in (3.51) makes the coupling-constant dimensionless. Look at the differences be-
tween (3.51) and (3.11), as well as among (3.52) and (3.53) with (3.37) and (3.38),
respectively.

Similar to Urb81 and Arg84 potentials, the remaining (MR and SR) phenom-
enological parts could be written as a sum of all eighteen terms as

VR =
n=18∑
i=1

V iOi, (3.54)

where 14 out of the 18 operators are those in (3.35) of the Urb81 potential and
the 4 remaining ones are

Oi=15,16,17,18 = T12, T12(σ1 · σ2), T12 S12, (τz1 + τz2),
T12 = 3τz1 · τz2 − τ 1 · τ 2,

(3.55)

that in turn we mark them with the indices i = T, σT, tT, τz, respectively.
Now, we note that in the operator form of (3.54), the whole CD potential

could be separated into a CI part and a CIB part, where the latter in turn could
be separated into a CD part with three CD operators (i = T, σT, tT ) and a
charge-asymmetry (CA) part with one operator (i = τz). In this procedure, the
radial potentials of V i could be expressed in terms of the following potentials,
with suitable weighting coefˇcients:

V i
ST,NN = Si

ST,NNT 2
μ(r) + [P i

ST,NN +μrQi
ST,NN + (μr)2Ri

ST,NN] W3(r), (3.56)

where now μ = (1/3)(mπ0 +2mπ±)c/�. It is also mentionable that the potential
is basically written in (S, T, Tz) space for various two-nucleon states [31]. The
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same as in Urb81 potential, T 2
μ(r) is to simulate TPE force, and the only WoodsÄ

Saxon function is

W3(r) =
(

1 + exp
(

r − R3

a3

))−1

. (3.57)

All constant coefˇcients of Si
ST,NN, P i

ST,NN, Qi
ST,NN, Ri

ST,NN are obtained by
ˇtting experimental data for each two-nucleon state. Further, they imposed the
regularization conditions at the origin as

V i
ST,NN(r = 0) = 0,

∂V i�=t
ST,NN

∂r

∣∣∣∣∣
r=0

= 0, (3.58)

which reduces the number of free parameters for each V i
ST,NN by one.

It is also notable that the EM interaction (and also CD) of Arg94 potential
is the same as that used in Nijmegen partial-wave analysis (PWA93) [121] be-
sides including the short-range terms and effects for the ˇnite size of nucleon.
This potential is ˇtted to the Nijmegen pp and pp scattering database [121,122],
low-energy nn scattering data, and deuteron binding energy. It has 40 ad-
justable parameters and gives a best description of the data in the energy range
of 0Ä350 MeV as a high-quality NN potential. The effects of CD and CA are
explicitly seen in ˇnite nuclei systems and the results in many-body and nuclear-
structure calculations are more satisfactory than the mentioned potentials so far.
Another extension of the Arg94 potential, called ArgonneV18pq potential, is pre-
sented in [123], where various choices for the quadratic momentum dependence
in NN potentials, to ˇt the phase shifts of the high partial waves, are included.
There is also a p-space proposal for Arg94 potential presented in [124].

3.13. Bonn-Group Potentials. 3.13.1. Full-Bonn Potential. The Bonn group
has used the ˇeld-theoretical methods to deal with NN interaction problem. In
the ˇrst version [45], in 1987, they presented a comprehensive NN potential by
including various meson exchanges that they thought were important below the
pion-production threshold. To do so, the mesons of π, ω, δ as OBEs and ρ, 2π
(as the direct exchange and Δ(1232)-isobar excitation) as TPEs as well as a special
combination of πρ were considered. There were also 3π, 4π exchanges that did
not have signiˇcant contributions. Indeed, the OBE contributions provided good
descriptions of high-� phase shifts, while the TPEs with πρ combination provided
good descriptions of low-� phase shifts. So, in general, the exchanges of π
and ω together with ρ and 2π provided good descriptions of the LR and MR
(high �'s) parts, while for good describing the SR part (low �'s), including the
πρ combination next to 2π exchange was required. We should also mention that
the δ meson was needed to provide a consistent description of S-wave phase
shifts, and that including the crossed-box diagrams in the two-boson exchanges
(TBEs) made another ˇtting quality of the potential.
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This Full-Bonn (Bonn87 or Bonn-A) potential is originally written in p-space
and is energy-dependent that makes its applications in nuclear calculations prob-
lematic. To resolve some of the problems, a parameterization of the potential
in terms of OBEs in both p-space and r-space is given, which is always called
Bonn-B (or Bonn89) potential. As the ˇrst step, the retardation terms are ne-
glected to suppress the energy dependence by applying the OBEs in the framework
of reducing BS equation into BbS equation, where the latter equation is similar
to nonrelativistic Schréodinger equation while it is a relativistic equation. The re-
sultant energy-independent p-space OBE potentials are useful to apply in nuclear
structure calculations. The details can be found in [37, 45]. The latter expan-
sion changes somewhat the original results because of some new adjustments.
Anyhow, to do so, ˇrst the effects of 2π + πρ exchanges are replaced by the
scalarÄisoscalar σ-meson exchange; and without the πρ contribution in the new
OBE expansion, the η meson is introduced to improve the 3P1 phase shifts.

The general form of the expanded potential in r-space, coming from the
Fourier transform of the agreeing p-space contributions, can be written as a sum
of the six boson contributions as

V =
∑

α=π,ρ,η,ω,δ,σ

V OBE
α , (3.59)

which in turn divides into a local and a nonlocal part; or may be written as

V = Vc(r) + Vt(r)S12 + Vls(r)L · S − 1
M

[∇2Vp + Vp∇2], (3.60)

in (S, T ) space, where Vc(r) includes the contributions from all six mesons of π
and η (pseudoscalar mesons), δ and σ (scalar mesons), ρ and ω (vector mesons),
and is written in terms of c, σ, τ, στ operators together with Yc(x) (x = mαr) and
the nucleon and included meson masses and couplings as well as some constants;
and similarly for the other two functions Vt(r), Vls(r). But Vt(r) includes the
contributions from the four pseudoscalar and vector mesons together with Yt(x);
and Vls(r) includes the contributions from the four scalar and vector mesons
together with Yls(x). Some of the scalar functions are deˇned in (3.23) and
that here

Vp =
∑

β

C0

g2
β

4π

mβ

4M
Y (mβr), (3.61)

where β = δ, σ, ρ, ω; gβ is the suiting meson coupling, and C0 = 1 for the
scalar mesons and C0 = 3 for the vector mesons. It is also mentionable that
general structure of the potential for the pseudoscalar mesons is similar to the
OPEP used, for example, in the Yale-group and Reid68 potentials (3.11), which
is in turn related to the fact that the pion provides the main long-range part of
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the interaction here as well. It is also notable that the potentials are regularized
at the origin by the dipole form factors, which are coming from the Fourier
transformations of

Fα(k2) =
(

Λ2
α − m2

α

Λ2
α + m2

α

)nα

, (3.62)

where for each vertex nα = 1, and Λα is the so-called cutoff mass. In other words,
the SR part of the interaction is parameterized through the phenomenological form
factors attached to the p-space Feynman diagrams, while the high-momentum part
of the scattering amplitudes are then regularized with the cutoffs. The cutoff
masses (Λα) are adjusted to ˇt the data and are given in [45] next to other
potential parameters, coupling and constants.

By the way, the Bonn87 potential described very good its time experimental
NN data up to Tlab = 300 MeV, low-energy parameters and deuteron properties.
Meanwhile, we note that the weak tenor force there, because of the ρ-meson
exchange and including a real πNN form factor as well as introducing the
meson retardation, caused a smaller contribution of the deuteron D-state; and at
the same time, the larger quadruple moment and the asymptotic D/S state of
deuteron were in full agreement with experimental results. However, in a work
done in 1993 [125] to compare some of the potential forms with pp scattering data,
it was shown that the adjusted r-space versions [37], i.e., Bonn-A and Bonn-B
potentials, give a very poor description of the scattering data (χ2/Ndata > 8 in the
energy range of 2Ä350 MeV). That was not strange of course, if that Full-Bonn
potential was originally ˇtted to np scattering data and not to pp scattering data.

In addition, these potentials have many other special advantages to describe
well NN interactions. The nucleons, isobars (nucleon resonances), and mesons
are discussed on an equal footing. Because of relativistic approach, the me-
son retardation (recoil effects) and the off-shell behavior of the nuclear force
were included besides that a consistent expansion to the regions above the pion-
production threshold was possible. Further, the potential could discuss about
three-body nuclear forces (at least because of an almost complete set of the di-
agrams contributing to the NN interaction and expandable to the 3N case), the
meson-exchange currents contributing to the electromagnetic properties of nuclei,
the medium effects of the NN interaction in many-body calculations and also
CSB and CIB issues. It is also notable that the cutoff masses, used in the mesonÄ
nucleon vertex form functions, to explain the extended structure of hadrons, are
obtained in a consistent way to be Λα = 1.2−1.5 GeV, where applying the meson-
exchange picture is suppressed. For detailed studies of various aspects of Bonn-A
and Bonn-B potentials and the already mentioned issues, look at the original study
of [37], where the ˇnal version of the Full-Bonn potential was presented in 1989.

To remind the main differences, we note that Bonn-A potential includes the
correlated 2π and πρ contributions with an intermediate Δ-isobar, while Bonn-B
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potential is the so-called OBE potential that uses a ˇctitious σ-meson (and also an
η-meson) to simulate these two-meson exchanges. In contrast to Bonn-A potential,
Bonn-B potential is energy-independent that in turn simpliˇes its applications in
nuclear structure and nucleonÄnucleus scattering calculations. Despite its greater
simplicity, Bonn-B potential gives a good description of its time data, and the
other results almost identical with those found in Bonn-A potential.

Still, we note that the p-space Full-Bonn potential was ˇtted just to np-scat-
tering data. In 1989, another development of the potential to apply it to pp-scat-
tering data was presented in [126]; see also [127]. To do so, a Coulomb interaction
(similar to VC1 in Arg94 potential [31]) was introduced in the p-space calculations.
Then, after a few minor adjustments (for example, the coupling constants of the
scalar mesons changed) to face the potential with data, a good description of
pp data was found as well.

3.13.2. CD-Bonn Potential. The Bonn Charge-Dependent (CD-Bonn) NN
potential [99] is an improved and updated version of the previous Bonn-A and
Bonn-B potentials [37,45]. It is based on the OBE contributions of π, ρ, ω mesons
next to two scalarÄisoscalar mesons of σ1, σ2, which the latter simulates the roles
of 2π + πω exchanges. The resultant potential is energy-independent in the
framework of nonrelativistic LS equation and produces the results of Full-Bonn
potential. In addition, the predictions of the latter potential such as CSB and
CIB (for all partial waves below J � 4) are involved directly. Further, the pre-
dicted off-shell effects because of relativistic Feynman amplitudes for the meson
exchanges, which are important in microscopic nuclear structure calculations, are
included. It is notable that the ˇrst version of the CD-Bonn potential presented
in [128] involved more with the off-shell analyses than the CD issues.

Although CSB in the potentials is mainly due to the difference between the
proton and neutron masses (the nucleon mass splitting), in CD-Bonn potential an
equivalent contribution is due to TBE (mainly 2π and πρ exchange) diagrams.
On the other hand, CIB is mainly due to the difference between the neutral
and charged-pion masses (the pion mass splitting) from OPE diagram, while in
CD-Bonn potential an almost equivalent contribution (about 50%) is due to TBE
and πγ diagrams for � > 0 (or with the predictions of Full-Bonn model due to 2π
as well as 3π and 4π exchange diagrams). To see CIB in the potential, we ˇrst
note that although the OPE amplitudes in the potential are nonlocal, but in the
local/static approximation and after a Fourier transformation, the local OPEP in
r-space reads

V
(4)
OPEP(mpi) =

g2
pi

12

(mpi

2M

)2
[(

e−μr

r
− 4π

μ2
δ3(r)

)
(σ1 · σ2)+

+
(

1 +
3
μr

+
3

(μr)3

)
e−μr

r
S12

]
, (3.63)
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where μ = mpic/�. Now, because of the pion mass splitting (as the main CIB
factor), we have

V pp
OPEP = V

(4)
OPEP(mπ0),

V np
OPEP = −V

(4)
OPEP(mπ0) ± 2V

(4)
OPEP(mπ±),

(3.64)

where in the second relation, + (−) is for T = 1 (T = 0). We see that because
of the pion mass differences, the np OPEP with T = 1 is weaker than that
of pp, leading to CIB. It is also notable that the Δ-isobar states and multimeson
exchanges in Full-Bonn (Bonn-A) potential caused the energy dependence which
was in turn problematic in applying the potentials to direct nuclear calculations.
So, in CD-Bonn potential (also in Bonn-B potential) this problem is avoided by
using just OBE contributions.

The three potentials of pp, np, nn are not independent but they are related
by CSB and CIB. Each of them is ˇrst ˇtted to the related Nijmegen phase shifts;
then by minimizing the earned χ2 from the Nijmegen error matrix and ˇnally
minimizing the exact χ2, which is in turn obtained from comparing with all related
scattering data, the potential parameters are adjusted. For the Coulomb force in
pp case, a similar VC1 as in [126] is used, and the relativistic Coulomb interaction
besides nuclear phase shifts is considered as well. The base phase shifts are a sum
of the Nijmegen-group ones in [121,122] up to 1992, used also in Arg94 potential,
besides the published data after-1992-date and before-2000-date. So, CD-Bonn
potential ˇtted the world 2932 pp data below Tlab = 350 MeV available in 2000
with χ2/Ndata = 1.01 and the corresponding 3058 np data with χ2/Ndata = 1.02.
This reproduction of NN data is more accurate than by any other previous NN
potentials, according to its authors of course! For more details, such as its ˇrst
applications to few and many-body nuclear calculations, CIB, CSB and off-shell
effects, see the original papers [99,128]; and also look at [9].

3.14. Padua-Group Potential. The Padua model for NN interaction, as a
mixture of meson-exchange theory and phenomenological methods, is a special
and important effort. The group has tried to set up an NN potential based on their
special model for ®Nucleon¯. They have used a nonlocal potential coming from
the Padua nucleon model with similar operators as in HamadaÄJohnston [24],
Yale-group [25], and dTRS Super-Soft-Core [108] potentials.

Indeed, the various terms with the operators shortened as c, σ, τ, στ, t, tτ, ls,
lsτ, ll, llτ, ls2, ls2τ are included. The general form of the potential, in (S, T )
space, can be written as

V = Vc(r) + Vt(r)S12 + Vls(r)L · S + Vls2(r)(L · S)2 + Vll(r)L2, (3.65)

where the radial functions have special forms almost different from the other
potentials mentioned so far. In fact, various contributions of the pion and other
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single mesons as well as two-pion combinations are introduced through these
functions. The functions are in turn in terms of special combinations of some
radial functions and operators with included meson masses, their coupling con-
stants, amplitudes, and other free parameters and constant coefˇcients. Plainly,
both Vc(r) and Vt(r) include the contributions from the mesons of π, ρ, ω, η, ή,
and are written in terms of c, σ, τ, στ and c, τ operators, respectively, together
with some functions such as Y (x), Z(x), . . . (x = mπ0r) and the nucleon and
included masses as well as some other coupling and coefˇcient constants. Sim-
ilarly, in Vls(r), Vls2(r), Vll(r), the contributions from the mesons of ρ, ω, s and
the operators of c, τ are included. It is also notable that one may use the operators
of L · (σ1 −σ2) and/or L · (σ1 ×σ2) instead of L ·S in the Padua model as they
are also consistent.

In general, the involved radial functions in the potential are more based on
theoretical knowledge by aiding of the nucleon model rather than merely ˇtting
experimental data. Nevertheless, reproducing deuteron parameters and ˇtting
phase shifts are good compared with the counterpart results of its time potentials
such as Arg94 [30], Bonn [45], and Paris [44] potentials. Although it is rarely
used in nuclear calculations, the Padua NN potential is a serious try to ˇnd an
even more sensible NN potential. For other interesting theoretical and numerical
analyses in their method, see the original paper [46].

3.15. Nijmegen-Group Potentials. The Nijmegen-group potentials are
mainly the mixtures of meson exchanges with phenomenological characteristics
and are often referred to as QCD degrees of freedom for the SR part. The
group built various BaryonÄBaryon (BB) and BaryonÄAntiBaryon (BB̄) poten-
tials among which are some high-quality NN and HyperonÄNucleon (Y N ) poten-
tials. First, they presented a few potentials before 1990s and then performed the
partial-wave analysis (PWA) [121, 129] of the experimental scattering data. The
insights gained from the analyses were then employed to set up some improved
and better potentials. In their NN potentials, besides the famous OBE parts,
many new features and other meson contributions are included. The nucleon- and
pion- mass splitting are often considered and, for the potentials after PWA93,
charge dependence is used. Because of the short-range parameterization, because
of the vertex form functions, the potentials are in contact with QCD. The poten-
tials may be divided into at least four classes; the Hard-Core (HC), Soft-Core
(SC), Extended Soft-Core (ESC), and High-Quality (HQ) potentials as well as
PWAs. We address in the following subsections some of their NN potentials
brie	y; look also at [130].

3.15.1. The First Potentials. The main aim was to form BB potentials below
the pion-production threshold. As we know, the OBEPs describe almost well the
LR and MR parts next to including uncorrelated 2π or scalar meson exchanges.
Further, to describe the data better, the ˇctitious meson of σ (as a correlated
2π exchange) is always required. In these models, the heavier meson of ε is
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sometimes used as well. The Schréodinger equation in r-space is solved with local
potentials and Coulomb force (depending on the case) and, in addition, the SR
repulsion is considered through HC potentials. The ˇrst potentials of the group,
named as NijmA, NijmB, NijmC, NijmD, NijmE, and NijmF, were represented
from 1972 to 1978.

NijmA potential [131] is composed of some OBEPs and a TPEP. Indeed, it
includes the members of the pseudoscalarÄ and vectorÄmeson nonets as well as
the BruecknerÄWatson TPEP. The potential was to describe low-energy Y N data
though it was not so good to describe the high NN partial waves. NijmB and
NijmC potentials [132] are OBEPs fully and reproduced well their time NN -
scattering data; the group also showed that one can describe the Y N channels
with this OBEP approach.

It is notable that in the pure OBEPs, the mesons were considered in an
SU(3) consistent way. That was mainly because one then could extend the
calculations from NN to Y N systems as well. For example, in the vectorÄmeson
(pseudoscalarÄmeson) nonet, one should use ρ, ω, φ (π, η, ή) and all knowledge
about φ − ω (η − ή) mixing and coupling constants from SU(3). The OBEPs
were constructed in two classes I and II, where both used the nonets of the
pseudoscalar and vector mesons but they were different in discussing the scalar
mesons. In class I, just the singlet scalar meson of ε was included while in
class II, an octet of the scalar mesons was included. The ˇrst model of the class I
was NijmB potential with mε = 720 MeV and Γε = 400 MeV that gave almost
χ2/Ndata = 5.9 for its time NN -scattering data below Tlab = 330 MeV of the
Livermore group [104] of 1969.

NijmD potential [133] belongs to the class I OBEPs and is similar to NijmB
potential except for including the η − ή mixture, mε = 760 MeV and Γε =
640 MeV, a different ratio of F/(F + D) for the pseudoscalar octet, the slightly
different potential forms for vector and scalar mesons, as well as some other
coupling and parameter changes. Clearly, the NijmD NN potential includes the
nonets of the pseudoscalar mesons of π, η, ή and the vector mesons of ρ, ω, φ, each
with a singlet-octet mixing angle as well as the unitary singlet scalar meson of ε.
For short distances, it uses some strong repulsive phenomenological HC potentials,
which in turn should simulate the effects of the absent heavier-meson exchanges,
inelastic effects, and so on. This HC parameterization is suitable, rather than
the vertex form factors, in that it is independent of the meson dynamics and is
simple to use with Schréodinger equation. The 13 parameters of the potential,
which are 8 mesonÄnucleon couplings and 3 core radii, are determined from
data ˇtting.

The general form of NijmD potential can be written in the operator format
as (3.34), where now n = 10 and c, σ, τ, στ, t, tτ, ls, lsτ, q, qτ are the indices
for the 10 involved operators. In other words, one may say that the potential
includes the central, tensor, spinÄorbit and quadratic spinÄorbit terms in (S, T )
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space. The potentials of Vi are gained from ˇeld theory with some approximations
such as ignoring their total energy dependence, and writing the energy factors as
E � M + k2/8M , where the notations are those in (3.21). This approximation
means that just the terms up to the order of k2/M2 are kept in the p-space
potentials. In addition, there are the recoil effects to the quadratic spinÄorbit
potentials that cause the total energy dependence. Further, in Fourier transform
to r-space, all the terms that include ∇r are neglected except that in L2 operator.
It is also notable that the meson bandwidth was settled with a special propagator
instead of the static meson propagator of 1/(k2 + m2); and after the Fourier
transform to r-space, a superposition of the Yukawa functions resulted.

Resultant potentials in r-space are in terms of the functions of Y (x), Z(x)
in (3.8) and the proper operators and coupling constants as well as the nu-
cleon and the pion averaged masses. Indeed, we note that the potential for
the pseudoscalar mesons is similar to the Full-Bonn potential [45], where both
have a similar structure as the OPEP of (1.1) or that in the Yale-group [25]
and Reid68 [26] phenomenological potentials. Anyway, it is determined that
all mesons contribute to the central potentials (with the function of Yc(x)), the
pseudoscalar and vector mesons contribute to the tensor potentials (with the func-
tion of Yt(x)), the scalar and vector mesons contribute to the spinÄorbit poten-
tials (with the function of Yc(x)) and to the quadratic spinÄorbit potentials (with
the function of Yt(x)). Still, for the short distances of r � 0.5, the HC ra-
dius xc has four different values for the four channels of 1S0, 3S1 − 3D1, � = 1,
and � � 2.

The pp + np scattering data of the energy-independent phase-shift analyses
of the Livermore group [104] were ˇtted good with χ2/Ndata = 2.4 for NijmD
potential, next to good describing low-energy scattering parameters and deuteron
properties. Then, the Y N version of the NijmD potential was shown in [134]. In
fact, there, some ΛN and ΣN potentials were presented with considering charge
symmetry between the Λp and Λn channels. The contributions for a scalar octet in
this Y N potential were neglected (just ε with an important role in Y N scattering
was included) to prevent introducing more free parameters in the potential. It was
argued that the Y N interaction there next to NijmD NN potential describe all
studied BB systems well.

NijmE potential [135] is almost the same as NijmD potential except for the
contributions of the scalars in the nonet; meanwhile the results are almost the
same. NijmF potential [135] completed the HC potentials to describe all exper-
imental known BB systems. Indeed, the need to settle the scalar-octet coupling
constants for Y N systems, without increasing the number of parameters, led to
a different HC potential. Further, that need led to stronger SU(3) constraints
between NN and Y N analyses than before. With the changes, such as those of
the coupling constants and relations among them, they earned better results than
Nijm B potential with NijmF potential [135].
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3.15.2. Nijm78 Potential. Nijm78 potential [95], published in 1978, is a
mixture of OBPEs and one-Reggon-exchange potentials (OREPs). In fact, it
includes the vector mesons of ρ, ω, φ; the pseudoscalar mesons of π, η, ή, with
the couplings and mixings from their suiting SU(3) relations; the scalar mesons
of δ, S∗, ε(760); the dominant J = 0 contributions of Pomeron (P) (or multi-
gluon exchanges), and f, f́ , A2 tensor Regge trajectories. So, this nonlocal and
SC potential is indeed based on Regge-pole theory for low-energy NN interaction
and ˇts high-energy data by using exponential form factors.

In p-space, the general form of Nijm78 potential, the OBEPs with p-depen-
dent central terms and Pomeron-type potentials, read

Ṽ (pi,pf ) = Ṽ0(k2, q2) + Ṽσ(k2)σ1 · σ2+

+ Ṽt(k2)S̃(0)
12 + Ṽls(k2)L̃S1 + Ṽq(k2)Q̃12, (3.66)

where the symbols are as those in (3.20) except S̃
(0)
12 = (σ1 ·k)(σ2 ·k). With the

last relation, one should note that we have just nonlocality in the central potential
that means all the momentum dependence in r-space is in the central part of the
potential. Meanwhile, in the Fourier transform into r-space, the energy factor
is approximated by E � M + k2/8M + q2/2M and that just the ˇrst order
terms in k2/M2, q2/M2 are kept. Now, by the approximations, one can write
the potentials of Ṽi (i = c, σ, t, ls, q) for all four sets of the involved mesons.
The potentials so are some combinations of k2, q2, meson and nucleon masses,
coupling constants and the exponential form factor of Δ as

Δ =
1

k2 + m2
mes

e−k2/Λ2
, ΔP =

1
M2

p

e−k2/4m2
p , (3.67)

where mmes, mP , Mp, Λ are the meson, Pomeron, proton (a scale mass) masses
and the cutoff mass (964.52 MeV here), respectively.

The Fourier transforms of the potentials into r-space, for the central, tensor,
spinÄorbit and quadratic spinÄorbit potentials are given in the Nijm87 original pa-
per [95]. The potentials so are in terms of some functions of φ0

c(r), φ
1
c(r), φ

2
c(r),

φ0
t (r), φ1

t (r), φ0
ls(r), φ

1
ls(r), which are in turn in terms of mmes, mP (just for the

Pomeron-type potentials) and Λ. Further, the Fourier transform of the form factor
of Δ in (3.67) becomes

Δ̃ =
mmes

4π

[
1
4
m2

mesφ
1
c(r) −

1
2
(∇2φ0

c(r) + φ0
c(r)∇2)

]
, (3.68)

and similar for ΔP by setting (1/2)Λ = mP , mmes = 0, φPn

j (r) = φn+1
j (r) with

j = c, t, ls here. For a study of the Fourier transformation in such cases look, for
instance, at [136].
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Now, we can write the r-space potential, in (S, T ) space, as

V = Vc(r) + Vt(r)S12 + Vls(r)L · S + Vq(r)Q12 −
1
M

[∇2V̀p + V̀p∇2], (3.69)

where Vc(r) includes the contributions from all mesons and is written in terms
of c, σ, τ, στ operators together with φ0

c(r), φ
1
c(r), φ

2
c(r) and the nucleon and

included meson masses and couplings as well as some other constants; and sim-
ilarly for the other three functions of Vt(r), Vls(r), Vq(r). But Vt(r) includes
the contributions from all involved pseudoscalar and vector mesons together
with φ0

t (r), φ1
t (r) and t, tτ operators; Vls(r) includes the contributions from all

involved scalar, vector, and Pomeron-type mesons together with φ0
ls(r), φ

1
ls(r)

and ls, lsτ operators; Vq(r) includes the contributions from all involved scalar,
vector, and Pomeron-type mesons together with φ0

t (r) and q, qτ operators. It is
mentionable that the local part of the Pomeron-type potentials is multiplied by

the exponential factor of e−m2
pr2 ≡ φ0

P (r). We also note that in the nonlocal
potential, to which all except the pseudoscalar mesons contribute, as the last
part in (3.69), we have

V̀p =
∑

γ

C0

g2
γ

4π

mγ

4Ḿ
φ0

c(r) −
g2

P

4π
√

π

m3
γ

MḾ2
φ0

P (r), (3.70)

where γ and gγ are the suiting meson indices and couplings; M, Ḿ are for the
proton and/or neutron mass (Mp is chosen often), and C0 = 1 for scalar mesons
and C0 = 3 for vector mesons. It is also notable that the methods to solve
Schréodinger equation with nonlocal potentials (such as [∇2V̀p + V̀p∇2] here) is
presented in [116].

Anyway, 13 free parameters of the potential were ˇtted to the Livermore-
group 1969 data up to 330 MeV [104] good with χ2/Ndata = 2.09 besides good
describing low-energy parameters such as 1S0(pp), 3S1(np) scattering lengths as
well as deuteron properties. The results were very good among the best potentials
of its time. The updated and improved version of Nijm78 potential is Nijm93
potential [28] framed in 1992, which we describe below.

The Y N version of Nijm78 potential was presented in 1989 [137] and applied
to BB̄ systems as well. The form factors, from the Regge poles, are Gaussian
which guarantees the soft behavior of the potentials near the origin. It gave a
good description of Y N interactions by using SU(3) and mesonÄnucleon coupling
constants from the NN analyses.

3.15.3. Nijmegen Partial-Wave Analysis. The ˇrst Nijmegen-group multi-
energy phase-shift analysis was published in 1990 for just pp interaction [122].
Next in 1993, they published a combined analysis of np+pp scattering data [121],
for a newer PWA, see [138]. Indeed, the basic aim was to provide a more com-
plete database and then to improve the NN phase-shift analyses. To do so,
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they surveyed the NN data published from January 1655 to December 1992 in
the energy range of Tlab = 0−350 MeV. As a result, from 2078 pp data and
3446 np data, those survived with an optimized (not a very high or a very low)
χ2 were 1787 pp and 2514 np data. Next, they parameterized a special energy-
dependent NN potential for each partial wave up to almost J = 4. After that,
the radial Schréodinger equation was solved by the adjusted potential to get the
phase shifts as functions of the adjusted parameters and energy. Then, from the
phase shifts, some predictions for observables, and χ2 to ˇt the experimental
scattering data, were made. So, one may call the Nijmegen analysis as an ®op-
timized potential¯ analysis from which the phase shifts are bought for various
partial waves.

By the way, in the Nijmegen PWAs, the potentials for each partial wave are
actually divided into two main parts: A nuclear (N ) part and an electromagnetic
(EM) part; or a long-range (LR) part, a medium-range (MR) and a short-range
(SR) part. That is

V = VEM + VN = VLR + VMR + VSR, (3.71)

where the electromagnetic interaction has almost the same structure as that in
Arg94 potential [31], while the nuclear part includes an LR OPEP, an MR heavy-
boson-exchange (HBE) potential and a phenomenological SR potential. The
LR potential VLR is indeed a sum of the EM and OPE potentials; the MR
potential VMR is mainly from the HBE contributions of Nijm78 potential [95];
and the SR potential VSR is described by an energy-dependent boundary condition
at r = b = 1.4 fm, where the energy-dependent square wells are used.

The involved EM potential here, in general, reads

VEM = VC1(r) + VC2(r) + VVP(r) + VMM(r), (3.72)

where, as before, the indices of C1, C2, VP, MM stand for the one-photon, two-
photon, vacuum-polarization and magnetic-moment interactions. More details
were given in Subsubsec. 3.12.2 with two main differences here with the more
improved considerations in Arg94 case, where the effects due to the ˇnite size of
the nucleon and a DarwinÄFoldy term (VDF(r)) were also included and improved.

On the other hand, the LR nuclear interaction because of OPEs and the MR
nuclear interaction because of HBEs always read

VN =
M

E
VOPE + fs

medVHBE. (3.73)

Indeed, the energy-dependent factor of M/E (where M is as usual the nucleon
mass, E =

√
M2 + q2 is the c.m. energy and q2 = MTlab/2) is required

to get a better ˇt of the data. Also, adding the HBEs (such as ρ, ω, η) from



NUCLEONÄNUCLEON INTERACTION: A TYPICAL/CONCISE REVIEW 1707

Nijm87 potential for r > b to the OPEP tail, gives a better ˇt of the data but
the nuclear part is still incomplete. The fs

med factor in the last relation, for the
singlet(s) partial waves, makes further improvement with fs

med(S = 0) = 1.8 and
fs
med(S = 1) = 1.0, where S stands for the total spin of NN systems here.

For VOPE, we ˇrst note that one may face with the four isovector coupling
constants of fppπ0 , fnnπ0 , fnpπ− , fpnπ+ in NNπ vertexes. So, for three possible
NN scatterings, one can write

f2
pp ≡ fppπ0fppπ0 , f2

0 ≡ −fnnπ0fppπ0 , 2f2
c ≡ fnpπ−fpnπ+ , (3.74)

where one may then take f2
pp = f2

0 when CS and f2
pp = f2

0 = f2
c when CI are

assumed. Now, we can use the same expression in (3.50) for VOPE in (3.73)
with a note that again the second term on its RHS is used just for np case and
fpp = −fnn ≡ f [120] with the CI value of f2 = 0.075; and also we should

replace V
(3)
OPEP there with V

(4)
OPEP here as

V
(4)
OPEP(mpi) =

1
3

(
mpi

mπ±

)2 e−μr

r

[
(σ1 · σ2) +

(
1 +

3
(μr)

+
3

(μr)2

)
S12

]
,

(3.75)
where μ = mpic/� as before.

For the SR potential VSR, used for r < b or lower partial waves, in the pp
PWAs (Nijm90pp) [122], the coordinate-independent energy-dependent square
wells were used up to J = 4 (see, Figs. 2 and 3 of [121]). Further, for the
isoscalar (T = 0) np partial waves up to J = 4, and 1S0 partial wave, the same
parameterization as in the pp case was used; whereas for the isovector (T = 1) np
phase shifts (except for 1S0 phase shift), the suiting pp results by including the
pion Coulomb corrections were used. For the middle partial waves of 5 � J � 8,
the evaluated phase shifts of the OPE+ HBE of Nijm78 potential [95] were used.
And ˇnally, the higher partial waves were obtained from the OPE phase shifts by
including the electromagnetic effects, depending on the need.

It is also notable that the energy dependence of the square-well depth is
parameterized through three parameters for each partial wave. From the total
49 such parameters for the states of J � 4, 21 parameters are for the pp case and
18 parameters are for the np case besides the pionÄnucleon coupling constants
(fπ± , f0) and fs

med determined by ˇtting the data. By the way, in the combined
pp+np Nijmegen PWAs [121], with 1787 pp data (with 1613 degrees of freedom)
and 2514 np data (with 2332 degrees of freedom) below 360 MeV, published
from nearly 1955 to 1992, the ®perfect¯ result of χ2/Ndata ≈ 1 from the data
ˇtting was achieved.

Later, in 2004, the Nijmegen group made a new PWA of pp and np data
up to 500 MeV [138]. There, the NN database was enlarged to almost 5000 pp
and the same np data below that energy. Inelastic effects could be included, and
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one could gain both the T = 0, 1 phase shifts from the np data in contrast to
PWA93 [121], where T = 1 phase shifts were gained from the suiting pp ones
with some corrections. In the analysis, a chiral TPE potential was added to the
LR OPEP used in PWA93, with an improvement of the data ˇtting. For a new
PWA of NN -scattering data, by another group, see [139].

3.15.4. Nijm93, NijmI, and NijmII Potentials. The Nijmegen high-quality
(HQ) potentials, which are Nijm93, NijmI, NijmII, and Reid93 NN poten-
tials [28], all give almost the perfect value of χ2/Ndata ≈ 1. Nijm93 po-
tential is indeed an updated version of Nijm78 potential in that it is ˇtted to
its time Nijmegen np + pp database [121] (with χ2/Ndata = 1.87) and in-
cludes new OPEPs with the pion-mass splitting. Both NijmI and NijmII po-
tentials are also built on Nijm78 potential [95] with some differences and im-
provements of course. In NijmI potential, in each partial wave, a few pa-
rameters of the potential are adjusted. It includes, like Nijm78 and Nijm93
potentials, the momentum-dependent terms that result in the nonlocal struc-
ture of the potential in r-space. However, NijmII potential is completely lo-
cal that means all momentum-dependent terms in p-space are deliberately re-
moved. These three potentials are regularized at the origin by exponential
form factors, are ˇtted to the same database and have the same number of
ˇtting parameters (15 free parameters) as in PWA93 [121]. The results of
data ˇtting signal that NijmI and NijmII potentials have almost the same qual-
ity, and that all three potentials reproduce a χ2 close to the suiting value for
PWA93.

The general forms of the NijmI and NijmII potentials in p-space are as
in (3.66) except for some differences. The ˇrst difference is adding the new
operator of L̃A = (i/2)(σ1 − σ2) · n = iA · n (which is the Fourier transform
of the charge-symmetry operator L · A used in Arg94 potential [31] as well)
and so, the new term of Ṽla(k2)L̃A is added to the potential. It is notable that
for identical-particle scattering, this operator does not contribute; and when CI

is supposed, Ṽla(k2) vanishes. The second difference is that instead of S̃
(0)
12 in

Nijm78, one now uses the complete S̃12 in (3.20), which is in turn the Fourier
transform of the r-space tensor operator of S12. The third difference is that
because Q̃12 in (3.20) is not an exact Fourier transform of the quadratic spinÄ
orbit operator Q12 in (3.3), to have equivalent r- and p-space potentials with the
same phase shifts and bound states, Q̃12Ṽq(k2) in (3.66) must be replaced by

Q̃12Ṽq(k2) − Q̃′
12

k2∫
∞

dk′2 Ṽq(k2), (3.76)

where

Q̃′
12 = [(σ1 ·q)(σ2 ·q)− q2(σ1 ·σ2)]−

1
4
[(σ1 ·k)(σ2 ·k)−k2(σ1 ·σ2)]. (3.77)
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One should note that including Q12 was indeed necessary there to describe the
phase shifts of 1S0,

1D2 simultaneously, and its effect could be simulated by in-
cluding special nonlocal potentials. By the way, the resultant potential forms Vi of
V =

∑
i

V iOi, where i = c, σ, t, ls, q, la are supposed to be the same for all partial

waves, as the differences among the potentials arise from the vacuum expectation
values of the operators in different partial waves. It is also notable that Vi may be
a function of r2, q2, and L2 in r-space (or Ṽi(k,q,n, E) in p-space); meanwhile
an r2-dependence is always preserved and the q2-dependence is included in Vc,
which in turn signals the nonlocal structure of the potential in r-space.

The included mesons and Reggeons, OBEPs and OREPs as well as the prop-
agators are the same as those in Nijm78 potential except for a few differences.
Indeed, the pion- and nucleon-mass splittings are also considered. Taking the
mass difference between the neutral and charged pions (and also for the ρ me-
son here) leads to CIB. The coupling constants for the pseudoscalar and vector
mesons are related through SU(3) with their special singlet-octet mixing, whereas
for the scalar mesons and the Regge poles, the coupling constants are considered
as free parameters. Also, for each exchange, an independent cutoff mass is used
and so, with the three cutoffs of ΛPS, ΛV , ΛS, there are a total number of 14 free
parameters. It is also notable that the broad mesons of ρ and ε could be described
by a dispersion integral instead of the static formula of Δ(k2) = 1/(k2 + m2

mes).
In the OPE part, as in PWA93, the pion mass splitting is considered and so, the
isovector np phase parameters are smaller than the isovector pp phase parameters,
which in turn means CIB. The plain OPEPs for pp and np systems are the same as
those in PWA93 (and also Arg94 potential in Subsubsec. 3.12.2) with f2

pp = f2
c =

f2
0 = f2

π = 0.075 (pointing out CI for the pionÄnucleon coupling constants), and

V
(5)
OPEP(mpi) =

(
mpi

mπ±

)2 1
3
mpic

2[φ1
c(mpi, r)σ1.σ2 + 3φ0

t (mpi, r)S12], (3.78)

instead of V
(4)
OPEP(mpi) in (3.78).

Describing the data, in the energy range of 0Ä350 MeV with the potentials, are
satisfactory. In fact, Nijm93 potential ˇts 1787 pp data with χ2/Ndata = 1.8 and
2514 np data with χ2/Ndata = 1.9 and so, the whole data with χ2/Ndata = 1.87.
This description is better than that of parameterized Paris potential [98] and
Full-Bonn potentials [37,45]. This result suggests that just with the conventional
OBEPs, one could not describe the data well. On the other hand, NijmI and NijmII
Reid-like potentials describe the whole pp and np data with χ2/Ndata = 1.03 with
41 and 47 ˇtting parameters, respectively. The potentials are called Reid-like in
that, in each partial wave, just a few parameters are adjusted that is in turn
similar to the Reid method in parameterizing the potentials in each partial wave
separately.
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It is good to remind that, in making these HQ potentials, the Schréodinger
equation of

(∇2 + k2)Ψ = 2MrV Ψ (3.79)

is used, which is an r-space approximation of the full four-dimensional scattering
equation. In this equation, Mr is the nucleon reduced mass, and the relations
between the c.m. energy (E) and the squared c.m. momentum (k2) are as E =
k2/2Mr and E =

√
k2 + M2

p +
√

k2 + M2
n − (Mp + Mn) for the nonrelativistic

and relativistic kinematics, respectively.
On the other hand, following the discussion in the previous subsections, we

know that to regularize the potential at the origin, the form factor of F (k2) is al-
ways used. For the Nijmegen potentials, and to complete the discussion, we quote
the following useful Fourier transform (with the λ index for the corresponding
meson): ∫

d3k

(2π)3
eik·r

k2 + m2
λ

(k2)nF (k2) ≡ mλ

4π
(−m2

λ)nφn
c (r),

=
mλ

4π
(−∇2)nφ0

c(r),
(3.80)

according to which, for the well-known form functions, we can write

F (k2) = 1 ⇒ φ0
c(r) =

e−mλr

mλr
, (3.81)

which is the usual Yukawa potential without the form function (the point-like
nucleon);

F (k2) =
(Λ2 − m2

λ)
(Λ2 + k2)

⇒ φ0
c(r) =

e−mλr − e−Λr

mλr
(3.82)

as the monopole form factor normalized such that at the pole, F (−m2
λ) = 1; and

F (k2) =
(Λ2 − m2

λ)2

(Λ2 + k2)2
,

⇒ φ0
c(r) =

[
e−mλr − e−Λr

(
1 +

Λ2 − m2
λ

2Λ2
Λr

)]/
mλr

(3.83)

as the Dipole form factor; and

F (k2) = e−k2/Λ2

(3.84)
⇒ φ0

c(r) = em2/Λ2
[
e−mλr erf c

(
mλ

Λ
− Λr

2

)
−

−emλr erf c

(
mλ

Λ
− Λr

2

)]/
2mλr,
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as the exponential form factor with

erf c(y) =
2√
π

∞∫
y

dt e−t2 (3.85)

as the complementary error function.
It should be also mentioned that, without the form factors, one should use

φ1
c(r) = φ0

c(r) − 4πδ3(mλr) (3.86)

instead of φ0
c(r) in the presence of the form factors. Besides, with the help

of (3.80), one can get the tensor and spinÄorbit potentials in terms of the central
function of φ0

c(r) as

φ0
t (r) =

1
3m2

λ

r
d

dr

(
1
r

d

dr

)
φ0

c(r), (3.87)

φ0
ls(r) = − 1

m2
λ

1
r

d

dr
φ0

c(r). (3.88)

Therefore, one can see that with the dipole form factor (in Reid93) and the
exponential form factor (in Nijm93, NijmI, NijmII) to regularize the potentials,
the tensor function is vanished at the origin as well.

It is also good to mention the Fourier transform of the momentum-dependent
terms (linear in q2 in Nijm78, Nijm93, NijmI) in the p-space potentials, which
lead to the nonlocal structure in r-space as∫

d3k

(2π)3
eik·r

k2 + m2
λ

(
q2 +

1
4
k2

)
F (k2) = −mλ

8π
[∇2φ0

c(r) + φ0
c(r)∇2] (3.89)

(to see how to handle such nonlocal terms, look at [116]), whereas the absence
of the q2 terms in NijmII (and also Reid93) potential in p-space leads to a radial
local potential in r-space.

3.15.5. Reid93 Potential. The so-called regularized-Reid (Reid93) poten-
tial [28] is ˇtted to the updated Nijmegen database, while the quality of the
original Reid68 [26] np data was poor. Besides, there was an 1/r singularity for
all partial waves, which are now removed by including the dipole form factors
(with the cutoff of Λ = 8mpi); and so the tensor potentials vanish at the origin.
For the OPE part, as in the other Nijmegen high-quality potentials, the neutral-
and charged-pion mass differences are considered (with f2

π = 0.075 again) and
so Reid93 potential is charge-dependent. Meanwhile, in (3.78), φ1

c(r) is used just
for S-wave, while for other partial waves, φ0

c(r) is used instead of φ1
c(r).

Besides the OPEP tail, the potential in each partial wave is parameterized
separately by choosing suitable combinations of the central, tensor, and spinÄorbit
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terms with arbitrary masses and cutoff parameters. In Reid93 potential, with the
coefˇcients of m̄ =

(
mπ0 + 2mπ±

)
/3, Λ = 8m̄, all potentials are written as

linear combinations of the following functions:

Ȳ (p) = pm̄φ0
c(pm̄, r), Z̄(p) = pm̄φ0

t (pm̄, r), W̄ (p) = pm̄φ0
ls(pm̄, r),

(3.90)
with 50 coefˇcients of Ajp, and Bjp, which are used for isovector potentials,
and isoscalar and np 1S0 potentials, respectively. These coefˇcients are ˇxed by
ˇtting to the relevant pp + np scattering data. Here, p is an integer and j labels
various partial waves, and that φ0

t and φ0
ls are some special radial functions [28].

One should note that, as in Reid68 potential, in the non-OPE part, for the
singlet states and uncoupled triplet states, the central potentials are used; and for
the coupled triplet states, the potentials having the central, tensor, and spinÄorbit
terms as (3.13) are used. For instance, for the uncoupled states of (T = 1,
S = 0, L = J), one uses

Vpp(1S0) = A12Y (2) + A13Y (3) + A14Y (4) + A15Y (5) + A16Y (6),

Vnp(1S0) = B13Y (3) + B14Y (4) + B15Y (5) + B16Y (6),

V (1D2) = A24Y (4) + A25Y (5) + A26Y (6),

V (1G4) = A33Y (3), V (1J1) = Vpp(1S0), J � 6,

(3.91)

where the different pp and np 1S0 potentials are because of the CIB considered in
the potentials. We should also mention that, for the coupled states, the potentials
have clear forms up to J = 4; and for the higher partial waves (J � 5), a similar
expansion as done by Day [27] (see Subsubsec. 3.5.2) is performed. Clearly, for
the triplet isovector (isoscalar) partial waves of J � 5, the central and tensor
potentials are those of the corresponding S = 1, T = 1 (S = 1, T = 0) J < 5
partial waves while the spinÄorbit potential is set to zero.

By the way, with 50 ˇtting parameters, Reid93 potential reproduces the
result of χ2/Ndata = 1.03 such as the other Nijmegen HQ potentials. It is also
remarkable that the values of the quantities, such as deuteron parameters and
low-energy scattering parameters, predicted by Reid93 potential (and also by the
other HQ potentials of Nijm93, NijmI, NijmII), have a good agreement with the
experimental values [28]. Nowadays, these HQ potentials are extensively used in
nuclear structure calculations with many satisfactory results.

3.15.6. Extended Soft-Core Potentials. The already mentioned Nijmegen po-
tentials based on OBE and ORE approaches described well the data but with many
phenomenological arguments included. The extended soft-core (ESC) potentials
include extra exchanges and are more on the theoretical grounds. That is because
by adding a few more free parameters, while preserving the previous advantages,
the new potentials reproduce the data well. In the ˇrst ESC model [140], next to
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the whole previous exchanges of Nijm78 potential [95], they included some two-
meson-exchange (TME) (and also 2π-exchange) and meson-pair-exchange (MPE)
contributions. That model described the Nijmegen PWA93 (pp + np database)
in the energy range of 25Ä320 MeV with χ2/Ndata = 1.16, which was the ˇrst
promising result in the case.

The next completed version was presented in 1995 [141]. In fact, besides
the previous OBEs and OREs of Nijm78 potential [95], TPEs, TMEs, and MPEs
were included as well. In general, TME contributions are from π ⊗ ρ, π ⊗ ω,
π ⊗ η, π ⊗ ε, π ⊗ P ,. . . , where the parallel and crossed-box BruecknerÄWatson
diagrams with Gaussian form factors are computed. The MPE contributions are
due to one-pair and two-pair (ππ, πρ, πω, πη, πε, . . .), where a Gaussian form

factor (as e−k2/2Λ2
) is attached to each vertex. The interaction Lagrangians

are for the effective relativistic theories, with LS equation. The ESC potentials
were compared with Nijm93 potential [28] in that at least both include 14 free
parameters. Next, the ESC potentials gave better results with more theoretical
grounds besides using the chiral symmetry of the involved Lagrangians.

The chiral-invariant ESC model for NN interaction with 12 free parame-
ters reproduced the data in the energy range of 0Ä350 MeV with χ2/Ndata =
1.75 [142]. It is notable that the TME contributions improved the ESC potential
quality with respect to the previous OBEPs. In addition, one notes that the meson-
pair vertexes in the triangle and double TME diagrams (supposed to simulate the
heavy mesons and resonance degrees of freedom) are analyzed in principle by
chiral symmetry and so, these contributions do not introduce any new parameter.

The Y N and Y Y versions of the ESC potentials were then reported in [143]
ˇrst, where next to discussing the usual boson exchanges, the interactions were
discussed in the framework of QCD, 	avor SU(3), and chiral SU(3)⊗SU(3) for
the low-energy region as well. Then, in 2000, besides reviewing the Nijmegen
SC potentials, a new ESC model (called ESC00) was presented to describe NN ,
Y N and Y Y systems in an uniˇed manner by using SU(3)f symmetry [144].
In the energy range of 0Ä350 MeV, it described Y N and NN systems with
χ2/Ndata = 1.15.

After that, there was modeled the comprehensive p-space versions of the ESC
NN potentials in [145]. With 20 free parameters (of the masses and coupling
constants) there were reproduced the NN -scattering data in the energy range
of 0Ä350 MeV again with χ2/Ndata = 1.15. Some new improvements were
because of including the axial-vector mesons and a zero in the scalar meson
form factors. It is also mentionable that the SC mesonÄbaryon interactions were
discussed in [146] as well. From 2005 onwards, some new generations of the ESC
BB potentials (called ESC04) have been presented, where the contributions from
OPEs, OREs, MPEs and two-pseudoscalar-meson exchange (PSÄPS exchange)
are also included. There are the NN interaction in [147], the Y N interaction
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in [148], and the BB states with the total strangeness of S = −2 in [149]. For
some recent reviews of the Nijmegen ESC potentials, see [150,151].

3.15.7. Nijmegen Optical Potentials. NN potentials are often considered
to be real below the pion production threshold in about Tlab = 290 MeV. One
way to include inelasticities at the high energies, above the thresholds, is to
consider optical potentials. On the other hand, we saw that in the Nijmegen
PWA93 for the short distance potential (VSR), below r < b (with b = 1.4 fm; see
Subsubsec. 3.15.3), the energy-dependent square wells were used. Now, one may
write [152]

VS = Vrel − iVimg, (3.92)

where the real SR potential Vrel, which is different for each partial wave, always
reads

Vrel =
N∑

n=0

an(k2)n, (3.93)

and the imaginary SR potential VI is taken as

Vimg = (k2 − k2
th)V · θ(E − Eth). (3.94)

It was established from the Nijmegen PWAs [121,129] that the fully real potentials
work up to about 500 MeV quite well. Nevertheless, the optical potentials of the
Nijmegen group could be constructed by adding, to the real HQ potentials, the
same imaginary part used in the Nijmegen PWAs of the np data below 500 MeV,
according to the above prescription of course. But, the resultant optical potentials

Fig. 3. The phase shifts 1S0 (a), and 1D2 (b) for the NijmI optical potential and a modiˇed
version of that (quoted from [130])
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did not give good results for all partial waves in that energy range. Clearly,
if one considers all np data below 1 GeV, some differences among the results
from the preliminary PWAs and the above constructed optical potentials arise
in some partial waves. For instance, as it is clear from Fig. 3, for all np data
below 1 GeV, the phase shift of 1S0 is well described by both the PWA and the
optical NijmI potential; whereas for the phase shift of 1D2, the large differences
are recognizable clearly. Still, by reˇtting, the modiˇed NijmI optical potential,
NijmI (mod), is obtained that gives a good ˇtting of the 1D2 phase shift up to
1 GeV. Therefore, it seems that it is not so difˇcult to model the optical potentials
to ˇt the np data up to Tlab = 1 GeV.

3.16. Hamburg-Group Potentials. Hamburg potentials are also among
meson-exchange models related to QCD substructures. Since, in Bonn-B po-
tential [37], the scattering amplitudes were obtained from the mesonÄbaryon
Lagrangian in a clear and comprehensive way, that model was used as a base to
build one-solitary-boson-exchange potential (OSBEP) by this Hamburg group. In
fact, the Hamburg-group potential somehow reˇnes the common boson-exchange
picture by seeking for a procedure that reduces markedly the number of free para-
meters of the conventional boson-exchange potentials; whereas the parameters are
in turn needed for the quality ˇttings of the potentials to scattering data. Because
of its special mechanism, there is not any cutoff parameter as the only adjustable
parameters are the pion self-coupling constant and mesonÄnucleon coupling con-
stants. The ˇrst version [47] was presented in 1996, to ˇt just elastic np scattering
data up to J � 3, and was further developed in [153] to include both np + pp
data with more improvements.

In fact, the features of both QCD-inspired models and common phenomeno-
logical boson-exchange potentials are included in OSBEP. We know that below
the pion production threshold, chiral symmetry is supposed to be broken. Now,
a meson Lagrangian, by including all OBE contributions, with a similar structure
as the linear sigma-model, is considered. Because the symmetry conditions are
not imposed on the masses and coupling constants, but the latter are used as free
parameters in the Lagrangian, the chiral symmetry is so broken. Therefore, the
spontaneous chiral symmetry breaking leads to nonlinear terms in the meson part
of the Lagrangian. The resultant decoupled nonlinear meson equations are then
analyzed, and semiclassical solutions are quantized leading to deˇning ®solitary
mesons¯ from which the propagators come out. Indeed, the nonlinear features of
the QCD-inspired models are considered as the nonlinear boson equations result.
Because of the nonlinear property of the boson, the form factors are not as those
in the Bonn-B potentials; and they are replaced by properly normalized solitary
meson ˇelds. As another result, an experimental scaling law arises that relates all
the meson parameters and so, reduces the number of ˇtting parameters. The model
also gives a good quantitative description of experimental data and deuteron prop-
erties, though the quality is not as high as the other mentioned HQ potentials [153].
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Meanwhile, in [39], NN interaction is discussed from quantum-inversion
approach versus meson-exchange picture and especially from OSBEP. In general,
we know that by inserting a potential with its special operators into LS equation,
one can earn phase shifts and other observables. In full generality, this method
involves quark and gluon substructures, and then both on-shell and off-shell data
are described well. However, the inversion potentials are in general local and
energy-dependent in r-space, whereas BEPs lead to nonlocal potentials in p-space
mainly. It is established there that the results from quantum-inversion and boson-
exchange potentials are almost the same. A main difference is the larger D-state
probability for the local potentials, which is in turn related to the different tensor
part of the potentials.

The next improvement in studying OSBEPs was to extend them for pionÄ
nucleon interactions as well, as in [154], where the OSBEP model was recast
into a unique form for NN and πN interactions. To do so, the Δ-isobar was
included besides the chiral-symmetry preserving pseudovector mesonÄbaryon cou-
pling (PS πNN ) instead of the previous pseudoscalar (PS) coupling for πNN .
Describing NN and πN interactions simultaneously was good as the previous
results for just NN interaction.

In 2003, von Geramb et al. proposed another NN potential based on Dirac
equations (two coupled Dirac equations with constraints from dynamics) com-
bined with meson-exchange picture (including the π, η, ρ, ω, σ exchanges) [155].
The resultant potentials, to use in partial-wave Schréodinger-like equations, in-
spired by meson exchanges, ˇtted the Arndt et al. pp + np phase shifts of
Tlab = 0−3 GeV [156] as well as deuteron properties. The analyses showed a
universal core potential coming from relativistic meson-exchange dynamics, and
that the high-energy effects such as those of QCD and inelasticity were included.
Besides the Dirac meson-exchange potentials, they framed some local and non-
local optical potentials, which still gave good agreement between theoretical and
experimental data.

3.17. Moscow-Group Potentials. Moscow-type (M-type) potentials are
mainly a hybrid of the quarkÄmodel and meson-exchange picture. In general,
in short distances, the quark and gluon degrees of freedom are used; whereas for
the LR and MR regions, OBEPs+ TPEPs are often used. The ˇrst major version
was presented in 1997 [59] and latter improved in [157]. The main features of
these potentials are the emphasis on the deep substructures from QCD. One main
difference of the M-type potentials from the other NN potentials is that the com-
mon SR local repulsive core from the ω (and also ρ) meson is strongly reduced,
and is indeed replaced by that of a suitable orthogonality condition plus a deep
attractive potential. The orthogonality condition may be interpreted as projecting
the compound six-quark states (ϕ0), with the maximal permutational symmetry,
into asymptotic NN channels. As a result, one now has a node around ∼ 0.6 fm
that plays the role of the repulsive core and provides NN phase shifts. Mean-
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while, the potential also has strong attraction in intermediate parts commonly
assigned to the pseudoscalar-meson exchanges of π, η and the scalar-meson ex-
change of σ. Still, for the SR repulsion of the ω meson, a repulsive core with
a Gaussian form factor with a positive ˇnite coupling constant is included. In
other words, in the short distances (r � 1 fm), the nonlocal and energy-dependent
terms, which are in turn coming from the retardation effects and six-quark bags
(6q-bags), are replaced by a separable potential.

By the way, the main M-type potential in [59], with two major parts, reads

V = V
(0)
loc + Vsep, (3.95)

where the local potential (Vloc) is �-independent and includes an OPEP and an
attractive well, and is depending on the spin and parity of NN system. The
separable potential (Vsep) is a state-dependent (depended on the �, J of NN
system) repulsive core with a Gaussian form factor. They are

Vloc = Vc(r) + Vt(r)S12 = V0 e−ηr2
+ V

(6)
OPEP(mpi) + λ|ϕ〉〈ϕ|, (3.96)

in which

V
(6)
OPEP(mpi) = −f2

πNN

4π

μ3

4M2
[ftrYc(x)σ1 · σ2 + (ftr)nYt(x)S12] (3.97)

and

ϕ = Nr�+1 exp

[
−1

2

(
r

r0

)2
]

,

∫
ϕ2 dr = 1, ftr = (1 − e−αr), (3.98)

where x = μr as usual with μ for the average pion mass, n as the power of the
cutoff factor of ftr is different for the different versions of the potential, r0 is
the radius of the repulsive core (different slightly for the different states), α is
the cutoff radius of the OPEP, and λ is different for different �, J's. Because of
the freedom to choose the parameters of η, α, V0, one can set η = α2; and then
the width of η and the depth of V0 are ˇtted to scattering data, which are the
scattering length and the effective range of the 1S0 wave here. It is mentionable
that the repulsive core is absent for � � 4 (Tlab < 400 MeV) because of the
second term in (3.97) or the presence of Yt(x). Anyway, this M-type potential
describes well deuteron properties and NN scattering data up to 500 MeV with
6 free parameters, which are in turn physically meaningful. Also, the off-shell
behavior of the potential can be checked in NN bremsstrahlung. It should also
be mentioned that, contrary to the other quarkÄmeson hybrid models that use
the mixtures of both and so lead to energy-dependent nonlocal potentials, here
the quark and meson exchanges are orthogonal besides giving a microscopic
description of NN interaction.
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In the complete version presented then, the Gaussian form function was
replaced by an exponential form function to describe better the phase shifts,
especially 3S1−3D1 phase shift. The potential so is written as

V = V
(M)
loc + V

(7)
OPEP + Vsep, (3.99)

in which
V

(M)
loc = V0 e−βr + V0 e−βrL · S (3.100)

and

V
(7)
OPEP(μ) = −f2

πNN

4π

μ

3
(τ 1 · τ 2)[Y (2)

c (x)(σ1 · σ2) + Y
(2)
t (x)Ŝ12], (3.101)

where this OPEP is written with a soft dipole form factor, and now the tensor
potential becomes zero at the origin as it must be; Ŝ12 = S12/3 and μ =
(mπ0 + 2mπ±)/3; and now, the same as in Arg94 potential [31] and Nijmegen
HQ potentials [28], f2

πNN/4π = 0.075; α = Λ/μ, and

Y (2)
c (x) = Yc(x) − αYc(αx) − (α2 − 1)

α2

2
xYc(αx),

Y
(2)
t (x) = Yt(x) − α3Yt(αx),

(3.102)

with the notations in (3.23). Here just V0, α, β are free parameters in the local part
of the potential, which are in turn different for each spin and parity combination.
In addition, the parameters of λ and r0 are independent for D- and F -waves;
whereas for S- and P -waves, λ goes to inˇnity and r0 values depend on the depth
of the attractive local potential. In general, with 32 parameters (a similar number
to the so far mentioned HQ potentials) and the πNN coupling constant, describing
deuteron properties and partial waves in the energy range of 0Ä400 MeV was very
good (except for few higher �'s).

Next, they developed a new mechanism to describe NN interaction in MR
and SR parts [158]. In fact, instead of the oldest Yukawa formalism for SR
interaction, a 6q-bag model, dressed because of the π, ρ, σ mesons, was used
there. That in turn produced an MR attraction that replaced the conventional
σ-meson exchange. On the other hand, the ρ meson, produced in the intermediate
six-quark state, caused a nonlocal spinÄorbit interaction in the SR part. As a
result, the MR attraction and a part of the SR repulsion were described excellently,
whereas the SR repulsion was mainly because of the orthogonality of NN - and
6q-channels.

In other words, in the common OBE models, there are still many problems.
For instance, the cutoff parameters ΛmλNN are often larger than the experimental
values got by ˇtting the data; the phenomenological Yukawa functions have
also at least the base theoretical problems; and discussing the σ meson, as a
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2π resonance in S-state, is also controversial. Further, describing 3N and 4N
systems with the settled OBEPs is not addressed satisfactory yet. Therefore, the
new M-type potentials try to address some of the existing problems.

Here, with the dressed 6q-bag, the σ-(and even ρ-)meson exchange between
nucleons is considered because of the transitions between the p-shells of the
excited quarks. In other words, each p-shell quark emits a pion and during the
transition from the p-shell to s-shell, the pions are absorbed by the diquark pairs
in the intermediate 6q bag-like states (suppose as qq → σ + qq). Further, the
σ meson, as a scalarÄisoscalar excitation of the QCD vacuum, is considered as a
quasiparticle inside the hadrons (especially in a multiquark bag) and not as a real
particle in the free space. Therefore, the scalarÄisoscalar σ meson exists just in a
high-density medium and not in the vacuum (contrary to the ρ, ω mesons).

One can show the main features of the model by a simple phenomenological
potential as

V = Vorth + VNqN + V
(7)
OPEP, (3.103)

where

Vorth = λ00|ϕ0〉〈ϕ0| (λ0 → ∞) (3.104)

as the orthogonality potential, provides the orthogonality condition between the
intermediate 6q-bag and the especial NN channel for S- and P -waves. VNqN is
the separable potential attributable to the virtual transition of NN → (6q +2π)+
NN as

VNqN =
E2

0

E2 − E2
0

λ|ϕ〉〈ϕ|, (3.105)

for the single channels and

VNqN =
E2

0

E2 − E2
0

(
λ11|ϕ1〉〈ϕ1| λ12|ϕ1〉〈ϕ2|
λ21|ϕ2〉〈ϕ1| λ22|ϕ2〉〈ϕ2|

)
(3.106)

for the coupled channels. E0 ≈ 600−100 MeV is a sum of the 6q-bag energy
and the σ-meson mass inside the 6q-bag, and is the same for all partial waves
with deˇnite parities. The expression for ϕi is that in (3.98) with ϕi, �i here
instead of ϕ, � there. The potential parameters of λjk(= λkj), r0, E0, the phase
shifts and the mixing parameters ε1 are determined by ˇtting the data with the
cutoff parameter of Λ = Λdipole = 0.50−0.75 MeV. The resultant potential
describes the partial waves of � < 2, which is in turn equivalent to describing
the phase shifts in the energy range of 0Ä600 MeV and S-waves for an energy
about 1200 MeV. Further, the weak contributions because of the vector mesons
in the baryon spectra and the strong spinÄorbit splitting are explainable by this
constituent-quark model. Still, the model leads to some especial 3N and 4N
forces because of 2π and ρ exchanges.
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In 2005, the group described elastic and inelastic NN scatterings in the
energy range of 1Ä2 GeV by a special EFT [159]. The previous approach, to
describe MR and SR interactions in [158], which made use of six-quark bags and
the intermediate mesons of π, σ, ρ, ω, were employed there and improved as well.

The predictions of these M-type potentials for 3N systems were also analyzed
in detail with good results. Large deviations from the conventional NN potentials
were established for the momentum-distribution in the high-momentum region. In
particular, the Coulomb displacement energy for the nuclei of 3HeÄ3H displayed
a promising agreement with experiment when the binding energy of 3H was
extrapolated to the experimental value [59, 157]. Further, in [158], by using a
new MR NN interaction model, based on the QCD bag model, an effective
energy-dependent NN interaction was constructed. The new potential described
experimental data up to 1 GeV and deuteron parameters well. Generalizations
of the model to three-nucleon force (3NF) and other related issues were also
discussed [159]. Other mechanisms for the MR and SR parts of NN interaction
are addressed by the group members in the references of [159].

It is remarkable that the M-type potentials, and also the following two poten-
tials/models, do not have necessarily similar structures as the other standard ones
and are almost special.

3.18. Budapest(IS)-Group Potential. Doleschall et al. set up a set of NN
interactions in r-space to get the correct binding energy of triton [160]. The
potentials are nonrelativistic and almost phenomenological, nonlocal and energy-
independent. Nucleons are discussed as point-like objects and effects from their
structure are supposed to come from effective NN potentials. In some speciˇc
short regions, the potentials are considered to be nonlocal, and in the outside
regions Å as some local Yukawa tails. The ˇrst aim was to ˇnd a nonlocal
potential form to describe triton (3H as a 3N bound system) binding energy as
well as describe experimental phase shifts and deuteron properties. Later, they
used those nonlocal NN potentials to describe some other 3N bound states [161].
In fact, they modeled an NN potential respecting the well-known local behaviors
in long ranges, whereas it showed a nonlocality at the shorter ranges. The resultant
potential provided a satisfactory ˇt to NN scattering data while including CI and
CS. The nonlocality in the NN potential guaranteed that no 3N forces were
required to describe 3N bound states.

3.19. MIK-Group Potential. The J-matrix inverse scattering approach to
make NN potentials was started by Zaitsev et al. in [20,162], and was developed
by Shirokov et al. in [163]. Indeed, the nonlocal interactions gained in this
approach are in the forms of some matrices in oscillator basis in each NN partial
wave separately. In other words, in the approach NN interaction is as a set
of potential matrices for various partial waves. However, a main aim to make
the potentials was to earn some satisfactory results in nuclear calculations of 3N
systems and other light nuclei.
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In the ˇrst serious try [163], based on [20, 162], they held the inverse scat-
tering tridiagonal potentials (ISTP), which are tridiagonal (quasi-tridiagonal) in
the uncoupled (coupled) partial waves. The dimension of the potential matrix
was determined by the maximum value of N = 2n + � (note that the common
nonrelativistic Schréodinger equation is used in the approach), and was refereed
as a N�ω potential. We should note that the resultant interactions are somehow
effective and are not related to the usual meson-exchange theories though the
main features and results of NN interaction are common. It is also notable that,
to describe a wider energy range, the size of the potential matrix, or the oscillator
basis parameter �ω, must be increased. The potential [163] was used in nuclear
calculations of 3H, 3He with giving good results also in describing NN scat-
tering data.

In [164], similar to that in [163], another class of the J-matrix inverse
scattering potentials (JISP), called JISP6, was constructed. The resultant potentials
described well NN scattering data as well as the bound and resonance states of
the light nuclei up to A = 6. A remarkable feature of the potentials was that
by using the off-shell degrees of freedom, there was not any need to include
3N potentials to describe well the light nuclei. The results to evaluate binding
energies of the nuclei 3H, 3He, 4He, 6He, 6Li were the same as the results of the
other HQ potentials such as NijmI, NijmII [28], Arg94 [31], and CD-Bonn [99]
potentials. In [164], the base parameter was �ω = 40 MeV, and the potential
described the Nijmegen PWA93 data [121] with χ2/Ndata = 1.03; see [21].

Next, they set up a JISP16 version and then further developed it as a
ISP162010 version [165]. The latter potentials were used to evaluate binding
energies and spectra of the light nuclei in No-Core-Shell-Model (NCSM) cal-
culations. In a recent study [166], the progress in developing the JISP NN
interactions and other related issues are discussed as well.

3.20. Imaginary Potentials. As we know, above the pion production thresh-
old, the inelasticitys and other high-energy effects become important, and then
one way to incorporate them is to consider optical or imaginary potentials suit-
able also to earn high quality descriptions of scattering data in medium and high
energies. Among a few imaginary NN potentials, we discussed brie	y the Ni-
jmegen ones in Subsubsec. 3.15.7. In [167], some NN potentials such as Paris,
Nijmegen, and Argonne potentials, and those traced by quantum inversion, which
describe NN interaction for the energies below 300 MeV, are extended to NN
optical potentials in r-space. The up-to-date phase-shift analyses, from 300 MeV
to 3 GeV, are used to settle the extensions. The imaginary parts of optical po-
tentials account for the 	ux losing into direct or resonant production processes.
The optical potential approach is interesting as it allows one to imagine fusion
and resulting ˇssion of nucleus when Tlab energies are above 2 GeV.

Discussions about optical potential from quantum inverse-scattering and scat-
tering data as well as modeling an optical potential are also given in [168].
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There is also a relativistic optical NN potential, based on some idea of M-type
potentials, in [169].

3.21. QCD-Inspired Potentials. The QCD-inspired models always use the
fundamental quark and gluon degrees of freedom instead of mesons. Indeed,
because the SR part of NN interaction is more related to quarks and gluons,
so the QCD-inspired potentials are used more to describe this part. Often one
uses the hybrids of quarks and mesons to describe the interaction. There, the SR
interaction is always attributable to gluon exchanges and the MR and LR parts
come from scalar- and pseudoscalar-meson exchanges. One, of course, usually
uses OPEPs for the LR part, while the MR part is handled by phenomenological
or TPEPs, as we described some potentials brie	y. Nevertheless, one should note
that by applying the spontaneous chiral symmetry breaking to QCD Lagrangian,
one may be able to set up an NN interaction fully based on QCD. Then, the
common picture of the nucleon is a quark core surrounded by a pion cloud. So,
at large distances, one may use an effective mesonÄnucleon theory to describe
nucleon interactions. In this case, the form factors with free parameters at short
distances are often used. For a typical review up to 1988, see [48] and [49] for
a study on NN QCD models up to 1998, and [51] for a historical and technical
review on QCD-inspired models up to 2002. Discussing various aspects of the
QCD-inspired NN potentials needs another opportunity and is not at the level
and aim of the current note. Nevertheless, we try to address some progresses and
more plain potentials.

In fact, a pioneer study of the SR repulsion of NN interaction in the frame-
work of quark model was done in [170]. In the ˇrst studies, the quark and gluon
dynamics (especially one-gluon exchanges (OGEs) were included), to give quan-
titative description of SR part, were employed. Then, especially in the 1980s,
the hybrid quark models were constructed (among the ˇrst samples are in [171]),
where for the LR and MR parts they always used the potentials from other phe-
nomenological and boson-exchange models; see also [172]. Describing scattering
data and deuteron properties with the earlier quark potential models was not so
satisfactory. In [173], nonrelativistic quarkÄcluster models were used to describe
BB, NN , and Y N interactions especially in the MRs and SRs with some good
descriptions. After that, the hybrid models (including quark, gluon, and meson
(especially pion) exchanges) were developed and more improved. Among the
earlier hybrid models, is an NN potential [100] made of Paris potential [44] for
long- and intermediate-distances with the quarkÄcluster model (QCM) for short
distances. There, the effects of the quark degrees of freedom on NN observables
were surveyed. But, describing its time pp data was not good except if one used
some other adjustable potentials in the LR and MR parts.

In the 1990s, chiral constituent quark models (CCQM) were framed, which
were always considered as a result of the spontaneous symmetry breaking of
QCD Lagrangian. There, OPEs, OSEs (S for sigma) and OGEs were included
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besides a phenomenological conˇning potential. The resultant potentials described
NN -scattering data and deuteron properties better than any other QCD-inspired
potential at that time. There are many of the CCQM potentials that we mention
just in some studies. In [50], the SR NN interaction is described by a CCQM
model as well, where the constituent quarks interact through pseudoscalar-meson
exchanges. There, projecting the six-quark wave function into NN channel
produces an SR node for S-waves, like M-type potentials [157]. So, the short
distances are described microscopically, whereas the medium and large distances
are described through the Yukawa pion and sigma meson between the quarks
belonging to the nucleons. The CCQM models are further addressed in [51],
where it is discussed that they describe well the LR attractive and SR repulsive
features in addition that they are universal in describing all baryons on equal
footings, see also [52].

Among other QCD-inspired NN potentials, the hybrid quarkÄmeson models
in [174] and [175] are notable, where the former was to apply to ˇnite nuclei
calculations and is based on a relativistic quark model. The latter [175], which
we call Japan-group potential, is a uniˇed model to describe NN and Y N
interactions and, with few parameters, gives a good ˇt of its time scattering data.
There is another potential model for NN , ΛN , and ΣN interactions in [53], which
we call China-group potential, which is completely based on QCD ingredients
without any use of meson exchanges. The China-group potential is based on a
quark delocalization color screening model (QDCSM) and describes the SR and
MR interactions, simultaneously, besides a claim that it describes well NB (NN ,
NΛ, NΣ) scattering data.

It is also good to mention an extension of the chiral SU(3) quark model
(CSQM) to describe BB interactions. Indeed, in CSQM, a nonet of pseudoscalar-
and a nonet of scalar-meson exchanges are used to describe the LR and MR parts
of interactions, while the SR part is described by OGEPs and also quark-exchange
effects. The model gives a good description for NN and Y N systems. In [54],
to study whether OGEs or vectorÄmeson exchanges could describe the SR part of
the interaction, the CSQM was extended to include vectorÄmeson exchanges as
well. In the resultant extended chiral SU(3) quark model (ECSQM), the strength
of OGE was largely reduced and the SR repulsion was owned to a combined
effect of pseudoscalar and scalar mesons, and was better described with a good
ˇtting of scattering data.

The effects of the quark model calculations in the SR part on phenomenolog-
ical and meson-exchange calculations in the MR and LR parts are studied further
in [176]. It is settled that the QCD quark models cannot describe the higher
partial waves though they could describe the lower partial waves well. Therefore,
the hybrid models are indeed essential to describe well scattering data. Then, one
should employ LR and MR potentials from the other high-quality meson exchange
or phenomenological potentials next to quark-model potentials to describe the SR
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part. The potentials so describe experimental NN data and bound states fairly
but they are not still as good as the fully phenomenological and meson-exchange
HQ potentials.

It should be mentioned that, for the QCD-inspired models, some criteria are
more important. Choosing a proper quark model, selecting suitable six-quark
ground states, and the methods to evaluate phase shifts are important. It is
also notable that the M-type NN potentials [59] are other clear QCD-inspired
potentials, and also the Oxford potential [60] that we discuss below brie	y.

3.22. The Oxford Potential. The Oxford potential is among QCD-inspired
potentials. The group has applied nonrelativistic constituent-quark models to low-
energy NN interaction. They have shown [60] that the potential reproduces well
NN scattering data and deuteron properties as the high-precession potentials such
as CD-Bonn [99], Nijmegen I [28], ArgonneV18 [31] and NNNLO [80] potentials.
Indeed, in the Oxford potential, a combination of one-pion exchange (OPE), one-
sigma exchange (OSE), and one-gluon exchange (OGE), next to using the charge
dependence from CD-Bonn potential, and some other subtleties are involved.

3.23. The First ChPT NN Potentials. Although some of the mentioned
phenomenological and boson-exchange potentials are related to QCD especially
in the SR part, the relation is not systematic and consistent. The works by Wein-
berg [68] and considering a Lagrangian, which includes the chiral symmetry of
QCD, written in terms of pions and nucleons and their covariant derivatives, was
a starting point to build new generations of NN interactions. In the case, the
mesons and higher degrees of freedom could be integrated out as their effects
might be considered as some undetermined coefˇcients and higher-order terms.
From the resultant effective Lagrangian, the potential so is expanded systemat-
ically in the powers of (Q/ΛQCD), where Q is a typical involved momentum.
Therefore, the resultant potential is consistent with QCD symmetries and is a
logical and systematic way to describe NN interaction and relate it to QCD.
Detailed studies in this case need more space and time and are not the aim of this
concise study. Nevertheless, for more preliminary details and references, see the
Subsecs. 2.2Ä2.4.

First, Ordonez, Ray, and van Kolck (Texas group) [77], in 1993, proposed an
exact two-nucleon potential based on an effective chiral Lagrangian. For interme-
diate states, they considered at least one pion (π(140)) and one isobar (Δ(1232)),
and that the resultant NN potential was a sum of the involved irreducible dia-
grams. NN -scattering amplitudes were then evaluated by inserting the potential
into LS or modiˇed Schréodinger equation. The lowest order of that perturbative
expansion was because of tree graphs which resulted in an LR part OPEP. Still,
other diagrams up to the third order of chiral expansion, up to one-loop diagrams,
reproduced the other known features of NN interaction such as SR repulsion,
MR attraction, spin-orbit force, and many others. The potentials were written in
p-space ˇrst, and in terms of some operators in (3.20) and more dependencies of
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the functions on k2, q2. The dependence on k2 was common, whereas the q2 de-
pendence was not usual. In addition, the energy dependence in the static OPEP,
which was in turn more improved than the previous ones, was because of the
recoil effect of pion emission from nucleon. The MR part was because of TPEP
with many parameters, while the form factors were used to regularize the potential
at the origin. Indeed, for the Fourier transform into r-space, the Gaussian form
factors with the cutoffs Λ as ek2/Λ2

, as in Nijmegen potentials [28], were used.
The general form of the potential in r-space can be written as (3.34) with

n = 20, where the functions V i here are in term of the radial coordinate r,
and its ˇrst (and second) derivative as well as the energy is

Vi = V
(0)
i (r, E) + V

(1)
i (r, E)

∂

∂r
+ V

(2)
i (r, E)

∂2

∂r2
, (3.107)

and 14 out of 20 operators are those in (3.35) of the Urb81 potential, and the
6 remaining ones are

Oi=15,...,20 = S12(L · S), S12(L · S)(τ 1 · τ 2), S12L
2, S12L

2(τ 1 · τ 2),

S12(L · S)2, S12(L · S)2(τ 1 · τ 2), (3.108)

abbreviated as tls, tlsτ , tll, tllτ , tls2, tls2τ . The ˇrst eight operators exist in
almost all potentials with only the radial functions of Vi without derivatives, while
the eight functions here depend on the ˇrst and second derivatives of r. For the

next six operators, V
(1)
i = V

(2)
i = 0; and the remaining six operators are among

special ones characterized here. All extra terms come from the q2 dependence
and recoil effects included in the potential.

Next, by having the potential, one may solve the Schréodinger equation nu-
merically. The evaluated phase shifts and deuteron properties depend on the
undetermined parameters of the Lagrangian. These parameters are ˇtted to the
Nijmegen PWA93 database [28] and errors from Arndt et al. [177], whereas the
cutoff parameter is ˇxed to Λ = 3.90 fm−1, which is in turn equal to the ρ-meson
mass. In general, with 26 parameters, the potential is ˇtted to the pp + np data
up to Tlab = 100 MeV for J � 2. The phase shifts for J > 2 are determined
from OPEP at low energies, and are not used in the ˇtting process. The result is
a qualitative ˇtting of deuteron properties and a quantitative ˇtting of the phase
shifts. This means that this new NN potential type can describe well the basic
properties from a more fundamental and tight theoretical ground. By including
higher orders of the chiral perturbative expansion, one may cover the higher
energy ranges as well.

In summary, an advantage of these NN potentials is the systematic expansion
of interaction in terms of chiral power counting. Indeed, the Texas group has
earned an NN potential in a certain order of the chiral perturbation expansion
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in both p- and r-spaces [77]. The group has only used the chiral Lagrangian of
QCD at low energies and the resultant potential is free of meson theories. The
agreements with deuteron properties and experimental data below 100 MeV are
satisfactory. The model has some likenesses with the Paris-group (because of
the pion dynamics on the LR part), Bonn-group (likenesses at low energies) and
Nijmegen-group potentials (relations to QCD) in some parts of interaction; but,
here EFT is used in general. It is mentionable that describing experimental data,
by this ˇrst ChPT potential, was not good as the phenomenological potentials.
It is also notable that the SR nuclear forces from χEFT were then surveyed by
van Kolck in [178], and also in [70] as a related general review. Meanwhile, look
at [179] to study few-nucleon forces with this type potential, where interactions
arise in chiral perturbative expansion naturally.

3.24. Sao Paulo-Group ChPT Potentials. Robilotta and da Rocha have tried
to estimate two-pion-exchange contribution to NN interaction based on chiral
symmetry with resolving the problem met in the previous TPEPs and including
just pions and nucleons [78]. In fact, by making use of the similar methods as
those in PartoviÄLomon potential [35], and by employing a chiral model, they
framed some 2π-exchange potentials. The model produced the central, spinÄ
spin, spinÄorbit and tensor components of the potential with and without isospin
dependence. From their view, NN potential reads

V = Vcore + VS + VPS + VOPEP, (3.109)

where Vcore stands for the SR core potential; VS stands for the contribution
from the box and crossed box diagrams; VPS stands for the contribution from
chiral triangle and bubble interactions, and VOPEP, as usual, is for OPEP tail.
A problem with the ˇrst approach was that it could not reproduce experimental
data well for the related intermediate region. One might improve the results by
including further degrees of freedom such as Δ resonances as was done in [40],
and the results were compared with those from parameterized Paris potential [98],
Arg94 potential [30], dTRS potential [108], and Bonn87 potential [45].

Then, a relativistic chiral expansion up to O(k4) for the TPEPs in p-space
and further, its contents and features in r-space, was given in [180] by Higa
and the former members of this called Sao Paulo group. One should note that
k < 1 GeV here is for the pion four-momentum and nucleon three-momentum,
and is a typical scale for chiral perturbation theory. The resultant potential in
r-space reads

V = V + + V −(τ 1 · τ 2), (3.110)

where

V ± = V ±
c (r)+V ±

σ (r)(σ1 ·σ2)+V ±
t (r)S12 +V ±

ls (r)L ·S+V ±
q (r)Q12. (3.111)
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These r-space potential functions are in terms of some numerical coefˇcients
(related to pion and nucleon masses and involved coupling constants) that multiply
some dimensionless functions, where the latter, in turn, come from the Fourier
transforms of the Feynman loop integrals. It is notable that this parameterization
is valid to describe NN interaction in the range of about 0.8 � r � 10 fm. It
is also notable that the TPE contribution for 3N force in the same order O(k4)
is presented as well in [181]; and a review on the subject is given in [61]. The
differences between the formalism here, to discuss chiral TPEP contributions to
NN interactions, and heavy-baryon (HB) formalism in the next subsections, are
discussed in [182]. Indeed, in HB formalism of chiral perturbative expansion,
relativistic Lagrangian is expanded in 1/M powers, which is in turn a kind of
nonrelativistic expansion; for more details look also at [183].

3.25. Munich-Group ChPT Potentials. The Munich group, by using a sim-
ilar ChPT Lagrangian as [77], and employing a covariant perturbation theory and
dimensional regularization, estimated the chiral two-pion-exchange NN potential
as well as the usual one-pion-exchange part [79]. The calculations were up to the
third order in low external momenta and one-loop order (or NLO). As a result,
the phases shifts with � � 2 and the mixing angles with J � 2 were determined as
free parameters, and could be used as input in the next NN phase-shift analyses.
By increasing the orbital angular momentum, a close and better agreement with
the usual OPEP became obvious. In other words, the study was to describe NN
interaction in terms of OPEs and TPEs for the LR and MR parts in a model in-
dependent manner. The potential was composed of the central, spinÄspin, tensor,
spinÄorbit, and quadratic spinÄorbit terms with and without isospin dependence
such as those in Sao Paulo-group potentials. Note that the involved pionÄnucleon
Lagrangian here, similar to those in the latter group, have the dimension 2 and are
based on dimensionally regularized Feynman diagrams; and because the potentials
are evaluated perturbatively, the bound states are not described well! Resultant
expressions for the potentials in r-space, coming from irreducible chiral 2π ex-
changes, are of the van der Waals type with the asymptotic exponential behavior
e−2mpir/rn valid at least for the range about 1 < r < 2 fm. There is not any
pionÄnucleon form function in that for � � 2, J � 2, the problematic singularities
in the Fourier transforms are not so important. Agreement with the phase shifts up
to D-wave up to Tlab = 150 MeV is good, and for the higher waves agreements
become better and better up to the pion-production threshold in almost 280 MeV.
For the lower partial waves, the SR effects become important and so, just TPE is
not enough to reproduce the phase shifts. It is also notable that relevant potentials
are compared with Paris79 [98] and Full-Bonn (Bonn87) [45] potentials.

Soon later, they also used two-pion exchange diagrams with virtual
Δ(1232)-isobar degrees of freedom and correlated 2π exchange as well as the
ρ, ω vectorÄmeson exchanges in [184]. As a result, they reproduced the experi-
mental data up to 350 MeV for � � 3 and up to 80 MeV for D-waves, without
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any adjustable parameter. So, this is chiral symmetry that has opened a nice
window to NN interaction. It is mentionable that, to describe the lower partial
waves, nonperturbative methods and other SR parameterizations are still needed.
It is good to mention that the importance of the chiral TPEPs was more conˇrmed
in [185] (by some members of the Nijmegen group and others), when they saw
that the chiral TPE loops were important in the LR part of pp interaction as
they improved the results of just OPEPs. In other words, the group noted that
by including both OPE and χTPE contributions, they could ˇnd a good ˇt of
data up to 350 MeV for r � 1.4 fm. The range below the mentioned one was
then parameterized by 23 boundary condition parameters in the energy-dependent
partial-wave analysis.

Further efforts, by Kaiser, have taken to include chiral uncorrelated three-
pion exchanges, higher-loop and relativistic corrections to NN interactions [186].
Indeed, it was shown that the uncorrelated 3π exchanges have negligible effects
on NN interactions in r � 0.8 fm. The local potentials produced by 2π-
exchange diagrams in two-loop order of the heavy-baryon chiral perturbation
theory, besides including the second-order ππN vertexes and the ˇrst relativistic
1/M corrections in one-loop 2π-exchange diagrams, were discussed as well. The
latter were the components for the chiral NN potential in the next-to-next-to-next-
to-leading order (NNNLO). It should be mentioned that these two-loop diagrams
lead to contributions about O(k4) in chiral expansion and so N3LO. By including
1/M2 corrections to 2π-exchange diagrams and their effects on various parts of
interaction and various states, the chiral NN potential in this N3LO order is
complete. We should remember that the potential structures and operators here
are almost the same as those of the Sao Paulo group; and that in the third reference
of [186], an explicit analytical expression for the potential in r-space from the
p-space one is presented. Next, he studied the spinÄorbit coupling produced from
2π exchange in 3N interaction by including the virtual Δ-isobar in [187].

It is notable that in [188], there is also a complete set of 2π-exchange dia-
grams in the same fourth-order (N3LO) in chiral perturbative expansion. One
could see that the fourth-order contribution is less than the third-order one;
and this in turn signals the converging of chiral expansion. By employing
the analytical expressions in [186], they applied the methods to NN scatter-
ing to calculate scattering amplitudes; and then they compared predictions with
experimental phase shifts and those from the usual meson-exchange theories.
To make a more sensible comparison, they included OPE and iterated OPE con-
tributions as well, and next showed the phase shifts for � � 3 below the energy of
300 MeV. The agreement between Full-Bonn potential and this N3LO potential
was good.

By the way, many other studies are done by the group members. For in-
stance, in [189], chiral four-nucleon interactions in this framework are studied.
A microscopic optical potential from two- and three-body chiral nuclear forces is
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constructed in [190]. Some members of the group, next to others, have modeled
Y N potentials in NLO of chiral effective ˇeld theory in [191]. In the latter,
contributions from the one and two pseudoscalarÄmeson diagrams as well as
four-baryon contact terms are included. The SU(3) 	avor symmetry was used
to set up potentials while its breaking by the physical masses of the pseudoscalar
mesons (π, K, η) was considered as well. Excellent results, compared with the
counterpart HQ phenomenological potentials, were gained. That is also a rel-
ativistic chiral SU(3)-invariant Lagrangian up to O(q2) order to describe BB
interaction in [192].

3.26. Idaho-Group ChPT Potentials. Along with various efforts after the
ˇrst ChPT potential by Texas group in [77], a better NN potential by Entem
and Machleidt [80] in 2001 based on chiral EFT appeared. In the potential
both meson and quark degrees of freedom are included, while [77] is a meson-
free potential. Indeed, that is an NN potential, based on HB formalism of
chiral perturbative expansion that includes one-pion and two-pion exchanges up
to the third order of chiral expansion. The short-range force in the fourth order
of expansion is involved because of good ˇtting of the D-wave phase shifts.
There, a two-pion exchange potential in the fourth order of chiral expansion is
also presented. The potential has almost the same quality as the HQ Nijmegen
potentials [28], CD-Bonn [99] and Arg94 [31] potentials. The phase shifts below
Tlab = 300 MeV, deuteron properties and low-energy np scattering parameters as
well as Triton binding energy are described well with this potential [80].

Later, the authors modeled, in fact, the ˇrst accurate NN potential in N3LO
(fourth order) of chiral perturbative expansion [193]. The new potential, in
reproducing its time pp and np data below 290 MeV, is comparable with the best
high-precession phenomenological potentials. After mentioning main features of
the previous HQ phenomenological and meson-exchange potentials, it is also
argued in [194] that EFT approach to nuclear forces is better than all earlier
efforts in that it produces a wished precession, gives satisfactory results in nuclear
calculations as well as in dealing with few-nucleon interactions on an equal footing
as NN interaction. There are also some reviews and many other related issues
and progress presented in [72] and [55].

3.27. BochumÄJulich-Group ChPT Potentials. BochumÄJulich-group po-
tentials are also based on chiral EFT, similar to the other ChPT potentials men-
tioned above, except that they extracted the Lagrangians by using a ®unitary
transformation¯ method. In fact, they have studied many NN (also 3N and few-
nucleon) forces besides various related aspects in LO, NLO, NNLO and NNNLO
of ChPT by taking the most general chiral Hamiltonian with pions and nucleon
ˇelds as we describe below concisely.

But before that, we note that in the standard method, such as that of Texas
group [77], the most general Lagrangian including all symmetries such as chiral
symmetry of QCD was ˇrst written with an inˇnite number of terms including
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nucleon and pion ˇelds and their derivatives. The breaking of chiral symmetry
was clear in smallness of the pion mass, and then the external momenta of the
pion and nucleon should not exceed the scale of Q. As a result, the expansion
parameter was Q/ΛQCD and nucleons were treated nonrelativistically, where
ΛQCD ≈ 1 GeV that is almost the ρ-meson mass. The other degrees of freedom,
such as heavy mesons and other baryons which were then less important, were
integrated out (except, maybe, Δ isobars) as their information was so included in
the Lagrangian parameters. In the process, a ˇnite set of tree and loop diagrams
were included. But a problem was that due to the presence of low energy
bound states, perturbative theory failed actually; or, in other words, infrared
divergences with the few included nucleons disturbed the power counting of
chiral expansion. A way to solve the problem was to use the old-fashioned time-
ordered perturbation theory by Weinberg [68], where the expansion parameter
was Q/M , instead of the covariant method. Still, in the latter method, the
effective potential was not Hermitian as it depended on the incoming-nucleon
energies, and that the nucleon wave functions were not orthogonal there. So the
unitary transformations here resolve the problems, where the expansion parameter
is now the small momenta of external particles. It is also notable that resultant
potentials are energy-independent, which makes the applications to few-body and
nuclear-structure calculations simpler.

3.27.1. LO, NLO, and NNLO Potentials. In general, these potentials in-
clude contributions from one- and two-pion exchanges to simulate LR and MR
interactions, besides contact terms to simulate SR interactions. The resultant in-
teractions, from LO, NLO, and NNLO of ChPT by considering the most general
chiral Hamiltonian in terms of pions and nucleon ˇelds, are given in [74]. The
LO interaction includes two four-nucleon contact terms and an OPE potential as

V
(0)
cont = Cs + Ct(σ1 · σ2) (3.112)

and

V
(0)
1PEP = −

(
gA

2fπ

)2

(τ 1 · τ 2)
(σ1 · k)(σ2 · k)

k2 + m2
pi

, (3.113)

where the low-energy constants (LECs) of Cs, Ct, C1, D1, . . . are to be deter-
mined by ˇtting some data; gA is the axial-vector coupling; fπ is the pion decay
constant, and other symbols are the same as used before. In NLO, the potential
is a renormalized sum of one- and two-pion exchanges and contact interactions.
This means that next to the above contributions, it includes a TPEP contribution
(V (2)

TPEP) and seven four-nucleon contact terms, where the latter reads

V
(2)
cont = C1k

2 + C2q
2 + (C3k

2 + C4q
2)(σ1 · σ2) + C5L̃S1 + C6S̃

(0)
12 + C7

˜̀
S

(0)
12 ,

(3.114)
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where ˜̀
S

(0)
12 = (σ1 ·q)(σ2 ·q), the nine LECs are determined by ˇtting to the np S

and P and 3S1−3D1 phase shifts, and the mixing parameter ε1 for the laboratory
energies below 100 MeV. TPEP in this NLO includes k, k2, q2 dependence as
well as the operators I, S̃12, isospin dependence and some constants [74]. On

the other hand, in NNLO, another TPEP (V (3)
TPEP) is also included, which in turn

includes some special combinations of k, k2, q2 with the operators I, S̃12, L̃S1

without and with isospin dependence and some constants. It is mentionable that
if one includes the contribution from Δ(1232)-isobar, the resultant NNLO-Δ
potential is almost the same as NNLO one especially for low momenta.

We should also note that the pion-exchange NN potentials could be written
generally, in p-space, as

Ṽ = Ṽ + + Ṽ −(τ 1 · τ 2), (3.115)

where

Ṽ ± = Ṽ ±
c + Ṽ ±

σ (σ1 · σ2) + Ṽ ±
ls L̃S1 + Ṽ ±

q Q̃12 + Ṽ ±
σkS̃

(0)
12 + Ṽ ±

σq
˜̀
S

(0)
12 , (3.116)

and to adjust more with the record in (3.19), we set SS0 = (σ1 · σ2); and that
the functions of Ṽ ±

c , . . . are in terms of pi,pf , z with z = cos (pi,pf ), included
masses and coupling constants.

To regularize or have right behavior for the potentials in large momenta
(short distances), the sharp and exponential form factors are used as

F (k2)sharp = θ(Λ2 − k2), F (k2)exp = e−k2n/Λ2n

, (3.117)

where the sharp cutoff is proper here with Λ = 500 MeV for NLO and Λ =
875 MeV for NNLO; and that in exponential form factors, n = 2, 3, . . . with
often n = 2 here, where the latter is used especially to evaluate some deuteron
properties with good results. In addition, phase shifts and mixing parameters for
high energies and angular momenta are described well for the energies below
300 MeV, with a note that the partial waves higher than P are free of adjustable
parameters. Also, various properties of nuclei with A > 2 and especially the
binding energies of 3H and 4He are evaluated by these NLO and NNLO potentials
with an almost the same quality as the standard high-precision phenomenological
and boson-exchange potentials [74,195].

3.27.2. NNNLO Potentials and More. Next development of the model was
to NNNLO of chiral expansion [81]. The new potential includes one-, two-
and three-pion exchanges as well as the contact terms with zero, two and four
derivatives. Relativistic corrections and isospin-breaking mechanisms are also
included. In fact, next to the previous contact terms of (3.112) and (3.114), the
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new-included contact terms are

V
(4)
cont = D1k

4 + D2q
4 + D3k

2q2 + D4n
2+

+ (D5k
4 + D6q

4 + D7k
2q2 + D8n

2)(σ1 · σ2) + (D9k
2 + D10q

2)L̃S1+

+ (D11k
2 + D12q

2)S̃(0)
12 + (D13k

2 + D14q
2) ˜̀

S
(0)
12 + D15Q̃12, (3.118)

where one could also include another 24 terms which contain the isospin factor of
(τ 1 · τ 2). Now, all 26 four-nucleon LECs are determined by ˇtting the pp + np
Nijmegen-group database [121] (the relevant S, P, D phase shifts and mixing
parameters) and nn scattering length.

On the other hand, for pion-exchange parts, a new three-pion exchange contri-

bution (V (4)
3PEP) is considered though its effect is negligible (note that the n-pion-

exchange diagrams become important around Q2n−2). These pion-exchange con-
tributions can again be written as (3.115) with (3.116), where, for instance, the
lowest order of the scalar function of Ṽ −

σk is indeed (3.113) without (τ 1 · τ 2)
factor. We remember that LS equations and a relativistic form for kinetic energy
are employed to iterate the potential here. Reducing to a nonrelativistic form is
more useful in real calculations. The exponential form factor of (3.117) with
n = 3 is used to regularize LS equations with the cutoffs of Λ = 450−600 MeV.

The isospin breaking of strong interactions because of different masses of
up and down quarks, and from electromagnetic interactions because of differ-
ent charges of up and down quarks are also included. Indeed, the potentials
for different NN systems and isospins are different such that, for instance,
V1PEP(pp) �= V1PEP(np, T = 1) �= V1PEP(np, T = 0), and so on. This is ˇnite-
range isospin breaking, while the long-range isospin breaking is because of differ-
ent electromagnetic interactions such that VEM(pp) �= VEM(np) �= VEM �= (nn).
In other words, the quark mass splitting causes isospin breaking in short dis-
tances, whereas the contact electromagnetic terms cause isospin breaking in
long distances. See also the discussion on Arg94 potential, Nijmegen HQ
potentials, and CD-Bonn potential in Subsubsecs. 3.12.2, 3.13.2, and 3.15.4,
respectively.

In summary, the group has set up some NN potentials by using the unitary
transformation method applied to the most general chiral invariant Hamiltonian in
terms of pion and nucleon ˇelds from LO up to N3LO. In the latter, CIB and CSB
in leading order, the pion mass differences in OPEPs, kinematic effects because
of the nucleon mass splitting, and electromagnetic corrections such as those in
Nijmegen PWAs, and many other subtleties are included. Deuteron properties
and the low-phase shifts of S, P, D are described excellently, whereas the high
partial waves of F, G, H, . . . are parameter free and are well described depending
on the doubts in the cutoffs. In general, several improvements with respect to the
lower order expansions and also to the previous ChPT potentials are notable.
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Among many other studies by the group members, improvements to the Wein-
berg approach to arrive at the effective potential and the renormalization problem
there, a new approach based on an effective Lagrangian with exact Lorentz invari-
ance and by using time-ordered perturbation theory, without using HB expansion,
were presented and analyzed in [196]. Indeed, they improved the heavy chiral
perturbation theory for NN interaction and analyzed the OPEP iterations. As
a result, it was shown that the used renormalization, for one- and two-loop di-
agrams of OPEP iterations, removes all nucleon-mass dependencies that disturb
the power counting. It is good here to mention a pioneer work to resolve incon-
sistencies in Weinberg's chiral expansion. Indeed, in [69], Kaplan et al. used
a dimensional regularization scheme with a novel subtraction (renormalization-
group techniques) to get a consistent chiral expansion and dissolve the failure of
Weinberg's power counting scheme. They applied the method in the order O(Q0)
to 1S0 and 3S1−3D1 NN scattering channels, and then compared the results with
Nijmegen PWA93 [121] with satisfactory agreements. For some other old, and
of course related, typical studies in the phase look at [197,198].

By the way, for a recent review on NN , 3N and few-nucleon interactions
especially in the framework of χEFT, advantages and disadvantages of this ap-
proach to nuclear forces, see [76] by Epelbaum and references therein. To end the
discussion in the phase, we cite [73] as the last constructed optimized potential
at NNLO by other people.

4. SOME OTHER MODELS AND POTENTIALS

In general, almost all potentials belong to one of the four main models. These
are, the almost full phenomenological model; the model based on ˇeld-theoretical
methods, inverse scattering, quantum-dispersion relations, and boson-exchange
pictures; the model based on QCD and constituent quark methods (the QCD-
inspired model); the model based on ChPT and EFT and their various extensions.

We have tried to include and to study almost all models and potentials
to describe two-nucleon interactions with an emphasis on some in more detail
as samples of the well-known and high-precession NN potentials. Technical
studies of some potentials need more space and time next to many physical
and mathematical backgrounds that is not the aim of this concise pedagogical
review. Nevertheless, there are still some other special NN interaction models
and potentials, and related topics, to be addressed. We mention some in what
follows.

Among the standard and more theoretical potentials is the Virginia-group
potential [96], which is a special relativistic OBEP based on ˇeld-theoretical
and dispersion-relation techniques. In fact, they have framed a few potentials
by taking various meson exchanges. The Bochum-group potential [97] is another
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fundamental NN potential based on ˇeld-theoretical and dispersion-relation meth-
ods that also uses various meson exchanges in long distances and QCD effects;
meanwhile the direct NN interactions coming from the intrinsic structure of nu-
cleon are considered in short distances. By including some two- and three-pion
correlations, they have claimed to hold good description of NN -scattering data.
The Seattle-group studies on NN interaction are also notable. Indeed, they have
studied low-energy NN interactions based on EFT, by using some simple mod-
els for interactions, up to NNLO in chiral expansion, next to some other related
topics during their study period in the 1990s [199].

There are the potentials based on Mean Field Theory (MFT), which are of
particular interest in many-body calculations in nuclear physics especially. See,
for instance, [200] and [201] for the ˇrst NN interaction made of relativistic
mean-ˇeld theory.

Renormalization Group (RG) approaches to NN interaction are other seri-
ous efforts. From an RG 	ow viewpoint, a model-independent low-momentum
interaction is obtained by integrating out high-momentum components (cutting
out problematic high-momentum modes) of various potential models [101]. In-
deed, the model independence of resulting potentials shows that the physics of
the nucleons interacting at low momenta does not depend on the details of the
high-momentum dynamics assumed in conventional potential models. Further
developments such as incorporating the method into the Fermi liquid theory
are also made [202, 203]. In [204], detailed results for the model-independent
low-momentum NN potential Vlow k are shown. There, they have applied the
approach to some commonly used high-precession NN potentials, and then com-
pared resultant potentials in various ways such as comparing matrix elements of
the potentials and various resulting phase shifts in p-space. In Figs. 4 and 5,
there are two such sample comparisons of some high-precession NN potentials
together and with two simple RG models, respectively. For a newer ®similarity
renormalization group¯ approach, see [205] and [206], and for a recent review
and study of the subject look at [207].

Lattice QCD approach to NN interaction is another important way; look,
for instance, at [63, 64] and [65]. Among some typical studies, see [208],
where a spin-dependent potential in lattice QCD is presented; [209] and [210],
where nonlocality of NN potentials, and deuteron and some other two-body
bound states in lattice QCD are discussed. Look also at [67], where QCD sum
rules are used for NN interactions. Altogether, this phase of study is still
improving with giving better quantitative results as the previous good qualita-
tive ones.

Tubingen group has applied projection techniques on some former NN po-
tentials among the boson-exchange, phenomenological, RG 	ow and EFT ones
to map them over the operator basis of relativistic ˇeld theory [211]. Indeed,
they have presented a model-independent study of NN interaction from its Dirac
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Fig. 4. Diagonal matrix elements of some high-quality NN potentials (VNN ) versus
relative momentum (k) for 1S0 (a) and 3S1 (b) partial waves, in momentum space [204]

Fig. 5. Diagonal matrix elements of Vlow k (Vbare in the ˇgure) (a) for two simple RG po-
tentials are compared with Vlow k (b) derived from some high-quality NN potentials [204]
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structure. That is a special way to compare various potentials, where a nice
agreement is found as well.

They have also built a new energy-independent nonlocal potential above
inelastic thresholds in quantum ˇeld theories that satisˇes a suitable Schréodinger
equation at low energies [212]. The potential is indeed composed of a set of
NambuÄBetheÄSalpeter wave functions. By applying the same method, one could
set up three-nucleon potentials as well.

By the way, there may be other models and potentials not covered in this
note and so, it would be a pleasure to hear more about other NN potentials.
Meanwhile, there are still many studies on various aspects of NN interaction
which need addressing. For examples, nonlocal and local terms and their impact
on NN interactions and their roles in some NN potentials are studied, for
instance, in [213]; and nonlocality of NN potentials in lattice QCD is discussed,
for instance, in [209]. For a study of CIB and CSB of NN interaction, look
at [214] and for parity violation in NN interaction, see, for instance, [215].

We should also mention that three- and few-nucleon interactions are also
interesting to which less efforts than two-nucleon interactions are allocated. For
three-nucleon force, look at a recent review of [216]; and for a view to few-
nucleon forces, look at [76,217].

5. OUTLOOK

Nowadays, the theory of strong nuclear force is well experienced both quan-
titatively and qualitatively. The best qualitative results are obtained by using
phenomenological and boson-exchange potentials based on quantum ˇeld theory
and dispersion relation techniques, and even new potentials based on chiral per-
turbation theory. Indeed, more qualitative results are of the QCD-inspired models
and the models based on chiral EFT.

NN interaction is now under control for the energies below almost Tlab =
500 MeV well. Because of the high-precession, experimental NN data, describing
the long- and intermediate-range parts of the interaction based on various meson
exchanges, are quantitatively good and the hybrid models of quark and gluon
exchanges for the short ranges seem to be more suitable.

Although we have now many high-precision NN potentials applied to nuclear-
structure calculations with satisfactory results, still some questions are remained
to be answered. I think, the main problem is that we do not have still a unique
comprehensive model for including all well-known features of NN interaction.
Obviously, chiral EFT methods and models are better in describing nuclear forces
in general. They have a standard formalism applicable to few-nucleon systems
with including many fundamental physics and mathematics of the problem. But,
there are still some problems and limits; look at [4, 5]. Among the issues with
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EFT potentials, which one may ask, are the proper renormalization of the chiral
nuclear potentials and subleading chiral few-nucleon forces; few- and multinu-
cleon potentials in higher orders of chiral expansion. Meanwhile, lattice QCD
models for nuclear forces are still improving and, in some recent studies, a lattice
version of chiral EFT is also applied to nuclear forces [76].

On the other hand, after the well-conjectured string/gauge, AdS/CFT, duality
and thereafter holographic QCD studies, it seems that the NN -interaction issue
is faced with another revolution. So, we should be waiting for more sophisticated
models for two- and many-body nuclear interactions in this language. Look, for
instances, at [218] and [219].

Altogether, it seems that the nuclear-force issue is still improving. I think
that we may someday have a uniˇed scheme for NN interaction and link various
known NN models and potentials. Nevertheless, it will also be interesting to
compare various NN potentials via some suitable ways and try to understand
more nucleonÄnucleon interaction subtleties.
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