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Motivated by the increasing evidence for the need of a geometry that resembles the
Bianchi morphology to explain the observed anisotropy in the WMAP data, we have
discussed some features of the Bianchi-type universes in the presence of a �uid that wields
an anisotropic equation-of-state (EoS) parameter in general relativity. Such models are of
great interest in cosmology in favor of constructing more realistic models than the FLRW
models with maximally symmetric spatial geometry. Additionally, the interest in such
models was promoted in recent years due to the debate that is going around the analysis
and the interpretation of the WMAP data [21,111,112], whether they need a Bianchi-type
morphology to be explained successfully [7, 103, 117, 118]. The ILC−WMAP data maps
show seven axes well aligned with one another and the Virgo direction. For this reason,
the Bianchi models are important in the study of anisotropies.

In the present study of Bianchi type-I, II, III, V and VI0 space-times, we observe that
the EoS for dark energy ω is found to be time-dependent and its existing range for derived
models is in good agreement with the recent observations of SNe Ia data [50], SNe Ia data
with CMBR anisotropy and galaxy clustering statistics [11] and the latest combination
of cosmological datasets coming from CMB anisotropies, luminosity distances of high
redshift type Ia supernovae and galaxy clustering [21, 51]. It has been suggested that the
dark energy that explains the observed accelerating expansion of the Universe may arise
due to the contribution to the vacuum energy of the EoS in a time-dependent background.
The cosmological constant Λ is found to be a positive decreasing function of time and
it approaches to a small positive value at late time (i.e., the present epoch) which is
corroborated by results from recent type Ia supernovae observations.

�μ¡Ê¦¤ ¥³Ò¥ ¢μ§· ¸É ÕÐ¥° ¶μÉ·¥¡´μ¸ÉÓÕ ¢ £¥μ³¥É·¨¨, ¸Ìμ¤´μ° ¶μ ¸É·Ê±ÉÊ·¥ ¸μ
¸É·Ê±ÉÊ· ³¨ 
¨ ´±¨, ¤²Ö Éμ£μ ÎÉμ¡Ò μ¡ÑÖ¸´¨ÉÓ ´ ¡²Õ¤ ¥³ÊÕ  ´¨§μÉ·μ¶¨Õ ¢ ¤ ´´ÒÌ
WMAP, ³Ò · ¸¸³μÉ·¥²¨ ´¥±μÉμ·Ò¥ ¸¢μ°¸É¢  ¢¸¥²¥´´ÒÌ É¨¶  
¨ ´±¨ ¢ ¶·¨¸ÊÉ¸É¢¨¨
³ É¥·¨¨, Ê¤μ¢²¥É¢μ·ÖÕÐ¥°  ´¨§μÉ·μ¶´μ³Ê Ê· ¢´¥´¨Õ ¸μ¸ÉμÖ´¨Ö (EoS) ¢ μ¡Ð¥° É¥μ-
·¨¨ μÉ´μ¸¨É¥²Ó´μ¸É¨. ’ ±¨¥ ³μ¤¥²¨ μÎ¥´Ó ¨´É¥·¥¸´Ò ¢ ±μ¸³μ²μ£¨¨ ¤²Ö ¶μ¸É·μ¥´¨Ö
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¡μ²¥¥ ·¥ ²¨¸É¨Î´ÒÌ ³μ¤¥²¥°, Î¥³ FLRW ¸ ³ ±¸¨³ ²Ó´μ ¸¨³³¥É·¨Î´μ° ¶·μ¸É· ´-
¸É¢¥´´μ° £¥μ³¥É·¨¥°. 
μ²¥¥ Éμ£μ, ¨´É¥·¥¸ ± É ±¨³ ³μ¤¥²Ö³ ¢μ§·μ¸ ¢ ¶μ¸²¥¤´¨¥ £μ¤Ò
¡² £μ¤ ·Ö μ¡¸Ê¦¤¥´¨Õ ´¥μ¡Ìμ¤¨³μ¸É¨ ¶·¨¢²¥Î¥´¨Ö ¸É·Ê±ÉÊ· 
¨ ´±¨ ¤²Ö  ´ ²¨§  ¨
¨´É¥·¶·¥É Í¨¨ ¤ ´´ÒÌ WMAP [21, 111, 112] ¤²Ö Ê¸¶¥Ï´μ£μ ¨Ì μ¡ÑÖ¸´¥´¨Ö [103, 7,
118, 117]. „ ´´Ò¥ ILC−WMAP ¶μ± §Ò¢ ÕÉ ¸¥³Ó ´ ¶· ¢²¥´¨°, Ìμ·μÏμ ¸μ£² ¸μ¢ ´-
´ÒÌ ¤·Ê£ ¸ ¤·Ê£μ³ ¢ ´ ¶· ¢²¥´¨¨ „¥¢Ò. �μ ÔÉμ° ¶·¨Î¨´¥ ³μ¤¥²¨ 
¨ ´±¨ ¸Éμ²Ó ¢ ¦´Ò
¤²Ö ¨§ÊÎ¥´¨Ö  ´¨§μÉ·μ¶¨¨.

‚ ¤ ´´μ° · ¡μÉ¥ ¢ · ³± Ì Bianchi type-I, II, III, V ¨ VI0 ³Ò ´ ¡²Õ¤ ¥³, ÎÉμ EoS
¤²Ö É¥³´μ° Ô´¥·£¨¨ ω § ¢¨¸¨É μÉ ¢·¥³¥´¨ ¨ ¥£μ ¤¨ ¶ §μ´ ¤²Ö ÔÉ¨Ì ³μ¤¥²¥° Ìμ·μÏμ
¸μ£² ¸Ê¥É¸Ö ¸ ´¥¤ ¢´¨³¨ ´ ¡²Õ¤¥´¨Ö³¨ SNe I [50], SNe Ia ¸  ´¨§μÉ·μ¶¨¥° ³¨±·μ-
¢μ²´μ¢μ£μ ¨§²ÊÎ¥´¨Ö, ¸É É¨¸É¨±μ° ±² ¸É¥·¨§ Í¨¨ £ ² ±É¨± ¨ ´μ¢¥°Ï¥° ±μ³¡¨´ Í¨¥°
¤ ´´ÒÌ  ´¨§μÉ·μ¶¨¨ ³¨±·μ¢μ²´μ¢μ£μ ¨§²ÊÎ¥´¨Ö,   É ±¦¥ · ¸¸ÉμÖ´¨°, μ¶·¥¤¥²Ö¥³ÒÌ
¶μ ¸¢¥É¨³μ¸É¨ [11], ¤²Ö ¸¢¥·Ì´μ¢ÒÌ É¨¶  Ia ¢ £ ² ±É¨± Ì ¸ ¡μ²ÓÏ¨³ ±· ¸´Ò³ ¸³¥Ð¥-
´¨¥³ [51, 21]. 
Ò²μ ¶·¥¤²μ¦¥´μ, ÎÉμ É¥³´ Ö Ô´¥·£¨Ö, μ¡ÑÖ¸´ÖÕÐ Ö ¢¨¤¨³μ¥ Ê¸±μ·¥´¨¥
· ¸Ï¨·¥´¨Ö ‚¸¥²¥´´μ°, ³μ¦¥É ¢μ§´¨±´ÊÉÓ §  ¸Î¥É ¢±² ¤  ¢ ±ÊÊ³´μ° Ô´¥·£¨¨ Eos ´ 
Ëμ´¥ § ¢¨¸¨³μ¸É¨ μÉ ¢·¥³¥´¨. �± § ²μ¸Ó, ÎÉμ ±μ¸³μ²μ£¨Î¥¸± Ö ¶μ¸ÉμÖ´´ Ö Λ Ê¡Ò-
¢ ¥É ¸μ ¢·¥³¥´¥³ ¨ ¶·¨ ¡μ²ÓÏ¨Ì ¢·¥³¥´ Ì (¢ ´ ¸ÉμÖÐ¥¥ ¢·¥³Ö) ¸É·¥³¨É¸Ö ± ³ ²μ³Ê
¶μ²μ¦¨É¥²Ó´μ³Ê §´ Î¥´¨Õ, ÎÉμ ¶μ¤É¢¥·¦¤ ¥É¸Ö ·¥§Ê²ÓÉ É ³¨ ´¥¤ ¢´¨Ì ´ ¡²Õ¤¥´¨°
¸¢¥·Ì´μ¢μ° Ia.

PACS: 98.80.Es; 98.80-k; 95.36.+x

INTRODUCTION

The concept of dark energy (DE) was ˇrst invoked in the late 1990s by
studying the brightness of distinct supernovae-exploding stars. In 1998, published
observations of type Ia supernovae by the High-z Supernova Search Team [1]
followed in 1999 by Supernova Cosmology Project [2, 3] suggested that the
expansion of the Universe is accelerating. Recent observations of SNe Ia of high
conˇdence level [4Ä6] have further conˇrmed this. In addition, measurements
of the Cosmic Microwave Background (CMB) anisotropies [7Ä9], Large Scale
Structure (LSS) [10Ä12], the Sloan Digital Sky Survey (SDSS) [13, 14], the
Wilkinson Microwave Anisotropy Probe (WMAP) [15], and the Chandra X-ray
observatory [16] strongly indicate that our Universe is dominated by a component
with negative pressure, dubbed as dark energy, which constitutes with � 3/4 of
the critical density. The cosmic acceleration is realized with negative pressure and
positive energy density which violate the strong energy condition. This violation
gives a reverse gravitational effect. Due to this effect, the Universe gets a jerk,
and the transition from the earlier deceleration phase to the recent acceleration
phase takes place [17]. A recent survey of more than 200, 000 galaxies appears
to conˇrm the existence of dark energy, although the exact physics behind it
remains unknown [18].

During the last few years we are witnessing how cosmology is rapidly be-
coming an experimental branch of physics. It is no longer a pure realm of
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philosophical speculation; theoretical models can be tested, and new and more
accurate data in the near future will restrict our conceptions of the Universe
to within few percent accuracy. The simplest candidate for the dark energy
is the cosmological constant [19Ä22] which suffers from conceptual problems
such as ˇne-tuning and coincidence problems [23]. Other scenarios include,
Quintessence [24,25], Chameleon [26], K-essence [27,28], which is based on the
earlier work of K-in�ation [29], modiˇed gravity [30Ä36], Tachyon [37] arising
in string theory [38], Quintessential in�ation [39], Chaplygin gas as well as gen-
eralized Chaplygin gas [40Ä45], cosmological nuclear energy [46]. In spite of
these attempts, still cosmic acceleration is a challenge to modern cosmology and
modern astrophysics.

High-precision measurements of expansion of the Universe are required to
understand how the expansion rate changes over time. In general relativity, the
evolution of the expansion rate is parameterized by the cosmological equation
of state (the relationship between temperature, pressure, and combined matter,
energy, and vacuum energy density for any region of space). Measuring the
equation of state for dark energy is one of the biggest efforts in observational
cosmology today. The DE model has been characterized in a conventional manner
by the equation-of-state (EoS) parameter ω(t) = p/ρ which is not necessarily
constant, where ρ is the energy density, and p is the �uid pressure [47]. The
present data seem to slightly favour an evolving dark energy with EoS ω < −1
around the present epoch and ω > −1 in the near past. Obviously, ω cannot
cross −1 for quintessence or phantom alone. Some efforts have been made
to build a dark energy model whose EoS can cross the phantom divide. The
simplest DE candidate is the vacuum energy (ω = −1), which is mathematically
equivalent to the cosmological constant (Λ). The other conventional alternatives,
which can be described by minimally coupled scalar ˇelds, are quintessence
(ω > −1) [48], phantom energy (ω < −1) [49] and quintom (that can across
from phantom region to quintessence region as evolved) and have time-dependent
EoS parameter. Some other limits obtained from observational results coming
from SNe Ia data [50] and combination of SNe Ia data with CMBR anisotropy
and galaxy clustering statistics [10] are −1.67 < ω < −0.62 and −1.33 < ω <
−0.79, respectively. The latest results in 2009, obtained after a combination of
cosmological datasets coming from CMB anisotropies, luminosity distances of
high-redshift type Ia supernovae and galaxy clustering, constrain the dark energy
EoS to −1.44 < ω < −0.92 at 68% conˇdence level [21,51]. However, it is not
at all obligatory to use a constant value of ω. Due to a lack of the observational
evidence in making a distinction between constant and variable ω, usually the
equation-of-state parameter is considered as a constant [52Ä54] with the phase
wise value −1, 0,−1/3 and +1 for vacuum �uid, dust �uid, radiation and stiff
dominated universe, respectively. But in general, ω is a function of time or
redshift z or scale factor a, as well [25,55,56]. The redshift dependence of ω can
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be linear like ω(z) = ω0 + ω′z, with ω′ =
dω

dz

∣∣∣
z=0

(see Huterer and Turner [57];

Weller and Albrecht [58]) or nonlinear as ω(z) = ω0 +
ω1z

1 + z
(Chavellier and

Polarski [59]; Linder [60]). So, as far as the scale factor dependence of ω
is concerned, the parameterization ω(a) = ω0 + ωa(1 − a), where ω0 is the
present value (a = 1), and ωa is the measure of the time variation ω′, is widely
used in the literature [61]. Some literature are also available on the models
with varying ˇelds, such as cosmological models with variable EoS parameter
in KaluzaÄKlein metric and wormholes [48, 62]. In recent years, various forms
of time-dependent ω have been used for variable Λ models by Mukhopadhyay
et al. [63]. Setare [64Ä66] and Setare & Saridakis [67Ä69] have also studied the
DE models in different contexts. Recently, dark energy models with variable
EoS parameter have been studied by Ray et al. [70], Akarsu and Kilinc [71Ä
74], Yadav et al. [75], Yadav and Yadav [76], Yadav and Saha [77], Pradhan
and Amirhashchi [78, 79], Pradhan et al. [80Ä82], Amirhashchi et al. [83Ä86],
Kumar [87, 88], Kumar and Akarsu [89], Kumar and Yadav [90], and Kumar
and Singh [91]. In the well-known reviews on modiˇed gravity [92, 93], it is
clearly indicated that any modiˇed gravity may be represented as effective �uid
with time-dependent ω. The dark energy universe EoS with inhomogeneous,
Hubble [95] parameter-dependent term is considered by Nojiri and Odintsov [94].
Later on, Nojiri and Odintsov [95] have also presented the late-time cosmological
consequences of dark energy with time-dependent periodic EoS in oscillating
universe.

After the discovery of General Theory of Relativity, a number of scientists
including Einstein tried to apply the new gravitational dynamics to the Universe
as a whole. This requires an assumption about the distribution of matter in the
universe. One of the simplest assumptions is called the cosmological principle.
It states that the Universe is homogeneous and isotropic on large distance scales.
This implies that after averaging over sufˇciently large distances, the universe
would appear the same everywhere and in every direction. Today, there is
considerable evidence, which suggests that the Universe may be isotropic and
homogeneous. The best evidence for the isotropy of the observed Universe is
the Cosmic Microwave Background (CMB) radiation. After discovery of CMB
radiation, cosmology became a precision science. The CMB radiation is also
considered to be a major experimental evidence on which the most commonly
accepted theory about the origin of Universe, i.e., Big-Bang cosmology, is based.

Statistical Isotropy (SI) is usually assumed in almost all CMB studies. But,
now, there exist many indications which suggest that CMB may violate this
assumption. Apart from the CMB, there are some other indications of violation
of SI which suggest the existence of a preferred direction in the Universe. These
indications include distributions of polarizations from radiogalaxies (Birch [96];
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Jain & Ralston [97]; Jain et al. [98]) and statistics of optical polarizations from
quasars (Hutsem�ekers [99]; Hutsem�ekers & Lamy [100]; Jain et al. [98]; Ralston
& Jain [101]). Polarization of electromagnetic waves coming from distant radio-
galaxies and quasars measured at radio- and optical frequencies, respectively, are
not consistent with the assumptions of SI, rather radiopolarizations are organized
coherently over the dome of the sky, and optical polarizations are aligned in a
preferential direction on very large scales, violating the assumed isotropy of the
Universe. This conˇrmed strong signiˇcance of anisotropy and also claimed that
the statistics are not consistent with isotropy at 99.9% conˇdence level. CMB
anisotropies contain a wealth of information about the global properties of the
Universe, like SI. It has been observed that the quadrupole and the octopole
have almost all their power perpendicular to a common axis in space pointing
towards Virgo cluster. The dipole, which is commonly attributed to our motion
relative to the CMB rest frame, also aligns in the same direction as quadrupole
and octopole. All these CMB axes point towards Virgo. The alignment of all
these three axes nearly in the same direction is not expected under the condition
of statistical isotropy (Tegmark et al. [102]; de Oliveira-Costa et al. [103]). There
is also an indication of the large scale anisotropy in the distribution of galaxies.
This is found in several subsets of the Sloan Digital Sky Survey (SDSS) data
sample. The preferred direction in this case is found to depend signiˇcantly on
the data sample used. Several authors have also searched for anisotropy using
the supernova data set. Jain et al. [104] found violation of isotropy in this
data. However, this could be attributed to selection effects. Using this data, Jain
et al. [104] constrained the parameters of an anisotropic model which describes
a universe with rotation and expansion. A recent analysis (Cooke & Lynden-
Bell [105]) ˇnds a signal with very low signiˇcance with axis roughly towards
CMB dipole. Subsequently there have been a large number of studies which claim
the CMB is not consistent with isotropy. The possible violation of SI in CMB has
led to many theoretical studies. In recent years, there have been a large number
of studies which claim the CMB temperature �uctuations are not consistent with
statistical isotropy and are questioning the cosmological principle. Some authors
have investigated the possibility that dark energy is anisotropic (see Cooray, Holz
& Caldwell [106] and references therein). Basing on these studies, one may
not preclude the possibility of our Universe being anisotropic. However, with
such optimistic objectives, these studies will require a dedicated all-sky survey to
search for SNe. Recently, the dipole at the cluster locations was calculated using
the same techniques for WMAP and Planck [107]. The authors found a dark-�ow
signal which correlates with X-ray properties and is, therefore, likely related to
cluster gas, and not to the primary CMB, foregrounds or noise. The results are
in excellent agreement with their earlier ˇndings and are consistent both with
WMAP 9-year and with Planck 1-year ones. The March 2013 release of Planck
data was another milestone in the fast-paced series of advances in observational
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cosmology. The consistency of the nine-year WMAP data and the ˇrst-release
Planck data was examined in [108]. Sky maps, power spectra, and the inferred
ΛCDM cosmological parameters were compared. Residual dipoles are seen in
the WMAP and Planck sky map differences, but their amplitudes are consistent
within the quoted uncertainties, and they are not large enough to explain the
widely-noted differences in angular power spectra at higher l [108].

The Bianchi universes form almost complete class of spatially homogeneous
but not necessarily isotropic relativistic cosmological models. They provide gener-
alization of the standard FriedmannÄLemaå�tre (FL) models, which are based on the
spatially homogeneous and isotropic RobertsonÄWalker (RW) metrics [109,110].
Such models are of great interest in cosmology in favour of constructing more
realistic models than FLRW models with maximally symmetric spatial geome-
try. Namely, although the observed universe seems to be almost isotropic on
large scales, the early and/or very late universe could be anisotropic [109]. Ad-
ditionally, the interest in such models was promoted in recent years due to the
debate that is going around the analysis and the interpretation of the WMAP [20,
105Ä107] data, whether they need a Bianchi type morphology to be explained
successfully [7, 108Ä112].

This review article is organized as follows. In the next Section we set up the
formalism of a Bianchi type-I anisotropic dark-energy model. In Sec. 2, we derive
the LRS Bianchi type-II dark-energy models. Section 3 deals with dark-energy
models in anisotropic Bianchi type-III space-time. In Sec. 4, we discuss the
accelerating dark-energy models in Bianchi type-V space-time. Section 5 deals
with accelerating dark-energy models with anisotropic �uid in Bianchi type-VI0
space-time. In the last Section we draw our conclusions.

1. BIANCHI TYPE-I ANISOTROPIC DARK-ENERGY MODELS

We consider totally anisotropic Bianchi type-I line element, given by

ds2 = −dt2 + A2 dx2 + B2 dy2 + C2 dz2, (1)

where the metric potentials A, B, and C are functions of t alone. This ensures
that the model is spatially homogeneous.

The simplest generalization of Equation-of-State (EoS) parameter of perfect
�uid may be to determine the EoS parameter separately on each spatial axis by
preserving the diagonal form of the energy momentum tensor in a consistence
way with the considered metric. Therefore, the energy momentum tensor of �uid
is taken as

T j
i = diag [T 0

0 , T 1
1 , T 2

2 , T 3
3 ]. (2)
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Thus, one may parameterize it as follows:

T j
i = diag [ρ,−px,−py,−pz] = diag [1,−ωx,−ωy,−ωz]ρ =

= diag [1,−ω,−(ω + δ),−(ω + γ)]ρ. (3)

Here px, py, and pz are the pressures; ρ is the proper energy density; and
ωx, ωy, and ωz are the directional EoS parameters along the x, y, and z axes,
respectively. The ω is the deviation-free EoS parameter of the �uid. We have
parameterized the deviation from isotropy by setting ωx = ω and then introducing
skewness parameters δ and γ that are the deviations from ω along the y and z
axes, respectively.

Einstein's ˇeld equations (with gravitational units, 8πG = 1 and c = 1)
read as

Rj
i −

1
2
Rgj

i = T j
i , (4)

where the symbols have their usual meaning. In a comoving co-ordinate system,
Einstein's ˇeld equation (4), with (3) for B-I metric (1), subsequently leads to
the following system of equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
= −ωρ, (5)

C̈

C
+

Ä

A
+

ĊȦ

CA
= −(ω + δ)ρ, (6)

Ä

A
+

B̈

B
+

ȦḂ

AB
= −(ω + γ)ρ, (7)

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
= ρ. (8)

Here and in what follows an over dot denotes ordinary differentiation with
respect to t.

The spatial volume for model (1) is given by

V 3 = ABC. (9)

We deˇne a = (ABC)1/3 as the average scale factor so that the Hubble parameter
is anisotropic and may be deˇned as

H =
ȧ

a
=

1
3

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
. (10)

We deˇne the generalized mean Hubble parameter H as

H =
1
3
(Hx + Hy + Hz), (11)
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where Hx = Ȧ/A, Hy = Ḃ/B and Hz = Ċ/C are the directional Hubble
parameters in the directions of x, y, and z, respectively.

An important observational quantity is the deceleration parameter q, which is
deˇned as

q = −aä

ȧ2
. (12)

The scalar expansion θ, shear scalar σ2 and the average anisotropy parameter Am

are deˇned by

θ =
Ȧ

A
+

Ḃ

B
+

Ċ

C
, (13)

σ2 =
1
2

(
3∑

i=1

H2
i − 1

3
θ2

)
, (14)

Am =
1
3

3∑
i=1

(
�Hi

H

)2

, (15)

where �Hi = Hi − H (i = 1, 2, 3).
The ˇeld equations (5)Ä(8) are a system of four equations with seven un-

known parameters A, B, C, ρ, ω, δ, and γ. Three additional constraints relating
these parameters are required to obtain explicit solutions of the system.

Einstein's ˇeld equations are a coupled system of highly nonlinear differential
equations and we seek physical solution to the ˇeld equations for their applications
in cosmology and astrophysics. In order to solve the ˇeld equations, we normally
assume a form for the matter content or the space-time admits killing vector
symmetries. Solutions to the ˇeld equations may also be generated by applying
a law of variation for the Hubble parameter proposed by Berman [119]. Firstly,
we apply the special law of variation for the generalized Hubble parameter that
yields a constant value of deceleration parameter. Since the line element (1) is
completely characterized by the Hubble parameter H , therefore, let us consider
that the mean Hubble parameter H is related to the average scale factor a by the
relation

H = 	a−n = 	(ABC)−n/3, (16)

where 	(> 0) and n(� 0) are constants. Such a type of relations has already been
considered by Berman [119], Berman and Gomide [120] for solving FRW models.
Later on, many authors (see, Singh et al. [121Ä123], Pradhan and Jotania [124]
and references therein) have studied the �at FRW and Bianchi-type models by
using the special law for the Hubble parameter that yields a constant value of
deceleration parameter.

From (10) and (16), we get

ȧ = 	a−n+1 (17)
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and
ä = −	2(n − 1)a−2n+1. (18)

Substituting (17) and (18) into (12), we get

q = n − 1. (19)

We observe that relation (19) gives q as a constant. The sign of q indicates
whether the model in�ates or not. The positive sign of q, i.e. (n > 1) corresponds
to the ©standardª decelerating model, whereas the negative sign of q, i.e., 0 �
n < 1 indicates acceleration. It is remarkable to mention here that though the
current observations of SNe Ia and CMBR favour accelerating models (q < 0),
but both do not altogether rule out the decelerating ones which are also consistent
with these observations (see, Vishwakarma [125]).

Integrating Eq. (17), we obtain the law of average scale factor ©aª as

a = (n	t + c1)1/n for n �= 0 (20)

and
a = c2 e�t for n = 0, (21)

where c1 and c2 are constants of integration. Thus, the law (16) provides two types
of the expansion in the Universe, i.e., (i) power-law (20) and (ii) exponential-
law (21).

Secondly, we assume that the component σ1
1 of the shear tensor σj

i is pro-
portional to the expansion scalar (θ), i.e., σ1

1 ∝ θ. This condition leads to the
following relation between the metric potentials:

A = (BC)m, (22)

where m is a positive constant. The motive behind assuming this condition is
explained with reference to Thorne [126], the observations of the velocityÄred-
shift relation for extragalactic sources suggest that the Hubble expansion of the
Universe is isotropic today within ≈ 30% (Kantowski and Sachs [127]; Kristian
and Sachs [128]). To put more precisely, redshift studies place the limit,

σ

H
� 0.3,

on the ratio of shear σ to the Hubble constant H in the neighbourhood of our
Galaxy today. Collins et al. [129] have pointed out that for spatially homoge-
neous metric, the normal congruence to the homogeneous expansion satisˇes the
condition σ/θ to be constant.

Thirdly, we assume that the deviations from ω along y and z axes are the
same, i.e., γ = δ.
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Subtracting (6) from (7) and taking integral of the resulting equation two
times, we get

B

C
= c3 exp

[
c4

∫
(ABC)−1 dt

]
, (23)

where c3 and c4 are constants of integration.
After solving the ˇeld equations (5)Ä(8) for the power-law volumetric ex-

pansion (20) by considering Eqs. (22) and (23), we obtain the scale factors as
follows:

A(t) = (n	t + c1)
3m

n(m+1) , (24)

B(t) =
√

c3(n	t + c1)
3

2n(m+1) exp
[

c4

2	(n− 3)
(n	t + c1)

n−3
n

]
, (25)

C(t) =
1√
c3

(n	t + c1)
3

2n(m+1) exp
[
− c4

2	(n − 3)
(n	t + c1)

n−3
n

]
, (26)

provided n �= 3.
Hence the model (1) is reduced to

ds2 = −dt2 + (n	t + c1)
6m

n(m+1) dx2 + c3(n	t + c1)
3

n(m+1) ×

× exp
[

c4

	(n − 3)
(n	t + c1)

n−3
n

]
dy2 +

+
1
c3

(n	t + c1)
3

n(m+1) exp
[
− c4

	(n − 3)
(n	t + c1)

n−3
n

]
dz2. (27)

The rate of expansion Hi in the direction of x, y, and z reads as

Hx =
3m	

m + 1
(n	t + c1)−1, (28)

Hy =
3	

2(m + 1)
(n	t + c1)−1 +

1
2
c4(n	t + c1)−

3
n , (29)

Hz =
3	

2(m + 1)
(n	t + c1)−1 − 1

2
c4(n	t + c1)−

3
n . (30)

The Hubble parameter H , scalar of expansion θ, shear scalar σ, and the average
anisotropy parameter Am for the model (27) are obtained as

θ = 3H = 3	(n	t + c1)−1, (31)

σ2 =
3	2(2m − 1)2

2(m + 1)2
(n	t + c1)−2 +

1
4
c2
4(n	t + c1)−

6
n , (32)
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Am =
(2m − 1)2

(m + 1)2
+

c2
4

6	2
(n	t + c1)

2(n−3)
n . (33)

The energy density of the �uid can be ˇnd by using Eqs. (24)Ä(26) in (8)

ρ =
9	2(4m + 1)
4(m + 1)2

(n	t + c1)−2 − 1
4
c2
4(n	t + c1)−

6
n . (34)

Using Eqs. (25), (26), and (34) in (5), the EoS parameter ω is obtained as

ω =
3	2

[
−4n(m + 1) + 9

(m + 1)2

]
(n	t + c1)−2 + c2

4(n	t + c1)−
6
n

c2
4(n	t + c1)−

6
n − 9	2(4m + 1)

(m + 1)2
(n	t + c1)−2

. (35)

Using Eqs. (24)Ä(26), (34), and (35) in either (6) or (7), the skewness parameters
δ and γ (i.e., deviation from ω along y-axis and z-axis) are computed as

δ = γ =

3	2(3 − n)[4mn(m + 1) − 3]
n(m + 1)2

(n	t + c1)−2

c2
4(n	t + c1)−

6
n − 9	2(4m + 1)

(m + 1)2
(n	t + c1)−2

. (36)

If the present work is compared with the experimental results already mentioned
in Introduction, then one can conclude that the limit of ω provided by Eq. (35)
may be accommodated with the acceptable range of the EoS parameter. Also it
is observed that at t = tc, ω vanishes, where tc is a critical time given by

tc =
1
n	

(
	
√

3[4n(m + 1) − 9]
c4(m + 1)

) n
n−3

− c1

n	
. (37)

Thus, for this particular time our model represents a dusty universe. We note that
the earlier real matter at t � tc, where ω � 0, later on at t > tc, where ω < 0,
converted to the dark energy dominated phase of universe.

For the value of ω to be consistent with observation [50], we have the
following general condition:

t1 < t < t2, (38)

where

t1 =
1
n	

[
1.12	

√
4n(m + 1) + 5(4m + 1)

c4(m + 1)

] n
n−3

− c1

n	
(39)

and

t2 =
1
n	

[
1.36	

√
4n(m + 1) + 7.44m− 7.14

c4(m + 1)

] n
n−3

− c1

n	
. (40)
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For this constraint we obtain −1.67 < ω < −0.62, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data (Knop
et al. [50]).

For the value of ω to be consistent with observation [10], we have the
following general condition:

t3 < t < t4, (41)

where

t3 =
1
n	

[
1.35	

√
4n(m + 1) + 15.96m− 5.01

c4(m + 1)

] n
n−3

− c1

n	
(42)

and

t4 =
1
n	

[
1.3	

√
4n(m + 1) + 9.48m− 6.63

c4(m + 1)

] n
n−3

− c1

n	
. (43)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data with
CMB anisotropy and galaxy clustering statistics (Tegmark et al. [10]).

For the value of ω to be consistent with the latest observations in 2009 [21,
51], we have the following general condition:

t5 < t < t6, (44)

where

t5 =
1
n	

[
1.6	

√
4n(m + 1) + 17.28m− 4.68

c4(m + 1)

] n
n−3

− c1

n	
(45)

and

t6 =
1
n	

[
1.25	

√
4n(m + 1) + 11.04m− 6.24

c4(m + 1)

] n
n−3

− c1

n	
. (46)

For this constraint, we obtain the dark energy EoS to −1.44 < ω < −0.92, which
is in good agreement with the limit of the latest observational result in 2009 at
68% conˇdence level (Hinshaw et al. [51]; Komatsu et al. [21]).

We also observe that if

t0 =
1
n	

[
1.22	

√
4n(m + 1) + 6(2m− 1)

c4(m + 1)

] n
n−3

− c1

n	
, (47)

then for t = t0, ω = −1 (i.e., cosmological constant dominated universe), for
t < t0, ω > −1 (i.e., quintessence), and for t > t0, ω < −1 (i.e., super
quintessence or phantom �uid dominated universe) (Caldwell [49]).
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Fig. 1. a) The EoS parameter ω versus t in power-law expansion for q < 0. Here � = 0.33,
n = 0.5, m = 2, c4 = 2. b) The EoS parameter ω versus t in power-law expansion for
q > 0. Here � = 0.33, n = 2, m = 2, c4 = 2

Figure 1, a and b depicts the variation of equation-of-state parameter (ω)
versus cosmic time (t) in the two modes (i.e., q < 0 and q > 0) of evolution
of the Universe, as a representative case with appropriate choice of constants of
integration and other physical parameters using reasonably well-known situations.
From Fig. 1, we conclude that in early stage of evolution of the Universe, the
EoS parameter ω was positive (i.e., the Universe was matter dominated) and at
late time it is evolving with negative value (i.e., at the present time). The earlier
real matter later on converted to the dark-energy dominated phase of the universe
in both accelerating and decelerating modes.

From Eq. (34), we note that energy density of the �uid ρ(t) is a decreasing
function of time and ρ � 0 when

t � 1
n	

[(
c4(m + 1)
3	
√

4m + 1

) n
3−n

− c1

]
. (48)

Figure 2, a and b presents the plots of energy density of the �uid (ρ) versus
time in accelerating and decelerating modes of the Universe, respectively. In both
the modes, it is understood that in early Universe ρ is decreasing with time and
at late time it approaches zero.

In absence of any curvature, matter energy density Ωm and dark energy ΩΛ

are related by the equation

Ωm + ΩΛ = 1, (49)
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Fig. 2. a) The energy density ρ versus t in power-law expansion for q < 0. Here � = 0.33,
n = 0.5, m = 2, c4 = 2. b) The energy density ρ versus t in power-law expansion for
q > 0. Here � = 0.33, n = 2, m = 2, c4 = 2

where Ωm =
ρ

3H2
and ΩΛ =

Λ
3H2

. Thus, Eq. (49) reduces to

ρ

3H2
+

Λ
3H2

= 1. (50)

Using Eqs. (31) and (34) in (50), the cosmological constant is computed as

Λ =
3	2(4m2 − 4m + 1)

4(m + 1)2
(n	t + c1)−2 +

1
4
c2
4(n	t + c1)−

6
n . (51)

From Eq. (51) we observe that Λ is a decreasing function of time and it is always
positive for m > 1/2.

In recent time, the Λ-term has interested theoreticians and observers for
various reasons. The nontrivial role of the vacuum in the early universe generates
the Λ-term that leads to in�ationary phase. Observationally, this term provides an
additional parameter to accommodate con�icting data on the values of the Hubble
constant, the deceleration parameter, the density parameter, and the age of the
universe (for example, see the references Gunn and Tinsley [130]; Wampler and
Burke [131]). The behaviour of the universe in this model will be determined
by the cosmological term Λ, this term has the same effect as a uniform mass
density ρeff = −Λ, which is constant in time. A positive value of Λ corresponds
to a negative effective mass density (repulsion). Hence, we expect that in the
universe with a positive value of Λ, the expansion will tend to accelerate, whereas
in the universe with negative value of Λ the expansion will slow down, stop,
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and reverse. In a universe with both matter and vacuum energy, there is a
competition between the tendency of Λ to cause acceleration and the tendency
of matter to cause deceleration with the ultimate fate of the universe depending
on the precise amounts of each component. This continues to be true in the
presence of spatial curvature, and with a nonzero cosmological constant it is
no longer true that the negatively curved (©openª) universes expand indeˇnitely
while positively curved (©closedª) universes will necessarily recollapse Å each
of the four combinations of negative or positive curvature and eternal expansion
or eventual recollapse become possible for appropriate values of the parameters.
There may even be a delicate balance, in which the competition between matter
and vacuum energy is needed drawn and the universe is static (nonexpanding).
The search for such a solution was Einstein's original motivation for introducing
the cosmological constant. It is also remarkable to mention here that the dark
energy that explains the observed accelerating expansion of the universe may
arise due to the contribution to the vacuum energy of the EoS in a time-dependent
background.

Figures 3, a and b are the plots of cosmological constant Λ versus time in
accelerating and decelerating modes of the Universe, respectively. In both modes,
we observe that cosmological parameter is a decreasing function of time and it
approaches a small positive value at late time (i.e., at present epoch). Recent
cosmological observations [1Ä3] suggest the existence of a positive cosmological
constant Λ with the magnitude Λ(G�/c3) ≈ 10−123. These observations on
magnitude and redshift of type Ia supernova suggest that our Universe may be
an accelerating one with induced cosmological density through the cosmological
Λ-term. But this does not rule out the decelerating ones which are also consistent
with these observations (Vishwakarma [125]). Thus the nature of Λ in our derived
DE model is supported by recent observations.

From Eqs. (28)Ä(33), it can be seen that the spatial volume is zero at t =
−c1/n	, and it increases with the cosmic time. The parameters Hi, H , θ, and
σ diverge at the initial singularity. There is a point type singularity [132] at
t = −c1/n	 in the model. The mean anisotropic parameter is an increasing
function of time for n > 3 whereas for n < 3 it decreases with time. Thus, the
dynamics of the mean anisotropy parameter depends on the value of n. Since
σ2/θ2 = const (from early to late time), the model does not approach isotropy
through the whole evolution of the universe.

The main features of the model are as follows:
• The DE model is based on exact solutions of the Einstein ˇeld equations

for the anisotropic B-I space-time ˇlled with perfect �uid with variable EoS
parameter ω. The exact solutions of the Einstein ˇeld equations have been
obtained by assuming power-law volumetric expansion in a way to cover the
accelerating and decelerating phases of the universe. The derived DE models add
one more feather to the literature.
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Fig. 3. a) The cosmological constant Λ versus t in power-law expansion for q < 0. Here
� = 0.33, n = 0.5, m = 2, c4 = 2. b) The cosmological constant Λ versus t in power-law
expansion for q > 0. Here � = 0.33, n = 2, m = 2, c4 = 2

• In both accelerating and decelerating phases of the universe, it is observed
that, in early stage, the EoS parameter ω is positive, i.e., the universe was a matter
dominated in early stage, but in late time, the universe is evolving with negative
values, i.e., the present epoch (see, Fig. 1). Thus our DE model represents
realistic model.

• The DE model presents the dynamics of EoS parameter ω provided by
Eqs. (35) and may accommodate with the acceptable range with recent obser-
vations (Knop et al. [50]; Tegmark et al. [10]; Hinshaw et al. [51]; Komatsu
et al. [21]). It is already observed and shown in the previous section that for
different cosmic times, we obtain cosmological constant dominated universe,
quintessence and phantom �uid dominated universe (Caldwell [102]), represent-
ing the different phases of the universe through out the evolving process. Unlike
RobertsonÄWalker (RW) metric, Bianchi type metrics can admit a DE that yields
an anisotropic EoS parameter according to the characteristics. The cosmological
data Å from the large-scale structures and type Ia supernovae observations Å
do not rule out the possibility of an anisotropic DE either [133,134]. Therefore,
one cannot rule out the possibility of anisotropic nature of DE at least in the
framework of B-I space-time.

• Our DE model is of interest because the nature of decaying vacuum energy
density Λ(t) is supported by recent cosmological observations. These observations
on magnitude and redshift of type Ia supernova suggest that our Universe may be
an accelerating one with induced cosmological density through the cosmological
Λ-term.
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2. BIANCHI TYPE-II ANISOTROPIC DARK-ENERGY MODELS

We consider a homogeneous LRS Bianchi type-II space-time for which

ds2 = ηijθ
iθj , ηij = (1, 1, 1,−1), (52)

where the Cartan bases θi are given by

θ1 = Adx, θ2 = B(dy + xdz), θ3 = Adz, θ4 = dt, (53)

where A and B are functions of time only, since in LRS B-II, T 1
1 = T 2

2 = T 3
3

(see Saha [135]).
In a comoving co-ordinate system, the Einstein ˇeld equations (4) with (3) for

LRS B-II metric subsequently lead to the following system of three independent
equations:

Ä

A
+

B̈

B
+

ȦḂ

AB
+

1
4

B2

A4
= −ωρ, (54)

2
Ä

A
+

Ȧ2

A2
− 3

4
B2

A4
= −ωρ, (55)

2
ȦḂ

AB
+

Ȧ2

A2
− 1

4
B2

A4
= ρ, (56)

where an over dot denotes ordinary differentiation with respect to t.
The spatial volume for LRS B-II is given by

V 3 = A2B. (57)

We deˇne a = (A2B)1/3 as the average scale factor of LRS B-II model (52) so
that the Hubble parameter is given by

H =
ȧ

a
=

1
3

(
2Ȧ

A
+

Ḃ

B

)
. (58)

The ˇeld equations (54)−(56) are a system of three independent equations in
ˇve unknown parameters A, B, ρ, ω, δ, or γ. Two additional constraints relating
these parameters are required to obtain explicit solutions of the system.

Firstly, we apply the variation law for the generalized Hubble parameter that
yields a constant value of deceleration parameter q = n − 1. Following the
technique as in B-I space-time, we obtain the law of average scale factor ©aª as

a = (kt + c0)1/n for n �= 0, (59)
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and
a = c1 eDt for n = 0, (60)

where k = nD, and c0, c1 are constants of integration.
Secondly, we assume that the expansion (θ) in the model is proportional to

the shear scalar σ. This condition leads to

A = Bm, (61)

where m is a constant.
In the following Subsecs. 2.1, 2.2, we consider two types of solutions, i.e.,

for power-law and exponential form volumetric expansion.
2.1. Case (i): When n �= 0, i.e., Model for Power-Law Expansion. After

solving the ˇeld equations (54)Ä(56) for the power-law volumetric expansion (59)
by considering Eqs. (58) and (61), we obtain the expressions for metric coefˇcient
as follows:

B = 	(kt + c0)
1

mr , (62)

A = L(kt + c0)
1
r , (63)

where c2 is an integrating constant and 	 = c
3

2m+1
2 , L = 	m, r =

n(2m + 1)
3m

.

Thus, the Hubble parameter H , scalar of expansion θ, shear scalar σ, and the
average anisotropy parameter Am are computed as

H =
k

n(kt + c0)
, (64)

θ = 3H =
3k

n(kt + c0)
, (65)

σ2 =
(m − 1)2

3m2r2

k2

(kt + c0)2
, (66)

Am =
n2(2m2 + 1)

3m2r2
− 2n(2m + 1)

3mr
+ 1. (67)

Equations (65) and (66) lead to

σ2

θ2
=

n2(m − 1)2

27m2r2
. (68)

From the above results, it can be seen that the spatial volume is zero at t = −c0/k,
and it increases with the cosmic time. The parameters H, θ, and σ diverge at
the initial singularity t = −c0/k. There is a point type singularity at t = −c0/k
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(MacCallum [132]). The mean anisotropic parameter is uniform through the
whole evolution of the universe. Thus, the dynamics of the mean anisotropy
parameter does not depend on the cosmic time t. Since σ2/θ2 = const, the
model does not approach isotropy through the whole evolution of the universe.

The energy density of the �uid and the deviation-free EoS parameter are
obtained as

ρ =
k2(m + 2)

mr2

1
(kt + c0)2

− 1
4
	0(kt + c0)

2−4m
mr , (69)

ω =

3
4
	0(kt + c0)

2−4m
mr − k2(3 − 2r)

r2

1
(kt + c0)2

k2(m + 2)
mr2

1
(kt + c0)2

− 1
4
	0(kt + c0)

2−4m
mr

, (70)

where 	0 = 	2−4m.
So, if the present work is compared with experimental results already men-

tioned in Introduction, then one can conclude that the limit of ω given by (70) may
accommodated with the acceptable range of EoS parameter. Also it is observed
that for t = tc, ω vanishes, where tc is a critical time given by

tc =
1
k

[
4k2(3 − 2r)

3	0r2

] mr
2(mr−2m+1)

− c0

k
. (71)

Thus, for this particular time our model represents dusty universe. We also note
that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where ω < 0,
converted to the dark energy dominated phase of universe as shown in Fig. 4.

For the value of ω to be consistent with observation (Knop et al. [50]), we
have the following general condition for n �= 0:

t1 < t < t2, (72)

where

t1 =
1
k

{
k2[m(1.33 − 2r) − 3.34]

0.33m	0r2

} mr
2(mr−2m+1)

− c0

k
(73)

and

t2 =
1
k

{
k2[m(2.38 − 2r) − 1.24]

0.6m	0r2

} mr
2(mr−2m+1)

− c0

k
. (74)

For this constraint, the EoS parameter ω is restricted to the limit −1.67 <
ω < −0.62 which is exactly in good agreement with the limit obtained from
observational results coming from SN Ia data (Knop et al. [50]).

For the value of ω to be consistent with observation (Tegmark et al. [10]),
we have the following general condition for n �= 0:

t3 < t < t4, (75)
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Fig. 4. a) The EoS parameter ω versus t in power-law expansion for q < 0. Here
�0 = 1.3, r = 2, n = 0.5, m = 2, k = 0.35. b) The EoS parameter ω versus t in
power-law expansion for q > 0. Here �0 = 1.3, r = 2.7, n = 2, m = 0.5, k = 0.35

where

t3 =
1
k

{
k2[m(1.67 − 2r) − 2.66]

0.44m	0r2

} mr
2(mr−2m+1)

− c0

k
(76)

and

t4 =
1
k

{
k2[m(2.21 − 2r) − 1.58]

0.55m	0r2

} mr
2(mr−2m+1)

− c0

k
. (77)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data with
CMB anisotropy and galaxy clustering statistics (Tegmark et al. [10]).

For the value of ω to be consistent with the latest observations (Hin-
shaw et al. [51]; Komatsu et al. [21]), we have the following general condi-
tion for n �= 0:

t5 < t < t6, (78)

where

t5 =
1
k

{
k2[m(1.56 − 2r) − 2.88]

0.39m	0r2

} mr
2(mr−2m+1)

− c0

k
(79)

and

t6 =
1
k

{
k2[m(2.08 − 2r) − 1.84]

0.52m	0r2

} mr
2(mr−2m+1)

− c0

k
. (80)

For this constraint, we obtain the dark energy EoS to −1.44 < ω < −0.92 which
is in good agreement with the limit of the latest observational result in 2009 at
68% conˇdence level (Hinshaw et al. [51]; Komatsu et al. [21]).
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We also observe that if

t0 =
1
k

{
4k2[m(1 − r) − r]

m	0r3

} mr
2(mr−2m+1)

− c0

k
, (81)

then for t = t0, ω = −1 (i.e., cosmological constant dominated universe), and
when t < t0, ω > −1 (i.e., quintessence), and for t > t0, ω < −1 (i.e., super
quintessence or phantom �uid dominated universe) (Caldwell [49]).

Figure 4, a, b depicts the variations of EoS parameter (ω) with cosmic time t
in the two modes of evolution of the universe (i.e., for q < 0 and q > 0,
respectively), as a representative case with appropriate choice of constants of
integration and other physical parameters using reasonably well-known situations.
From Fig. 4, a, we conclude that in early stage of evolution of the universe, the
EoS parameter ω was very small but positive (i.e., the universe was matter-
dominated) and at late time it is evolving with negative value (i.e., at the present
time). The earlier real matter later on converted to the dark-energy-dominated
phase of the universe. In decelerating phase (q > 0), the variation of ω with t is
clearly shown in Fig. 4, b. From this ˇgure, we observe that ω increases rapidly
in the initial stage, it attains maximum value at some epoch closer to the early
phase of the universe. In the later stage, it decreases sharply from its maximum
value with time to a small negative value and then tends to zero (which may be
suitable to describe dusty universe at this moment).

From Eq. (69), we note that energy density of the �uid ρ(t) is a decreasing
function of time and ρ > 0 under condition

t � 1
k

[
4k2(m + 2)

mr2	0

] mr
2(mr−m+1)

− c0

k
. (82)

This behaviour of the energy density ρ(t) is clearly shown in Fig. 5 in the two
modes of the evolution of the universe. It is evident that ρ(t) remains positive
in both the modes of evolution. However, it decreases more sharply with cosmic
time in the decelerating universe compared to accelerating universe.

Using equations (64) and (69), in Eq. (50), the cosmological constant is
obtained as

Λ =
[
3k2

n2
− k2(m + 2)

mr2

]
1

(kt + c0)2
+

1
4
	0(kt + c0)

2−4m
mr . (83)

From Eq. (83), we see that the cosmological term Λ is a decreasing function

of time and it is always positive if
r

n
>

√
m + 2
3m

. From Fig. 6, a, b, we note

this behaviour of cosmological term Λ in the derived DE models in both modes
(accelerating and decelerating). We observe that Λ is a decreasing function of
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Fig. 5. a) The energy density ρ versus t in power-law expansion for q < 0. Here
�0 = 1.3, r = 2, n = 0.5, m = 2, k = 0.35. b) The energy density ρ versus t in
power-law expansion for q > 0. Here �0 = 1.3, r = 2.7, n = 2, m = 0.5, k = 1.4

Fig. 6. a) The cosmological term Λ versus t in power-law expansion for q < 0. Here
�0 = 1.3, r = 2, n = 0.5, m = 2, k = 1.4. b) The cosmological term Λ versus t in
power-law expansion for q > 0. Here �0 = 1.3, r = 2.7, n = 2, m = 0.5, k = 1.4

time and it approaches a small positive value at present epoch in both the modes.
It is remarkable to mention here that DE that explains the observed accelerating
expansion of the universe may arise due to the contribution to the vacuum energy
of the EoS in a time-dependent background. Thus, our DE model is consistent
with the results of recent observations.

2.2. Case (ii): When n = 0, i.e., Model for Exponential Expansion. After
solving the ˇeld equations (54)Ä(56) for the exponential volumetric expansion
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(60) by considering Eqs. (58) and (61), we obtain the scale factors as follows:

B = �l0 eκt, (84)

A = �L0 emκt, (85)

where �l0 is an integrating constant and �L0 = �lm0 , κ =
3D

2m + 1
.

Thus the Hubble parameter H , scalar of expansion θ, shear scalar σ, and the
average anisotropy parameter Am are given by

H =
κ(2m + 1)

3
, (86)

θ = κ(2m + 1), (87)

σ2 =
κ2(m − 1)2

3
, (88)

Am = 2
(

m − 1
2m + 1

)2

. (89)

Equations (87) and (88) lead to

σ2

θ2
=

1
3

(
m − 1
2m + 1

)2

. (90)

The energy densities of the �uid and deviation-free EoS parameter ω are ob-
tained as

ρ = mκ2(m + 2) − 1
4
	1 e2κ(1−2m)t, (91)

ω =

3
4
	1 e2κ(1−2m)t − 3(mκ)2

mκ2(m + 2) − 1
4
	1, e2κ(1−2m)t

, (92)

where 	1 = �l2(1−2m)
0 .

For the value of ω given by (92) to be consistent with observation (Knop
et al. [50]), we have the following general condition:

t1 < t < t2, (93)

where

t1 =
1

κ(1 − 2m)
ln

⎛
⎝κ

√
m(1.23m− 3.34)

0.3	1

⎞
⎠ (94)
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and

t2 =
1

κ(1 − 2m)
ln

⎛
⎝κ

√
m(2.38m− 1.24)

0.6	1

⎞
⎠. (95)

For this constraint, we obtain −1.67 < ω < −0.62, which matches with the limit
obtained from observational results coming from SNe Ia data [50].

For the value of EoS parameter ω to be consistent with observation (Tegmark
et al. [10]), we have the following general condition:

t3 < t < t4, (96)

where

t3 =
1

κ(1 − 2m)
ln

⎛
⎝κ

√
m(1.67m− 2.66)

0.41	1

⎞
⎠ (97)

and

t4 =
1

κ(1 − 2m)
ln

⎛
⎝κ

√
m(2.21m− 1.58)

0.55	1

⎞
⎠. (98)

For this constraint, we obtain −1.33 < ω < −0.79, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data with
CMB anisotropy and galaxy clustering statistics [10].

For the value of ω to be consistent with the latest observations (Hinshaw
et al. [51]; Komatsu et al. [21]), we have the following general condition:

t5 < t < t6, (99)

where

t5 =
1

κ(1 − 2m)
ln

⎛
⎝κ

√
m(1.56m− 2.88)

0.39	1

⎞
⎠ (100)

and

t6 =
1

κ(1 − 2m)
ln

⎛
⎝κ

√
m(2.08m− 1.84)

0.52	1

⎞
⎠. (101)

For this constraint, we obtain the dark energy EoS to −1.44 < ω < −0.92, which
matches with the limit of the latest observational result [21,51].

We also observe that for t = tc, ω vanishes, where tc is a critical time
given by

tc =
1

κ(1 − 2m)
Ln

(
2mκ√

	1

)
. (102)
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Fig. 7. The EoS parameter ω versus t in exponential-law expansion for q = −1. Here
m = 1, κ = 0.5, �1 = 1.3

We note that the earlier real matter at t � tc, where ω � 0, later on at t > tc,
where ω < 0 converted to the dark-energy dominated phase of universe which
can be seen in Fig. 7.

Also we see that if

t0 =
1

κ(1 − 2m)
Ln

⎛
⎝2κ

√
m(m − 1)

	1

⎞
⎠, (103)

then, for t = t0, ω = −1 (i.e., cosmological constant dominated universe), and
when t < t0, ω > −1 (i.e., quintessence), and for t > t0, ω < −1 (i.e., super
quintessence or phantom �uid dominated universe).

Using Eqs. (86) and (91) in Eq. (50), the cosmological constant in this case
is obtained as

Λ =
1
4
	1 e2κ(1−2m)t +

κ2(m − 1)2

3
. (104)

From Eqs. (91), it is noted that the energy density of the �uid ρ(t) is a decreasing
function of time and ρ(t) > 0 under condition

t � 1
κ(1 − 2m)

ln

⎡
⎣2κ

√
m(m + 2)

	1

⎤
⎦. (105)

This behaviour of energy density ρ(t) is shown in Fig. 8.
From Eq. (104), we observe that the cosmological term Λ is a decreasing

function of time and it is positive when m � 2. From Fig. 9, we note this
behaviour of cosmological term Λ in the derived DE model. Thus, our DE model
is consistent with the results of recent observations.
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Fig. 8. The energy density ρ versus t in
exponential-law expansion for q = −1.
Here m = 2, κ = 0.5, �1 = 1.3

Fig. 9. The cosmological term Λ versus t
in exponential-law expansion for q = −1.
Here m = 2, κ = 0.5, �1 = 1.3

The main features of the models are as follows:

• The DE models are based on exact solutions of the Einstein ˇeld equations
for the anisotropic LRS B-II space-time ˇlled with perfect �uid with variable
EoS parameter ω. The exact solutions of the Einstein ˇeld equations have been
obtained by assuming two different volumetric expansion laws in a way to cover
all possible expansions, namely: power-law and exponential-law expansion. The
literature has hardly witnessed this sort of exact solutions for the anisotropic LRS
B-II space-time. So the derived DE models add one more feather to the literature.

• In both cases (i) and (ii), it is observed that, in early stage, the EoS
parameter ω is positive, i.e., the universe was matter dominated in early stage,
but in late time, the universe is evolving with negative values, i.e., the present
epoch (see, Fig. 4). Thus our DE models represent realistic models.

• In both cases, the DE models present the dynamics of EoS parameter ω
provided by Eqs. (70) and (92), respectively, may be accommodated with the
acceptable ranges −1.67 < ω < −0.62 of SNe Ia data (Knop et al. [50]),
−1.33 < ω < −0.79 (Tegmark et al. [10]) and −1.44 < ω < −0.92 (Hinshaw
et al. [51]; Komatsu et al. [21]). It is already observed and shown in previous sec-
tions that for different cosmic times, we obtain cosmological constant dominated
universe, quintessence and phantom �uid dominated universe (Caldwell [49]), rep-
resenting the different phases of the universe through out the evolving process.
Unlike RobertsonÄWalker (RW) metric, Bianchi type metrics can admit a DE
that wields an anisotropic EoS parameter according to the characteristics. The
cosmological data Å from the large-scale structures (Tegmark et al. [10]) and



ACCELERATING DARK ENERGY MODELS OF THE UNIVERSE 591

type Ia supernovae (Riess et al. [5]; Astier et al. [136] observations Å do not rule
out the possibility of an anisotropic DE either (Koivisto and Mota [133]; Mota
et al. [134]). Therefore, one cannot rule out the possibility of anisotropic nature
of DE at least in the LRS B-II framework.

• Our DE models are of interest because in both the cases the nature of decay-
ing vacuum energy density Λ(t) is supported by recent cosmological observations
(Garnavich et al. [137, 138]; Perlmutter et al. [2, 3]; Riess et al. [134, 139, 140];
Schmidt et al. [141]). Recent observational data BOOMERanG (de Bernardis
et al. [8]), MAXIMA (Hanany et al. [9]) and Sperger [12] reveal the presence of
a nonvanishing positive cosmological term Λ.

3. BIANCHI TYPE-III ANISOTROPIC DARK-ENERGY MODELS

We consider the space-time of general Bianchi type-III with the metric

ds2 = −dt2 + A2(t) dx2 + B2(t) e−2axdy2 + C2(t) dz2, (106)

where a is the constant.
The solutions of the Einstein ˇeld equations are obtained by Pradhan and

Amirhashchi [78]. We obtain the expressions for metric coefˇcient as follows:

C = (	 + 1)
1

�+1

[
k1

		2
t + k2

] 1
�+1

, (107)

B = 	2(	 + 1)
�

�+1

[
k1

		2
t + k2

] �
�+1

, (108)

and

A = m	2(	 + 1)
�

�+1

[
k1

		2
t + k2

] �
�+1

, (109)

respectively, where m, k1, k2 are constants of integration and 	2 = 	
1

1−m1
1 m�,

	 =
m1

1 − m1
.

Hence, the metric (106) reduces to the form

ds2 = −dt2 +

[
m	2(	 + 1)

�
�+1

(
k1

		2
t + k2

) �
�+1

]2

dx2 +

+

[
	2(	+1)

�
�+1 e−ax

(
k1

		2
t + k2

) �
�+1

]2

dy2+

[
(	+1)

1
�+1

(
k1

		2
t + k2

) 1
�+1

]2

dz2.

(110)
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Using the suitable transformation

m	2(	 + 1)
�

�+1 x = X, 	2(	 + 1)
�

�+1 y = Y,

(	 + 1)
1

�+1 z = Z,
k1

		2
t + k2 = T,

(111)

the metric (110) is reduced to

ds2 = −β2 dT 2 + T 2LdX2 + T 2L exp
(
−2a

N
X

)
dY 2 + T

2L
� dZ2, (112)

where

β =
		2

k1
, M = (	 + 1)

1
�+1 , N = m	2M, L =

	

	 + 1
. (113)

The expressions for the scalar of expansion θ, average generalized Hubble's para-
meter, magnitude of shear σ2, the average anisotropy parameter Am, deceleration
parameter q, and proper volume V for the model (112) are given by

θ = 3H =
(2	 + 1)L

	βT
, (114)

σ2 =
1
3

(
(	 − 1)L

	βT

)2

, (115)

Am = 2
(

	 − 1
2	 + 1

)2

, (116)

q = − 	β

(2	 + 1)
, (117)

V =
N2

m
M

1
� T

L(2�+1)
� . (118)

The energy density of the �uid, the equation of state parameter ω, and the
skewness parameter γ (i.e., deviation from ω along z-axis) are obtained as

ρ =
L2(	 + 2)

	β2T 2
− a2

N2T 2L
, (119)

ω =
L(	2 + 	 + 1) − 	(	 + 1)

	2a2β2

N2LT 2(L−1)
− L	(	 + 2)

, (120)

γ =

a2

N2T 2L
+

L

	2β2T 2
[	(	 − 1) − L(2	2 − 	 − 1)]

L2(	 + 2)
	β2T 2

− a2

N2T 2L

. (121)
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If the present work is compared with experimental results mentioned in B-I,
LRS B-II, then one can conclude that the limit of ω provided by Eq. (120) may
accommodate with the acceptable range of EoS parameter. Also it is observed
that either for T = 0 or for m1 = 0, the ω vanishes and our model represents a
dusty universe.

For the value of ω to be consistent with observation (Knop et al. [50]), we
have the following general condition:

T1 < T < T2, (122)

where

T1 =

[
0.79	aβ

N
√

L{	(	 + 1) − L(0.38	2 − 0.24	 + 1)}

] 1
(L−1)

(123)

and

T2 =

[
1.39	aβ

N
√

L{	(	 + 1) − L(0.67	2 − 2.34	 + 1)}

] 1
(L−1)

. (124)

For this constraint, we obtain −1.67 < ω < −0.62, which is in good agreement
with the limit obtained from observational results coming from SNe Ia data (Knop
et al. [50]). For a special case for which 	 = 1, a = 0.5, β = 2, L = 0.5, N = 1,
where 0.899700 < T < 1.153226, we obtain the same limit −1.67 < ω < −0.62.

From Eq. (120), we have observed that, at cosmic time

T =

[
	aβ

N
√

L{L	 + 	(	 + 1) − 1}

] 1
(L−1)

, (125)

ω = −1 (i.e., cosmological constant dominated universe) and when

T <

[
	aβ

N
√

L{L	 + 	(	 + 1) − 1}

] 1
(L−1)

, (126)

ω > −1 (i.e., quintessence) and when

T >

[
	aβ

N
√

L{L	 + 	(	 + 1) − 1}

] 1
(L−1)

, (127)

ω < −1 (i.e., super quintessence or phantom �uid dominated universe) (Cald-
well [49]).

The variation of the EoS parameter ω with cosmic time T is clearly shown in
Fig. 10, as a representative case with appropriate choice of constants of integration



594 PRADHAN A., SAHA B.

Fig. 10. The plot of the EoS parameter
ω versus T and L

Fig. 11. The plot of the energy density ρ
versus T and L

and other physical parameters using reasonably well-known situations. From
Fig. 10, we conclude that in early stage of evolution of the universe, the EoS
parameter ω was very small but positive (i.e, the universe was matter dominated)
and at late time it is evolving with negative value (i.e., at the present time). The
earlier real matter later on converted to the dark energy dominated phase of the
universe.

From Eq. (119), we note that ρ(t) is a decreasing function of time and ρ > 0
for all times. This behaviour is clearly depicted in Fig. 11 as a representative case
with appropriate choice of constants of integration and other physical parameters
using reasonably well-known situations.

Using equations (114) and (119), in Eq. (50), the cosmological constant is
obtained as

Λ =
L2(2	 + 1)2

3	2β2T 2
− L2(	 + 2)

	β2T 2
+

a2

N2T 2L
. (128)

From Eq. (128), we see that the cosmological term Λ is a decreasing function of
time and it approaches a small positive value at late time. From Fig. 12, we note
this behaviour of cosmological term Λ in the model. It is remarkable to mention
here that the dark energy that explains the observed accelerating expansion of the
universe may arise due to the contribution to the vacuum energy of the EoS in
a time-dependent background. Thus, our DE model is consistent with the results
of recent observations.

From the above results, it can be seen that the spatial volume is zero at
T = 0 and it increases with the increase of T . This shows that the universe
starts evolving with zero volume at T = 0 and expands with cosmic time T . In
derived model, the energy density tends to inˇnity at T = 0. The model has the
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Fig. 12. The plot of the cosmological
term Λ versus T and L

point-type singularity at T = 0. The shear
scalar diverges at T = 0. As T → ∞, the
scale factors A(t), B(t), and C(t) tend to
inˇnity. The energy density becomes zero
as T → ∞. The expansion scalar and shear
scalar all tend to zero as T → ∞. The mean
anisotropy parameter is uniform throughout
the whole expansion of the universe, when
	 �= −1/2, but for 	 = −1/2 it tends to inˇn-
ity. This shows that the universe is expand-
ing with the increase of cosmic time, but the
rate of expansion and shear scalar decrease
to zero and tend to isotropic. At the ini-
tial stage of expansion, when ρ is large, the
Hubble parameter is also large, and with the
expansion of the universe H , θ decreases
as ρ does. Since σ2/θ2 = const provided
	 �= −1/2, the model does not approach isotropy at any time. The cosmological
evolution of Bianchi type-III space-time is expansionary, with all the three scale
factors monotonically increasing the function of time. The dynamics of the mean
anisotropy parameter depends on the value of 	.

From (117), we observe that

(i) for 	 < −1/2, q > 0,

i.e., the model is decelerating and

(ii) for 	 > −1/2, q < 0,

i.e., the model is accelerating. Thus, this case implies an accelerating model of
the universe. Recent observations of type Ia supernovae reveal that the present
universe is in accelerating phase, and deceleration parameter lies somewhere in
the range −1 < q � 0. It follows that our DE model of the universe is consistent
with the recent observations.

4. BIANCHI TYPE-V ANISOTROPIC DARK-ENERGY MODELS

We consider the space-time metric of the spatially homogeneous and anisotropic
Bianchi type-V of the form

ds2 = −dt2 + A2 dx2 + e2αx
[
B2 dy2 + C2 dz2

]
, (129)

where the metric potentials A, B, and C are functions of cosmic time t alone
and α is a constant.
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The Einstein ˇeld equations (in gravitational units 8πG = c = 1) read as

Ri
j −

1
2
Rgi

j = −T
(m)i
j − T

(de)i
j , (130)

where T
(m)i
j and T

(de)i
j are the energy-momentum tensors of perfect �uid and

DE, respectively. These are given by

T
(m)i
j = diag [−ρ(m), p(m), p(m), p(m)],

= diag [−1, ω(m), ω(m), ω(m)]ρm,
(131)

and
T

(de)i
j = diag [−ρ(de), p(de), p(de), p(de)],

= diag [−1, ω(de), ω(de), ω(de)]ρ(de),
(132)

where ρ(m) and p(m) are, respectively, the energy density and pressure of the
perfect �uid component or ordinary baryonic matter while ω(m) = p(m)/ρ(m) is
its EoS parameter. Similarly, ρ(de) and p(de) are, respectively, the energy density
and pressure of the DE component while ω(de) = p(de)/ρ(de) is the corresponding
EoS parameter. We assume the four-velocity vector ui = (1, 0, 0, 0) satisfying
uiuj = −1.

In a comoving coordinate system (ui = δi
0), Einstein's ˇeld equations (130)

with (131) and (132) for B-V metric (129) subsequently lead to the following
system of equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
− α2

A2
= −ω(m)ρ(m) − ω(de)ρ(de), (133)

C̈

C
+

Ä

A
+

ĊȦ

CA
− α2

A2
= −ω(m)ρ(m) − ω(de)ρ(de), (134)

Ä

A
+

B̈

B
+

ȦḂ

AB
− α2

A2
= −ω(m)ρ(m) − ω(de)ρ(de), (135)

ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
− 3α2

A2
= ρ(m) + ρ(de), (136)

2Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (137)

The law of energy-conservation equation (T ij
;j = 0) yields

ρ̇(m) + 3(1 + ω(m))ρ(m)H + ρ̇(de) + 3(1 + ω(de))ρ(de)H = 0. (138)
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The Raychaudhuri equation is found to be

θ̇ = −
(
1 + 3ω(de)

)
ρ(de) − 1

3
θ2 − 2σ2. (139)

In order to solve the ˇeld equations completely, we ˇrst assume that the perfect
�uid and DE components interact minimally. Therefore, the energy-momentum
tensors of the two sources may be conserved separately.

The energy-conservation equation (T (m)ij
;j = 0) of the perfect �uid gives

ρ̇(m) + 3ρ(m)(1 + ω(m))H = 0, (140)

whereas the energy-conservation equation (T (de)ij
;j = 0) of the DE component

leads to
ρ̇(de) + 3ρ(de)(ω(de) + 1)H = 0. (141)

Following, Akarsu and Kilinc [73, 74], Yadav [54], and Kumar and Yadav [90],
we assume the EoS parameter of the perfect �uid to be constant, that is,

ω(m) =
p(m)

ρ(m)
= const, (142)

while ω(de) has been permitted to be a function of time since the current cosmolog-
ical data from SN Ia, CMB and large scale structures mildly favour dynamically
evolving DE crossing the PDL as discussed in the previous section.

Equation (140) can be integrated to obtain

ρ(m) = ρ0a
−3(ω+1), (143)

where ρ0 is a positive constant of integration.
Following Saha et al. [142], we take the following ansatz for the scale factor,

where the increase in term of time evolution is

a(t) =
√

tn et, (144)

where n is a positive constant. This ansatz generalized the one proposed by
Amirhashchi et al. [83]. In literature it is common to use a constant deceleration
parameter [73, 74, 85, 90]. The motivation to choose such time-dependent DP is
behind the fact that the universe is accelerated expansion at present as observed in
recent observations of type Ia supernova [1Ä6] and CMB anisotropies [7Ä9] and
decelerated expansion in the past. Also, the transition redshift from deceleration
expansion to accelerated one is about 0.5. Now for the universe which was dece-
lerating in past and accelerating at the present time, the DP must show signature
�ipping [143Ä145]. So, in general, the DP is not a constant but time variable.
The motivation to choose such a scale factor (151) yields a time-dependent DP,

q =
2n

(n + t)2
− 1. (145)
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Fig. 13. The deceleration parameter q ver-
sus t

From Eq. (145), we observe that q > 0
for t <

√
2n − n and q < 0 for

t >
√

2n − n. It is observed that for
0 < n < 2, our model is evolving from
deceleration phase to acceleration one.
Also, recent observations of SNe Ia ex-
pose that the present universe is accel-
erating and the value of DP lies to some
place in the range −1 < q < 0. It fol-
lows that in our derived model, one can
choose the value of DP consistent with
the observation. Figure 13 graphs the
deceleration parameter (q) versus time
which gives the behaviour of q from de-
celerating to accelerating phase for dif-
ferent values of n.

Using (151), we get the following
expressions for scale factors:

A(t) = (tn et)1/2, (146)

B(t) = m(tn et)1/2 exp
(

	

∫
(tn et)−3/2dt

)
, (147)

C(t) = m−1(tn et)1/2 exp
(
−	

∫
(tn et)−3/2dt

)
. (148)

The expressions for physical parameters such as the Hubble parameter (H), scalar
of expansion (θ), shear scalar (σ), spatial volume V , and the anisotropy parame-
ter (Am) are, respectively, given by

θ = 3H =
3
2

(n

t
+ 1

)
, (149)

σ2 = 	2
(
tn et

)−3
, (150)

V =
(
tn et

)3/2 exp (2αx), (151)

Am =
8	2

3

(n

t
+ 1

)−2 (
tn et

)−3
. (152)

It is observed that at t = 0, the spatial volume vanishes and other parameters θ,
σ, H diverge. Hence, the model starts with the Big Bang singularity at t = 0.
This is a point type singularity since directional scale factors A(t), B(t), and
C(t) vanish at initial time.
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Fig. 14. The anisotropic parameter Am

versus t. Here � = 1
Fig. 15. The DE EoS parameter ω(de) ver-
sus t. Here ρ0 = 1, α = 1, � = 1,
ω(m) = 0.5

Figure 14 depicts the variation of anisotropic parameter (Am) versus cosmic
time t. From the ˇgure, we observe that Am decreases with time and tends to
zero as t → ∞ for all values of n. Thus, the observed isotropy of the universe
can be achieved in our derived model at present epoch. The shear tensor also
tends to zero in this model.

The energy density (ρ(m)) of perfect �uid, the pressure (p(de)) of DE com-
ponent, DE density (ρ(de)), and the EoS parameter (ω(de)) of DE, for this model,
are given by

ρ(m) = ρ0(tn et)−
3
2 (1+ω(m)), (153)

p(de) = −3
4

(n

t
+ 1

)2

+
n

t2
−	(tn et)−3 +α2(tn et)−1−ω(m)ρ0(tn et)−

3
2 (1+ω(m)),

(154)

ρ(de) = −ρ0(tn et)−
3
2 (1+ω(m)) +

3
4

(n

t
+ 1

)2

+ 	(tn et)−3−3α2(tn et)−1, (155)

ω(de) =

= −
3
4

(n

t
+ 1

)2

− n

t2
+ 	(tn et)−3− α2(tn et)−1+ ω(m)ρ0(tn et)−

3
2 (1+ω(m))

3
4

(n

t
+ 1

)2

+ 	(tn et)−3 − 3α2(tn et)−1 − ρ0(tn et)−
3
2 (1+ω(m))

.

(156)

Figure 15 depicts the variation of the DE EoS parameter ω(de) versus cosmic
time t. We observe from the ˇgure that for n < 1, ω(de) varies from nondark
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region crossing the PDL (ω(de) = −1) and ultimately approaches the phantom
region (ω(de) < −1). But for n � 1, the variation of ω(de) starts from cosmolog-
ical constant region (ω(de) = −1) and ˇnally approaches the quintessence region
(ω(de) > −1). Therefore, we observe that for n � 1, the variation of ω(de) in
our derived model is consistent with the recent observations of SNe Ia data [50],
SNe Ia data with CMBR anisotropy and galaxy clustering statistics [10].

The dark energy with ω(de) < −1, the phantom component of the universe,
leads to uncommon cosmological scenarios as it was pointed out by Caldwell
et al. [146]. First of all, there is a violation of the dominant energy condition
(DEC), since ρ + p < 0. The energy density grows up to inˇnity in a ˇnite
time, which leads to a big rip, characterized by a scale factor blowing up in this
ˇnite time. These sudden future singularities are, nevertheless, not necessarily
produced by a �uid violating DEC. Cosmological solutions for phantom matter
which violate the weak energy condition were found by Dabrowski et al. [147].
Caldwell [49], Srivastava [40], Yadav [54] have investigated phantom models
with ω(de) < −1 and also suggested that at late time, phantom energy has
appeared as a potential DE candidate which violets the weak as well as strong
energy condition.

The left-hand sides of energy conditions have been depicted in Figs. 16 and
17 for different values of n. From Fig. 16, for n = 0.5 (i.e., phantom model)
(see, Fig. 13), we observe that

(i) ρ(de) � 0, (ii) ρ(de) + p(de) � 0, (iii) ρ(de) + 3p(de) < 0.

Thus, from the above expressions, we observe that the phantom model violates
both the strong and weak energy conditions, as expected.

Fig. 16. Energy conditions versus t for
n = 0.5. Here ρ0 = 1, � = α = 1,
ω(m) = 0.5

Fig. 17. Energy conditions versus t for
n = 1. Here ρ0 = 1, � = α = 1,
ω(m) = 0.5
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Further, from Fig. 17, for n � 1 (i.e., quintessence model) (see Fig. 13), we
observe that

(i) ρ(de) � 0, (ii) ρ(de) + p(de) � 0, (iii) ρ(de) + 3p(de) < 0.

Thus, the quintessence model violates the strong energy condition as the same is
predicted by current astronomical observations.

The perfect �uid density parameter (Ω(m)) and DE density parameter (Ω(de))
are given by

Ω(m) =
4
3
ρ0

(n

t
+ 1

)2

(tn et)−
3
2 (1+ω(m)), (157)

Ω(de) = 1 +
4
3

(n

t
+ 1

)−2 [
− ρ0(tn et)−

3
2 (1+ω(m))+ 	2(tn et)−3 − 3α(tn et)−1

]
.

(158)
Thus the overall density parameter (Ω) is obtained as

Ω = Ω(m) + Ω(de) = 1 + 	2(tn et)−3 − 3α(tn et)−1. (159)

Figure 18 depicts the variation of the density parameter (Ω) versus cosmic time t
for different values of n during the evolution of the universe. From Fig. 18,

Fig. 18. The total energy density parameter Ω
versus t. Here α = � = 1

it can be seen that the total energy den-
sity Ω tends to 1 for sufˇciently large
time which is supported by the current
observations [148Ä151].

A convenient method to describe
models close to Λ CDM is based on the
cosmic jerk parameter j, a dimension-
less third derivative of the scale factor
with respect to the cosmic time [152Ä
156]. A deceleration-to-acceleration
transition occurs for models with a
positive value of j0 and negative q0.
Flat Λ CDM models have a constant
jerk j = 1. The jerk parameter in cos-
mology is deˇned as the dimensionless
third derivative of the scale factor with
respect to cosmic time

j(t) =
1

H3

˙̈a
a

(160)

and in terms of the scale factor to cosmic time

j(t) =
(a2H2)′′

2H2
, (161)
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where the ©dotsª and ©primesª denote derivatives with respect to cosmic time and
scale factor, respectively. One can rewrite Eq. (160) as

j(t) = q + 2q2 − q̇

H
. (162)

Equations (145) and (162) reduce to

j(t) = 1 − 6n

(n + t)2
+

8n

(n + 1)3
. (163)

This value overlaps with the value j � 2.16 obtained from the combination
of three kinematical data sets: the gold sample of type Ia supernovae [5], the
SNIa data from the SNLS project [136], and the X-ray galaxy cluster distance
measurements [157] for

t = 3.45 · 10−2A − 50n

A
− n, (164)

where A = 104n[8.41 + 1.45
√

(14.4n + 33.6)]1/3.
In this section, we have studied a spatially homogeneous and anisotropic

Bianchi type-V space-time ˇlled with perfect �uid and anisotropic DE possessing
dynamic energy density. The ˇeld equations have been solved exactly with suit-
able physical assumptions. The solutions satisfy the energy conservation Eq. (138)
and the Raychaudhuri Eq. (139) identically. Therefore, exact and physically viable
Bianchi type-V model has been obtained.

The main features of the model are as follows:
• For different values of n, the anisotropic parameter Am tends to zero for

sufˇciently large time. Hence, the present model is isotropic at late time which
is consistent with the current observations.

• The present DE model has a transition of the universe from the early
deceleration phase to the recent acceleration phase (see Fig. 13), which is in good
agreement with recent observations [17].

• In the present study, we ˇnd that for n � 1, the quintessence model is
consistent with the present and expected future evolution of the universe. The
quintessence model approaches to isotropy at late time (see Figs. 13 and 15). For
other models (for n < 1), we observe the phantom scenario.

• The derived phantom model violates both the strong and weak energy con-
ditions, whereas the quintessence model violates only the strong energy condition
(see Figs. 16 and 17).

• The total density parameter (Ω) approaches 1 for sufˇciently large time
(see Fig. 18), which is reproducible with current observations [148Ä151].

• The cosmic jerk parameter in our descended model is also found to be
in good agreement with the recent data of astrophysical observations, namely the
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gold sample of type Ia supernovae [5], the SNIa data from the SNLS project [136],
and the X-ray galaxy cluster distance measurements [17].

• Our special choice of scale factor yields a time-dependent deceleration pa-
rameter which represents a model of the universe which evolves from decelerating
phase to an accelerating phase, whereas in Yadav [54], Kumar and Yadav [90]
only the evolution takes place either in an accelerating or a decelerating phase.

• For different choice of n, we can generate a class of DE models in Bianchi
type-V space-time. It is observed that such DE models are also in good harmony
with current observations. Thus, the solutions demonstrated in this paper may
be useful for better understanding of the characteristic of anisotropic DE in the
evolution of the universe within the framework of Bianchi type-V space-time.

5. BIANCHI TYPE-VI0 ANISOTROPIC DARK-ENERGY MODELS

We consider totally anisotropic Bianchi type-VI0 line element, given by

ds2 = −dt2 + A2 dx2 + B2 e2x dy2 + C2 e−2x dz2, (165)

where the metric potentials A, B, and C are functions of t alone. This ensures
that the model is spatially homogeneous.

In a comoving co-ordinate system, Einstein's ˇeld equations (4) for B-VI0
metric (165) subsequently lead to the following system of equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
+

1
A2

= −ωρ, (166)

C̈

C
+

Ä

A
+

ĊȦ

CA
− 1

A2
= −(ω + δ)ρ, (167)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
= −(ω + γ)ρ, (168)

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
− 1

A2
= ρ, (169)

Ċ

C
− Ḃ

B
= 0. (170)

Here and in what follows an over dot denotes ordinary differentiation with re-
spect to t.
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By considering constant deceleration parameter, Amirhashchi et al. [86] ob-
tained the solutions of ˇeld Eqs. (166)Ä(170) as metric functions as follows:

B(t) = 	1(kt + c1)
1

mr , (171)

C(t) = 	2(kt + c1)
1

mr , (172)

A(t) = 	3(kt + c1)
1
r , (173)

where, c3 is an integrating constant and 	1 = c
3

n(m+2)
3 , 	2 = 		1, 	3 = 	m

1 , and

r = n(m+2)
3m .

Hence, the model (165) reduces to

ds2 = −dt2+ 	2
3(kt + c1)

2
r dx2+ 	2

1(kt + c1)
2

mr e2xdy2+ 	2
2(kt + c1)

2
mr e−2xdz2.

(174)
The expressions for the Hubble parameter H , scalar of expansion θ, shear scalar σ,
and the average anisotropy parameter Am for model (174) are given by

θ = 3H =
3k

n(kt + c1)
, (175)

σ2 =
1
3

[
k(m − 1)

mr

]2 1
(kt + c1)2

, (176)

Am =
n[n(m2 + 2) − 2mr(m + 2)]

3m2r2
+ 1. (177)

The energy density of the �uid, the EoS parameter ω, and skewness para-
meters δ (or γ) (i.e., deviations from ω along y-axis and z-axis) are computed
as

ρ =
k2(2m + 1)

m2r2
(kt + c1)−2 − 	0(kt + c1)−

2
r , (178)

where 	0 = 1/	2
3,

ω =

k2(1 − 2mr)
m2r2

(kt + c1)−2 + 	0(kt + c1)−
2
r

	0(kt + c1)−
2
r − k2(2m + 1)

m2r2
(kt + c1)−2

. (179)

δ = γ =

k2{m[(m + 1) − r(m − 1)] − 2}
m2r2

(kt + c1)−2 − 2	0(kt + c1)−
2
r

	0(kt + c1)−
2
r − k2(2m + 1)

m2r2
(kt + c1)−2

.

(180)
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From Eq. (179), it is observed that the equation-of-state parameter ω is time-
dependent, it can be a function of redshift z or scale factor a as well.

If the present work is compared with experimental results (Knop et al. [50];
Tegmark et al. [10]; Hinshaw et al. [51]; Komatsu et al. [21]), then one can
conclude that the limit of ω provided by equation (179) may be accommodated
with the acceptable range of EoS parameter. Also it is observed that at t = tc, ω
vanishes, where tc is a critical time given by

tc =
1
k

(
mr

k

√
	0

2mr − 1

) r
1−r

− c1

k
. (181)

Thus, for this particular time, our model represents a dusty universe. We also
note that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where
ω < 0, is converted to the dark-energy dominated phase of universe.

For the value of ω to be consistent with observation (Knop et al. [50]), we
have the following general condition:

t1 < t < t2, (182)

where

t1 =
1
k

⎛
⎝ k

mr

√
m(2r + 3.34) + 0.67

2.67	0

⎞
⎠

r
r−1

− c1

k
(183)

and

t2 =
1
k

⎛
⎝ k

mr

√
m(2r + 1.24)− 0.38

1.62	0

⎞
⎠

r
r−1

− c1

k
. (184)

For this constraint, we obtain −1.67 < ω < −0.62 which is in good agreement
with the limit obtained from observational results coming from SNe Ia data [50].

For the value of ω to be consistent with observation (Tegmark et al. [10]),
we have the following general condition:

t3 < t < t4, (185)

where

t3 =
1
k

⎛
⎝ k

mr

√
m(2r + 2.66) + 0.33

2.33	0

⎞
⎠

r
r−1

− c1

k
(186)

and

t4 =
1
k

⎛
⎝ k

mr

√
m(2r + 1.58)− 0.21

1.79	0

⎞
⎠

r
r−1

− c1

k
. (187)
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For this constraint, we obtain −1.33 < ω < −0.79 which is in good agreement
with the limit obtained from observational results coming from SNe Ia data with
CMB anisotropy and galaxy clustering statistics [10].

For the value of ω to be consistent with the latest observations (Hinshaw
et al. [51]; Komatsu et al. [21]), we have the following general condition:

t5 < t < t6, (188)

where

t5 =
1
k

⎛
⎝ k

mr

√
m(2r + 2.88) + 0.44

2.44	0

⎞
⎠

r
r−1

− c1

k
(189)

and

t6 =
1
k

⎛
⎝ k

mr

√
m(2r + 1.84)− 0.08

1.92	0

⎞
⎠

r
r−1

− c1

k
. (190)

For this constraint, we obtain the dark-energy EoS to −1.44 < ω < −0.92 which
is in good agreement with the limit of the latest observational result [21,51].

We also observe that if

t0 =
1
k

[
k

r

√
r + 1
m	0

] r
r−1

− c1

k
, (191)

then for t = t0, ω = −1 (i.e., cosmological constant dominated universe), and
when t < t0, ω > −1 (i.e., quintessence), and for t > t0, ω < −1 (i.e., super
quintessence or phantom �uid dominated universe) (Caldwell [49]).

Figures 19 and 20 depict the variation of EOS parameter (ω) versus cosmic
time (t) in the two modes (i.e., q < 0 and q > 0) of evolution of the universe, as
a representative case with appropriate choice of constants of integration and other
physical parameters using reasonably well-known situations. From Figs. 19 and
20, we observe that in early stage of evolution of the universe, the EoS parameter
ω was positive (i.e., the universe was matter-dominated) and at late time, it is
evolving with negative value (i.e., at the present epoch). The earlier real matter
later on is converted to the dark-energy dominated phase of the universe in both
accelerating and decelerating modes.

From Eq. (178), we note that energy density of the �uid ρ(t) is a decreasing
function of time and ρ � 0, when

t � 1
k

[
k

mr

√
2m + 1

	0

] r
r−1

− c1

k
. (192)

Figures 21 and 22 are plots of energy density of the �uid (ρ) versus time in ac-
celerating and decelerating modes of the universe, respectively. Here we observe
that ρ is a positive decreasing function of time and it approaches zero as t → ∞.
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Fig. 19. The EoS parameter ω versus t
in power-law expansion for q < 0. Here
n = 0.5, m = 2, r = 0.33, k = 1, �0 = 1

Fig. 20. The EoS parameter ω versus t in
power-law expansion for q > 0. Here
n = 1.2, m = 3, r = 0.66, k = 1, �0 = 1

Fig. 21. The energy density ρ versus t
in power-law expansion for q < 0. Here
n = 0.5, m = 2, r = 0.33, k = 1,
�0 = 1

Fig. 22. The energy density ρ versus t
in power-law expansion for q > 0. Here
n = 1.2, m = 3, r = 0.66, k = 1,
�0 = 1

Using Eqs. (175) and (178) in Eq. (50), the cosmological constant is ob-
tained as

Λ =
[
3k2

n2
− k2(2m + 1)

m2r2

]
(kt + c1)−2 + 	0(kt + c1)−

2
r . (193)
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Fig. 23. The cosmological constant Λ
versus t in power-law expansion for
q < 0. Here n = 0.5, m = 2, r = 0.33,
k = 1, �0 = 1

Fig. 24. The cosmological constant Λ ver-
sus t in power-law expansion for q > 0.
Here n = 1.2, m = 3, r = 0.66, k = 1,
�0 = 1

From Eq. (193), we observe that Λ is a decreasing function of time and it is
always positive when

t >

[
1
	0

(
k2(2m + 1)

m2r2
− 3k2

n2

)] r
2(r−1)

− c1

k
. (194)

Figures 23 and 24 are plots of cosmological constant Λ versus time in accelerating
and decelerating modes of the universe, respectively. In both modes, we observe
that cosmological parameter is a decreasing function of time and it approaches
a small positive value at late time (i.e., at present epoch). Recent cosmological
observations [1Ä5] suggest the existence of a positive cosmological constant Λ
with the magnitude Λ(G�/c3) ≈ 10−123. These observations on magnitude and
redshift of type Ia supernova suggest that our universe may be an accelerating
one with induced cosmological density through the cosmological Λ-term. Thus,
the nature of Λ in our derived DE model is supported by recent observations.

It can be seen that all the kinematical parameters H , θ, and σ diverge at
the initial singularity. There is a point type singularity (MacCallum [132]) at
t = −c1/k in the model. The mean anisotropic parameter is constant and it
increases as n increases. Thus, the dynamics of the mean anisotropy parameter
depends on the value of n. Since σ2/θ2 = const, the model does not approach
isotropy through the whole evolution of the universe.

To ˇnd different solution of the previous ˇeld equations (166)Ä(170), we
take the following ansatz for the scale factor, where increase in term of time
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evolution is
a(t) =

√
tn et, (195)

where n is a positive constant. Pradhan and Amirhashchi [79] and Saha et al. [142]
have examined the relation (195) in studying two-�uid scenario for dark-energy
models in an FRW universe and accelerating DE models in Bianchi type-V space-
times, respectively. This ansatz generalized the one proposed by Amirhashchi
et al. [83]. If we put n = 0 in Eq. (195), it is reduced to a(t) =

√
et, i.e., an

exponential law of variation of scale factor. This choice of scale factor yields a
time-dependent deceleration parameter (see Eq. (201)) such that before DE era,
the corresponding solution gives in�ation and radiation/matter dominance era with
subsequent transition from deceleration to acceleration. Thus, our choice of scale
factor is physically acceptable.

It is worth to mention here that one can also select many-to-many ansatz other
than Eq. (195) which mimics accelerating universe but one should also be careful
to check the physical acceptability and stability of their corresponding solutions,
otherwise one does not prove any relation of such solutions with observable
universe. Equation (195) yields physically plausible solutions.

In this case, we obtain the expressions for metric functions as follows:

B(t) = 	1(tn et)
3

2(m+2) , (196)

C(t) = 	2(tn et)
3

2(m+2) , (197)

A(t) = 	3(tn et)
3m

2(m+2) , (198)

where, 	1 = k− 1
(m+2) , 	2 = 		1, 	3 = 	m

1 , and k is an integrating constant.
Hence, the model (165) reduces to

ds2 = −dt2 + 	2
3(t

n et)
6m

(m+2) dx2 + 	2
1(t

n et)
6

(m+2) dy2 + 	2
2(t

n et)
6

(m+2) dz2. (199)

The expressions for the Hubble parameter (H), scalar of expansion (θ), shear
scalar (σ), the spatial volume (V ), and the average anisotropy parameter (Am)
for the model (199) are given by

θ = 3H =
3
2

(
1 +

n

t

)
, (200)

q =
2n

(n + t)2
− 1, (201)

σ2 =
3
4

(
m − 1
m + 2

)2 (
1 +

n

t

)2

, (202)

V = (tn et)3/2, (203)
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Am = 2
(

m − 1
m + 2

)2

. (204)

From Eqs. (200)Ä(204), it is observed that at t = 0, the spatial volume vanishes
and other parameters θ, σ, H diverge. Hence the model starts with the Big Bang
singularity at t = 0. This is a point type singularity [27] since directional scale
factors A(t), B(t), and C(t) vanish at initial time. Since σ2/θ2 �= 0 except
m = 1, hence the model is anisotropic for all values of m except for m �= 1.
The dynamics of the mean anisotropy parameter depends on the value of m.
We observe that when m = 1, Am = 0 (i.e., the case of isotropy). Thus, the
observed isotropy of the model can be achieved in cosmological constant region
(see Fig. 26).

The energy density of the �uid, the EoS parameter ω, and the skewness para-
meters δ (or γ) (i.e., deviations from ω along y-axis and z-axis) are computed as

ρ =
9
4

(
2m + 1
m + 2

) (
1 +

n

t

)2

− 	0(tn et)−
3m

(m+2) , (205)

ω =

27
4(m + 2)2

(
1 +

n

t

)2

− 3n

(m + 2)t2
+ 	0(tn et)−

3m
(m+2)

	0(tn et)−
3m

(m+2) +
9
4

(
2m + 1
m + 2

) (
1 +

n

t

)2
, (206)

δ = γ =

3
4

(
m − 1
m + 2

) {(
1 +

n

t

)2

− 2n

t2

}
− 2	0(tn et)−

3m
(m+2)

	0(tn et)−
3m

(m+2) − 9
4

(
2m + 1
m + 2

) (
1 +

n

t

)2
, (207)

where 	0 = 1/	2
3.

From Eq. (206), it is observed that the equation-of-state parameter ω is time-
dependent, it can be a function of redshift z or scale factor a as well (as already
discussed in Introduction).

So, if the present work is compared with experimental results [10, 21, 50,
51], then one can conclude that the limit of ω provided by Eq. (206) may be
accommodated with the acceptable range of EoS parameter. Also it is observed
that at t = tc, ω vanishes, where tc is a critical time given by the following
relation:

27
4(m + 2)2

(
1 +

n

tc

)2

− 3n

(m + 2)t2c
+ 	0(tnc etc)−

3m
(m+2) . (208)

Thus, for this particular time, our model represents a dusty universe. We also
note that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where
ω < 0, is converted to the dark-energy dominated phase of universe.



ACCELERATING DARK ENERGY MODELS OF THE UNIVERSE 611

Fig. 25. The energy density ρ versus t.
Here �0 = 0.1, m = 1

Fig. 26. The plot of the EoS parameter ω
versus t. Here �0 = 0.1, m = 1

From Eq. (205), we note that energy density of the �uid ρ(t) is a decreasing
function of time and ρ � 0 when

(
1 +

n

t

)2

(tn et)
3m

(m+2) � 4	0

9

(
m + 2
2m + 1

)
. (209)

Figure 25 is the plot of energy density of the �uid (ρ) versus time in accelerating
mode of the universe. Here we observe that ρ is a positive decreasing function
of time and it approaches zero as t → ∞.

Figure 26 depicts the variation of EoS parameter (ω) versus cosmic time (t)
in evolution of the universe, as a representative case with appropriate choice
of constants of integration and other physical parameters using reasonably well-
known situations. For m = 1, we obtain isotropic model which is studied here
as a representative case. From Fig. 26, we observed that at the initial time there
is quintessence (ω > −1) region and at late time it approaches the cosmological
constant (ω = −1) scenario. This is a situation in the early universe where
quintessence dominated universe (Caldwell [49]) may be playing an important
role for EoS parameter. Since ω approaches −1 for sufˇciently large time, so its
value is consistent with the range of all of the three observations [10,21,50,51].

Using Eqs. (201) and (205) in Eq. (50), the expression for cosmological con-
stant is obtained as

Λ = −3
4

(
5m + 1
m + 2

) (
1 +

n

t

)2

+ 	0(tn et)−
3m

(m+2) . (210)

From Eq. (210), we observe that Λ is a decreasing function of time and it is
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always positive when(
1 +

n

t

)2

(tn et)
3m

(m+2) <
4	0

3

(
m + 2
5m + 1

)
. (211)

In general relativity, the Bianchi identities for the Einstein tensor Gij and the
vanishing covariant divergence of the energy-momentum tensor Tij , together
imply that the cosmological Λ term is constant. In theories with a variable
Λ-term, one either introduces new terms (involving scalar ˇelds, for instance) into
the left-hand side of the Einstein ˇeld equations to cancel the nonzero divergence
of Λgij (Bergmann [158]; Wagoner [159]), or interprets Λ as a matter source
and moves it to the right-hand side of the ˇeld equations (Zeldovich [160]), in
which case energy-momentum conservation is understood to mean T ∗ij

;j = 0,
where T ∗

ij = Tij − (Λ/8πG)gij . Here it means that the ˇrst assumption that leads
to the cosmological constant problem is made, and the vacuum has a nonzero
energy density. If such a vacuum energy density exists, the Lorentz invariance
requires that it has the form 〈Tμν〉 = −〈ρ〉gμν . This allows one to deˇne an
effective cosmological constant and a total effective vacuum energy density Λeff =
Λ + 8πG〈ρ〉 or ρvac = 〈ρ〉 + Λ/8πG. Note at this point that only the effective
cosmological constant, Λeff , is observable, not Λ, so the latter quantity may be
referred to as a ©bareª. The two approaches are, of course, equivalent for a given
theory (Vishwakarma [125]). For detailed discussions, the readers are advised
to see the references: Carroll et al. [161]; Abdussattar and Vishwakarma [162];
Peebles [163]; Sahni and Starobinsky [20]; Padmanabhan [164,165].

Figure 27 is the plot of the cosmological constant Λ versus time t. We observe
that cosmological parameter is a decreasing function of time and it approaches
a small positive value at late time (i.e., at present epoch). Recent cosmological
observations [1Ä5] suggest the existence of a positive cosmological constant Λ
with the magnitude Λ(G�/c3) ≈ 10−123. These observations on the magnitude
and redshift of type Ia supernova suggest that our universe may be an accelerating
one with induced cosmological density through the cosmological Λ-term. Thus,
the nature of Λ in our derived DE model is supported by recent observations.

Figure 28 is a plot of deceleration parameter q versus time t. From this
ˇgure, it is observed that q decreases very rapidly and reaches values −1, and
then it remains constant −1 (like de Setter universe). From this ˇgure, we observe
also that the DE model, for 0 < n < 1.5, evolves from the matter dominated era
to quintessence era and ultimately approaches cosmological constant era where,
as for n � 1.5, the universe evolves from quintessence to cosmological constant
era. It is worth mentioning here that for n < 1.5, transition of the universe takes
place from the early decelerating phase to the recent accelerating phase where, as
for n � 1.5, the expansion of the universe is always accelerating.

From this analysis, we conclude that it is the choice of scale factor which
makes the model in�ationary at the early stages of the universe and radia-
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Fig. 27. The cosmological constant Λ
versus t. Here �0 = 0.1, m = 1

Fig. 28. The deceleration parameter q ver-
sus t

tion/matter dominance phase before the DE era. From Eq. (200), we observe
that when t → 0, the expansion scalar θ becomes inˇnity which indicates the
in�ationary scenario. Also from Fig. 28, we observe that before t ≈ 1, q > 0,
and this indicates radiation/matter dominance era of the universe. However, after
t ≈ 1, q < 0 which indicates the DE dominated era. The solution in our model
does not blow up at any given epoch for the choice of the ansatz (195). Hence
our derived model is physically acceptable.

The Cosmic Microwave Background (CMB) is also considered to be a major
experimental evidence which supports the present models of the observed uni-
verse, and from this CMB observations several scientists found the signature of
anisotropy. Based on these studies and observations, one may not preclude the
possibility that our universe is anisotropic. We have already discussed this sce-
nario in Introduction. The background solution is stable against the perturbation
of the graviton ˇeld [166].

To ˇnd another new solution, we take the following ansatz for the scale
factor, where the increase in terms of time evolution is

a(t) = −1
t

+ t2. (212)

The above choice of scale factor yields a time-dependent deceleration parameter
and the corresponding solutions are stable

q = −2
(

t3 − 1
2t3 + 1

)2

. (213)
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In this case, we obtain the expressions for metric functions as follows:

B(t) = 	4

(
−1

t
+ t2

) 3
(m+2)

, (214)

C(t) = 	5

(
−1

t
+ t2

) 3
(m+2)

, (215)

A(t) = 	6

(
−1

t
+ t2

) 3m
(m+2)

, (216)

where, 	4 = �l−
1

(m+2) , 	5 = 		4, 	6 = 	m
4 , and �l is an integrating constant.

Hence, the model (165) reduces to

ds2 = −dt2 + 	2
6

(
−1

t
+ t2

) 6m
(m+2)

dx2 + 	2
4

(
−1

t
+ t2

) 6
(m+2)

dy2 +

+ 	2
5

(
−1

t
+ t2

) 6
(m+2)

dz2. (217)

The expressions for the Hubble parameter (H), scalar of expansion (θ), shear
scalar (σ), spatial volume (V ), and the average anisotropy parameter (Am) for
the model (217) are given by

θ = 3H =
3
t

(
2t3 + 1
t3 − 1

)
, (218)

σ2 = 3
[(

m − 1
m + 2

)
(2t3 + 1)
(t3 − 1)t

]2

, (219)

V =
(
−1

t
+ t2

)3

, (220)

Am = 2
(

m − 1
m + 2

)2

. (221)

From Eq. (218), we observe that when t → 0, θ → ∞ and this indicates the
in�ationary scenario at early stages of the universe. Since σ2/θ2 �= 0 for all
values of m except for m = 1, hence the model is anisotropic except for m = 1.
The dynamics of the mean anisotropy parameter depends on the value of m.
The mean anisotropic parameter is constant. We observed that when m = −2,
Am → ∞ and for m = 1, Am = 0. Thus, the observed isotropy of the universe
can be achieved in the phantom model (see Fig. 32).
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The energy density of the �uid, the EoS parameter ω, and skewness parame-
ters δ (or γ) (i.e., deviations from ω along y-axis and z-axis) are obtained as

ρ =
9(2m + 1)
(m + 2)2

(2t3 + 1)2

(t3 − 1)2t2
− 	0

(
−1

t
+ t2

)− 6m
(m+2)

, (222)

ω =

27
(m + 2)2

(2t3 + 1)2

(t3 − 1)2t2
− 6

(m + 2)
(2t6 + 8t3 − 1)

(t3 − 1)2t2
+ 	0

(
−1

t
+ t2

)− 6m
(m+2)

	0

(
−1

t
+ t2

)− 6m
(m+2)

+
9(2m + 1)
(m + 2)2

(2t3 + 1)2

(t3 − 1)2t2

,

(223)

δ = γ =
6

(
m − 1
m + 2

)
(5t6 + 2t3 + 2)

(t3−)2t2
− 2	0

(
−1

t
+ t2

)− 6m
(m+2)

	0

(
−1

t
+ t2

)− 6m
(m+2)

− 9(2m + 1)
(m + 2)2

(2t3 + 1)2

(t3 − 1)2t2

, (224)

where �l0 = 1/	2
6.

So, if the present work is compared with experimental results [10, 21, 50,
51], then one can conclude that the limit of ω provided by Eq. (223) may be
accommodated with the acceptable range of EoS parameter. Also it is observed
that at t = tc, ω vanishes, where tc is a critical time given by the following
relation:

27
(m + 2)2

(2t3c + 1)2

(t3c − 1)2t2c
− 6

(m + 2)
(2t6c + 8t3c − 1)

(t3c − 1)2t2c
+ 	0

(
− 1

tc
+ t2c

)− 6m
(m+2)

= 0.

(225)
Thus, for this particular time, our model represents a dusty universe. We also
note that the earlier real matter at t � tc, where ω � 0, later on at t > tc, where
ω < 0, is converted to the dark-energy dominated phase of universe.

From Eq. (222), we note that energy density of the �uid ρ(t) is a decreasing
function of time and ρ � 0 when

(2t3 + 1)2

(t3 − 1)2t2

(
−1

t
+ t2

) 6m
(m+2)

� 	0(m + 2)2

9(2m + 1)
. (226)

Figure 29 is the plot of energy density of the �uid (ρ) versus time t. Here we
observe that ρ is a positive decreasing function of time and it approaches zero as
t → ∞.

Figure 30 depicts the variation of EoS parameter (ω) versus cosmic time (t)
in evolution of the universe, as a representative case with appropriate choice
of constants of integration and other physical parameters using reasonably well-
known situations. From Fig. 30, we observe as follows:
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(i) For m � 0.5, the evolution of the universe starts from quintessence era
(ω > −1) and approaches to phantom region (ω < −1).

(ii) For 1 � m < 2, the universe evolves from phantom region (ω < −1),
then crosses PDL and ultimately approaches quintessence region (ω > −1).

(iii) For 2 � m � 3, the evolution of the universe commence from phantom
region (ω < −1), then crosses PDL and then skip over to nondark region.

(iv) For 3 � m, the evolution of the universe begins from quintessence era
(ω > −1) and ultimately passes over to nondark region.

(v) For m = 1, we get ω � −0.65 which is consistent with SNe Ia data
−1.67 < ω < −0.62 (Knop et al. [50]).

(vi) For m = 0.5, we get ω � −1.1 which is reproducible with current
observational realm [10,21,50,51].

Fig. 29. The energy density ρ versus t.
Here �0 = 0.1

Fig. 30. The EoS parameter ω versus t.
Here �0 = 0.1

The cosmological constant is obtained as

Λ =
3(4m2 + 10m + 13)

(m + 2)2
(2t3 + 1)2

(t3 − 1)2t2
+ 	0

(
−1

t
+ t2

) −6m
(m+2)

. (227)

From Eq. (227), we observe that Λ is a decreasing function of time and it is
always positive when

(2t3 + 1)2

(t3 − 1)2t2

(
−1

t
+ t2

) 6m
(m+2)

> − 	0(m + 2)2

3(4m2 + 10m + 13)
. (228)

Figure 31 is the plot of cosmological constant Λ versus time t. It is observed
that in all cases cosmological parameter is a decreasing function of time and it
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Fig. 31. The cosmological constant Λ ver-
sus t. Here �0 = 0.1

Fig. 32. The deceleration parameter q ver-
sus t

approaches a small positive value at late time (i.e., at present epoch). Thus, the
nature of Λ in this derived DE model is also in good agreement with the recent
observations [1Ä5].

Figure 32 is the plot of deceleration parameter q versus time t. From the
ˇgure we observe that the expansion of the universe starts from accelerating
phase, and the rate of expansion decreases with time and it stops and again starts
accelerating to approach −0.5 which is very close to the value (≈ −0.7) predicted
by the observations (Riess et al. [5]; Virey et al. [167]).

A convenient method to describe models close to ΛCDM is based on the
cosmic jerk parameter j, a dimensionless third derivative of the scale factor with
respect to the cosmic time [152Ä156]. A deceleration-to-acceleration transition
occurs for models with a positive value of j0 and negative q0. Flat ΛCDM models
have a constant jerk j = 1. The jerk parameter in this case is obtained. In this
case, we obtain the jerk parameter as

j(t) =
2t5 + 2t4 − 2t2 − t − 2

(t + 1)(1 + t2)
. (229)

This value is consistent with observational value j � 2.16 obtained from the com-
bination of three kinematical data sets: the gold sample of type Ia supernovae [5],
the SNIa data from the SNLS project [136], and the X-ray galaxy cluster distance
measurements [157] for t = 1.50.

A new class of anisotropic B-VI0 DE models with variable EoS parameter ω
has been investigated using time-dependent deceleration parameter. In literature,
it is plebeian to practice a constant deceleration parameter. Now for a universe
which was decelerating in past and accelerating at present epoch, the DP must
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show signature �ipping as is already discussed in previous sections. Therefore
our consideration of DP to be variable is physically justiˇed.

The main features of the models are as follows:

• DE models present the dynamics of EoS parameter ω whose range is
in good agreement with the acceptable range by the recent observations [10,
21, 50, 51].

• We obtain cosmological constant dominated universe, quintessence and
phantom �uid dominated universe (Chevallier and Polarski [59]), representing the
different phases of the universe through-out the evolving process for different
cosmic times. These ˇts suggest that ω > −1 for a long (quintessence-like)
period in the past, and at the same time they suggest that the universe has just
entered a phantom phase ω < −1 near our present.

• Unlike RobertsonÄWalker (RW) metric, Bianchi type metrics can admit
a DE that wields an anisotropic EoS parameter according to the characteristics.
Therefore, one cannot rule out the possibility of anisotropic nature of DE in the
framework of B-VI0 space-time.

• In the ˇrst case, the observed isotropy of the universe can be achieved in
cosmological constant model (see Fig. 26), whereas in the second case, the ob-
served isotropy of the universe can be achieved in phantom model (see Fig. 30).
Thus, Bianchi type-VI0 models, which remain anisotropic, are of preferably aca-
demical interest.

• Our DE models are of great importance in the sense that the nature
of decaying vacuum energy density Λ(t) is supported by recent cosmological
observations [1Ä5].

• Though there are many suspects (candidates) such as cosmological con-
stant, vacuum energy, scalar ˇeld, brane world, cosmological nuclear-energy, etc.,
as reported in the vast literature for DE, the proposed models in this paper favour
EoS parameter as a possible suspect for the DE.

• The cosmic jerk parameter in our derived models is also found to be in
good agreement with the recent data of astrophysical observations.

• For different choice of n, we can generate a class of DE models in Bianchi
type-VI0 space-time. It is observed that such DE models are also in good harmony
with current observations. Our study is continued and we shall generate some
other interesting physically viable models for other values of n.

• Our corresponding solutions have in�ationary scenario at the early stages
of the universe and also radiation/matter era before DE era.

• Our corresponding solutions are physically acceptable and stable.

Thus, the solutions demonstrated in this section may be useful for better
understanding of the characteristic of anisotropic DE in the evolution of the
universe within the framework of Bianchi type-VI0 space-time.
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CONCLUSIONS

In this review article, we have studied anisotropic Bianchi type-I, II, III, V
and VI0 space-times in connection with dark-energy models. The main study
in this article has been concentrated to observe whether our derived results are
consistent with recent results of astrophysical observations or not. We ˇnd that
the results obtained in different Bianchi type space-times are in good agreement
with recent observations. Hence, one cannot rule out the possibility of anisotropic
nature of dark energy in the framework of Bianchi type space-times.
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