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THE SAME KEY TO DIFFERENT DOORS Å
TEMPERATURE PUZZLES

L. Turko ∗

University of Wroclaw, Institute of Theoretical Physics, Wroclaw, Poland

The notion of temperature in many-body elementary particle processes has been in
common use for decades. Thermal models have become simple and universal effective
tools to describe particle production not only in high-energy heavy-ion collisions but
also in high-energy elementary particle collisions. We perform a critical analysis of the
temperature concepts in such processes. Although the temperature concept is a very useful
tool, nevertheless, it should be used with care, taking into account that usually it is just a
model-dependent ˇtted parameter.

PACS: 07.20.Dt

INTRODUCTION

There is the famous article [1] by E. P. Wigner based on the lecture he
delivered at New York University in May 1959. You can read there about
©that uncanny usefulness of mathematical concepts that raises the question of the
uniqueness of our physical theoriesª and that ©we are in a position similar to
that of a man who was provided with a bunch of keys and who, having to open
several doors in succession, always hit on the right key on the ˇrst or second
trial. He became skeptical concerning the uniqueness of the coordination between
keys and door.ª

That was about mathematics. But some suspicions concerning universal keys
can be raised not only to mathematical concepts. We are in possession of some
universal key whose usefulness becomes more and more universal up to the point
when another question arises Å is this a real key?
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1. FITTING THE KEYS

Discovery of pions in 1948, new light strongly interacting particles, copiously
produced and observed in cosmic ray processes, created a new situation in the
theoretical description of production processes. There was a need to deal with
the global description of these processes, leaving temporally aside microscopic
subtleties of interactions. The natural tool available at that time was some analogy
to concepts used in many-body classical physics. There were attempts to treat
mesonic cloud as a hydrodynamical medium [5] or as a kind of atmospheric pion
gas or �uid surrounding nucleons. This pion �uid would be set in a kind of
turbulent motion in the course of a high-energy collision of two nucleons. This
turbulence would govern the distribution of energy among different excited states.

The concept of temperature was introduced in elementary particle physics, in
a more or less systematic way, many times. It seems, however, that the ˇrst, who
applied there this notion to particle physics was H.Koppe [2, 3]. He treated a
nucleus as a ©black bodyª with regard to mesonic radiation. This made it possible
to calculate the probability for emission of a meson by statistical methods.

Then, two years later, famous Fermi Model [4] has appeared, where temper-
ature was introduced in a more systematic way. The concept of the statistical
equilibrium was then used to describe a high-energy collision. Fermi wrote there:

©When two nucleons collide with very great energy in their center-of-mass
system this energy will be suddenly released in a small volume surrounding the
two nucleons. (. . .) all the portion of space occupied by the nucleons and by their
surrounding pion ˇeld will be suddenly loaded with a very great amount of energy.
Since the interactions of the pion ˇeld are strong we may expect that rapidly this
energy will be distributed among the various degrees of freedom present in this
volume according to statistical laws. One can then compute statistically the
probability that in this tiny volume a certain number of pions will be created
with a given energy distribution. It is then assumed that the concentration of
energy will rapidly dissolve and that the particles into which the energy has been
converted will �y out in all directions. (. . .) First of all, there are conservation
laws of charge and of momentum that evidently must be fulˇlled.ª

The main idea of statistical model, as sketched in by Fermi [4], remains still
valid. Let us consider the probability Pn(i → f) to produce n-particle state:

Pn(i → f) =
∫ n∏

f=1

d3pf

(2π)3
1

2Ef
|〈p′1, . . . , p′n|S|i〉|2δ

⎛
⎝Pi −

∑
f

pf

⎞
⎠. (1)

One can clearly separate here the dynamical part

|〈p′1, . . . , p′n|S|i〉|2
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and the kinematical part of the process

δ

⎛
⎝Pi −

∑
f

pf

⎞
⎠ n∏

f=1

d3pf

(2π)3
1

2Ef
.

With the increasing number of ˇnal particles the number of degrees of freedom
increases much more. We are not able to measure all of them and there is also
no need to do it. Only some global quantities are measured. We are in the
situation when

• measurable quantities are much less detailed than 〈p′1, . . . , p′n|S|i〉;
• with the integration over a large region of the phase space the dynamical

details are averaged and only a few parameters remain;
• restricted knowledge of 〈p′1, . . . , p′n|S|i〉 is not needed.
Then, there is a place for statistical physics.
Our probability (1) can be written as

Pn = S̄n Rn,

with the constant averaged value S̄n of the S matrix element and with the exact
kinematical part

Rn =
∫ n∏

f=1

d3pf

(2π)3
1

2Ef
δ

⎛
⎝Pi −

∑
f

pf

⎞
⎠ . (2)

The crucial point here is that these arguments work only if the thermodynamic
equilibrium is reached.

Rolf Hagedorn was the ˇrst who systematically analyzed high-energy phe-
nomena using all tools of statistical physics [6,7]. He also introduced the concept
of the limiting temperature based then on the statistical bootstrap model. This
made possible the introduction of the possibility of the phase transition and phase
structure of the hadronic matter.

The spirit and the philosophy of the statistical approach remain the same as
in the standard approach but ingredients of statistical models used in high-energy
problems are different. The main difference is that a number of particles is no
longer conserved, so we have no chemical potentials related to that quantity. The
only nontrivial chemical potentials are those related to conserved charges, so the
role of internal symmetries is a crucial one. As was stated in [7] ©Symmetries,
not material particles are fundamental.ª

For the simplest case of an ideal hadron gas in thermal and chemical equi-
librium, which consists of l species of particles, energy density ε, baryon num-
ber density nB , strangeness density nS , and electric charge density nQ (read
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� = c = 1 always), one gets the equations

ε =
1

2π2

l∑
i=1

(2si + 1)

∞∫
0

dp
p2Ei

exp
{

Ei − μi

T

}
+ gi

, (3a)

nB =
1

2π2

l∑
i=1

(2si + 1)

∞∫
0

dp
p2Bi

exp
{

Ei − μi

T

}
+ gi

, (3b)

nS =
1

2π2

l∑
i=1

(2si + 1)

∞∫
0

dp
p2Si

exp
{

Ei − μi

T

}
+ gi

, (3c)

nQ =
1

2π2

l∑
i=1

(2si + 1)

∞∫
0

dp
p2Qi

exp
{

Ei − μi

T

}
+ gi

, (3d)

where Ei = (m2
i + p2)1/2; mi, Bi, Si, μi, si, and gi are the mass, baryon

number, strangeness, chemical potential, spin, and a statistical factor of specie i,
respectively (we treat an antiparticle as a different specie).

And μi = BiμB + SiμS + QiμQ, where μB , μS , and μQ are overall baryon
number and strangeness chemical potentials, respectively.

To get particle yields, one should also consider entropy density n(s):

s =
1

6π2T 2

l∑
i=1

(2si + 1)

∞∫
0

dp
p4

Ei

(Ei − μi) exp
{

Ei − μi

T

}
(

exp
{

Ei − μi

T

}
+ gi

)2 . (4)

These equations, enriched by unstable particles effects, form a basis for suc-
cessful calculations [8] of relativistic heavy-ion production processes concerning
particle yields and rates.

2. TEMPERATURE, WHICH TEMPERATURE?

Although temperature appeared a quite successful tool to characterize high-
energy hadronic collision, there are still discussions related to the physical inter-
pretation of this concept. The temperature, as was introduced in classical physics,
based on the direct contact of the measuring device Å thermometer Å with the
given object. It was also tacitly assumed that the thermometer would be small
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enough not to change the thermodynamic characteristics of the object, and the
result would be obtained in the state of the thermal equilibrium between the object
and the thermometer. This quantity, measured by the direct contact, is called the
©physical temperatureª.

No-thermometer measurements of the quantity called ©temperatureª are based
on given model assumptions. Their relations to the physical temperature depend
on the validity of the assumed model and on the very existence of the physical
temperature of the system. The situation becomes even more complicated in the
case of many-particle quantum systems, e.g., multiproduction processes where
you deal with nontrivial (mixed states) density matrix. Because of impossibility
of the full microscopic description, one uses relevant entropy SX(A1, A2, . . .)
with the entropy maximized with respect to the set X = {A1, A2, . . .} of relevant
macrovariables. The relevant entropy is maximized under constraints 〈Âi〉 = Ai:

SX(A1, A2, . . .) = −max
�

Tr � ln �, Tr �Âi = Ai. (5)

The maximum is set over all possible distributions � satisfying constraints
Tr �Âi = Ai.

This relevant entropy takes into account only information connected with rel-
evant variables. If one of the relevant variables is taken energy, then temperature
is deˇned as

1
T

=
∂SX

∂E
.

This is in fact just the temperature widely used in thermal hadronic models.
It is obvious that the entropy is unique for the given set of relevant variables.
For different choice of relevant variables, the temperatures would be different but
still consistent with the scheme of statistical physics.

CONCLUSIONS

There is a lot of discussion about the temperature concept in hadronic physics.
One should have in mind, however, that temperature here is not a self-consistent
quantity. A little more careful analysis shows that this is just a model-dependent
parameter ˇtted to experimental data. Within the given class of models, such
thermal models, based on similar assumptions, had the same philosophy. One gets
similar temperatures when models are applied to explain similar data. There are
rather no expectations to build a universal hadronic thermometer which would give
the ©realª temperature of the hadronic medium. We have a set of different keys
ˇtted to different doors. They are constructed according to the same principles
but without hope to create a universal passkey.
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