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CLUSTER CORRELATIONS IN DENSE MATTER
AND EQUATION OF STATE

S. Typel∗

GSI Helmholtzzentrum féur Schwerionenforschung GmbH, Darmstadt, Germany

Correlations in strongly interacting matter at subsaturation densities lead to the forma-
tion of clusters and the appearance of phases transitions with a change of thermodynamic
properties and chemical composition. These features can be described in a generalized
relativistic density functional approach using clusters as explicit degrees of freedom with
medium-dependent properties. The model is constructed in order to provide equations of
state for astrophysical applications. It can be adapted also to nuclear structure calculations
with cluster correlations on the surface of heavy nuclei. The appearance of α particles
modiˇes the neutron skin thickness of neutron-rich nuclei and affects the correlation with
the density dependence of the symmetry energy.
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INTRODUCTION

The equation of state (EoS) of dense matter is an essential ingredient in
many astrophysical model calculations. It determines the static properties of
neutron stars, affects the dynamical evolution of core-collapse supernovae and
sets the conditions for nucleosynthesis. Besides basic thermodynamic properties
of matter, EoS models should provide information on the chemical composition of
the system. Of course, an application of an EoS in simulations is only reasonable
if the timescales of nuclear reactions are much shorter than the timescales of the
system evolution and equilibrium conditions (thermal, mechanical, chemical,. . .)
can be assumed. The properties of stellar matter depend on three basic variables:
the baryon number density nB, the temperature T and the electron (or proton)
fraction Ye (Yp). These parameters have to cover rather large ranges in practical
applications. Hence a global approach to construct EoS tables is needed in order
to consider the relevant physical effects and conditions.

∗E-mail: s.typel@gsi.de



1424 TYPEL S.

A critical examination of existing EoS models for astrophysical applications
suggests to develop an improved EoS in particular with respect to the follow-
ing features: 1) to extend the set of constituent particles, i.e., in addition to the
traditionally considered particles in stellar matter (nucleons, electrons, photons),
further baryon species (e.g., hyperons) and a ©completeª table of nuclei have
to be included; 2) to better constrain the model parameters using up-to-date in-
formation from ˇnite nuclei (binding energies, radii, charge form factors, etc.),
nuclear matter (saturation properties), heavy-ion collisions (�ow, fragment yields)
and compact stars (massÄradius relation, maximum mass, cooling); 3) to consider
more seriously the effects of correlations, e.g., nucleonÄnucleon correlations with
the low-density benchmark of the model-independent virial EoS, the medium de-
pendence of composite particles and electromagnetic correlations that are essential
for the description of solidiˇcation/melting; 4) to treat correctly the transitions be-
tween different thermodynamic phases. From these considerations it follows that
the construction of a global EoS in a uniˇed model presents a serious challenge
to theory.

In this context it is important to distinguish between nuclear matter and
stellar matter with very different thermodynamic properties. In the former system,
only strongly interacting particles are considered, electric charges are neglected
and the electromagnetic interaction is not taken into account. The balance of
repulsion and attraction in the short-range nuclear interaction leads to the feature
of saturation, which can be characterized quantitatively by typical nuclear matter
parameters such as saturation density, binding energy per nuclon at saturation,
incompressibility, symmetry energy and its slope parameter. As a consequence,
a noncongruent liquidÄgas phase transition is observed [1]. In the latter system,
relevant for astrophysics, both hadrons and leptons interacting via the strong and
electromagnetic interaction have to be included in the models with the speciˇc
condition of total charge neutrality. Typical features of stellar matter are the
formation of inhomogeneous matter on different length scales (clusters, ©pastaª
phases) and the lattice formation at low temperatures and densities with ions
immersed in a background of almost uniformly distributed electrons.

In this contribution, the main emphasis is placed on the description of di-
lute matter, i.e., matter with densities smaller than nuclear saturation density
nsat ≈ 0.15 fm−3 where correlations are decisive for the properties and chemical
composition. In general, information on correlations in interacting many-body
systems is contained in spectral functions, which often have a complicated struc-
ture. A prevalent approximation is the introduction of quasiparticles with self-
energies that incorporate the in-medium change of the particle properties, leading
to a reduction of residual correlations. The quasiparticles concept is very success-
ful in nuclear physics, e.g., in phenomenological (Skyrme, Gogny, relativistic)
mean-ˇeld models [2] with nucleons as degrees of freedom or in the treatment of
pairing correlations applying a Bogoliubov transformation. There are also differ-
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ent concepts in devising theoretical approaches. In a physical picture one starts
with mutually interacting nucleons and uses elaborated many-body techniques to
describe the formation and dissolution of clusters as many-body correlations. In a
chemical picture one immediately begins with a mixture of nucleons and nuclei in
chemical equilibrium and the main task is to include the effects of the interactions.
A uniˇed description in a single model is given by the generalized relativistic
density functional (gRDF) approach that is presented in the next section. Dilute
matter is not only relevant for the EoS, but it can also be found on the surface of
heavy nuclei. There, α particles have to preform as four-nucleon correlations in
order to allow for the radioactive decay of unstable heavy nuclei. The adaption of
the gRDF model to this situation is discussed in Sec. 2. This contribution closes
with conclusions in the ˇnal section.

1. GENERALIZED RELATIVISTIC DENSITY FUNCTIONAL

In order to model nuclear and stellar matter with the correct limits and explicit
cluster degrees of freedom, a generalized relativistic density functional (gRDF)
was developed [3Ä5] by extending well-known relativistic mean-ˇeld models with
density-dependent mesonÄnucleon couplings [6]. In a grand canonical approach,
a thermodynamic consistent formulation is obtained by introducing the grand
canonical potential density ω(T, {μi}). It depends on the temperature T and the
chemical potentials μi of all particle species i, which are related by the condition
of chemical equilibrium. In addition to nucleons, heavier baryons (not relevant
in the present context) and composite particles such as nuclei (or clusters) are
regarded as explicit degrees of freedom. In the present model, four light nuclei
(2H, 3H, 3He, 4He) and 16745 heavy nuclei AiZi with mass numbers Ai > 4,
neutron numbers Ni � 184 and proton numbers Zi � 184 are considered. If
available, experimental binding energies of the nuclei are taken from the 2012
Atomic mass evaluation [7]. The predictions of the DZ10 model [8] are used for
all other nuclei between the neutron and protons driplines (determined without the
Coulomb contribution to the energy). NucleonÄnucleon correlations, which are
important to reproduce the correct low-density limit given by the virial EoS [9],
are represented by effective continuum resonances. Antiparticles can be included
naturally in the relativistic approach. All particles are treated as quasiparticles
with medium-dependent properties including internal thermal excitations for those
that are composed of nucleons. In stellar matter, leptons and photons are added
without problems and in the crystal phase lattice vibrations can be accounted for
in a modiˇed Debye model.

Scalar potentials Si and vector potentials Vi represent the effective in-medium
interaction of all quasiparticles i. They receive contributions from Lorentz scalar
and vector mesons that are treated as classical ˇelds. The parametrization DD2 [3]
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is adopted for the density dependence of the nucleonÄmeson couplings. The
characteristic nuclear matter parameters (saturation density nsat = 0.149 fm−3,
energy per nucleon at saturation E/A|sat = −16.02 MeV, incompressibility K =
242.7 MeV, symmetry energy J = 31.67 MeV, symmetry energy slope parameter
L = 55.04 MeV) of this effective interaction are very reasonable and compatible
with most of current constraints. The DD2 neutron matter EoS is located inside
the error band given by ab-initio N3LO calculations in chiral effective ˇeld theory
(χEFT) [10,11], see Fig. 1 in [12].

So-called ©rearrangementª contributions in the vector potentials Vi ensure the
thermodynamic consistency of the model. In stellar matter, there is an effective
electromagnetic contribution to Vi for charged particles. It is taken from parame-
trized results of Monte-Carlo simulations of plasmas [13] and represents Coulomb
correlations, which even appear in uniform systems. The scalar potentials Si con-
tain medium-dependent mass shifts Δmi of composite particles that allow one to
describe their formation and dissolution with changing density and temperature.
This approach replaces the traditional geometric excluded-volume mechanism in
order to suppress the appearance of clusters at high densities. The main contribu-
tion to the mass shifts originates from the action of the Pauli exclusion principle
that blocks states in the medium from participating in the formation of correla-
tions. As a consequence, the binding energies of clusters are reduced and their
dissolution, i.e., the Mott effect, is observed. The mass shifts of light clusters
with Ai � 4 have been calculated by solving in-medium few-body Schréodinger
equations with realistic nucleonÄnucleon potentials. A parametrization of these
mass shifts is used in the present gRDF calculations [3]. A different approach is
followed for heavy nuclei. Here, fully self-consistent spherical WignerÄSeitz cell
calculations with the density functional for nucleons and electrons are performed
in an extended ThomasÄFermi approximation [14]. From a comparison with cal-
culations of uniform matter, the change of binding energies of clusters inside the
medium can be determined from a comparison with uniform matter calculations.
In the present model, only a simpliˇed parametrization of the mass shifts is used.
It will be improved with more systematic calculations in the future, which will
cover the whole chart of nuclei for various temperatures and medium densities.

The change of the chemical composition of dilute matter can be demonstrated
by studying the variation of the mass number fractions with density or tempera-
ture. For example, the right panel of Fig. 10 in [14] depicts the mass fractions
of nucleons and light clusters as a function of the baryon number density nB

at given temperature and proton fraction (heavy nuclei are already dissolved
at these conditions). At low nB , the chemical composition is dominated by
nucleons and a few deuteron-like correlations because only two-body correlations
are relevant. The abundance of three- and four-nucleon clusters becomes more
and more signiˇcant with increasing density. All clusters dissolve when the
saturation density nsat is approached and pure nucleonic matter remains at higher
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densities. The temperature dependence of the composition is shown in the left
panel of Fig. 2 in [12] in a preliminary calculation for ˇxed medium density and
electron fraction. Stellar matter is mainly composed of nucleons, electrons and
very few light clusters at high temperatures. The mass fractions of light clusters
increase when the system is cooled down and ˇnally heavy clusters dominate
the composition. The mass and charge numbers of the heavy clusters increase
substantially with decreasing temperature as shown in the right panel of Fig. 2
in [12]. A phase transition from the gas to the solid crystal phase is expected at
very low temperatures. For details, see [12]. The effects of clustering and phase
transitions have to be incorporated in models for the EoS to provide a reliable
input to astrophysical simulations.

2. SYMMETRY ENERGY AND NEUTRON SKINS

The symmetry energy Es quantiˇes the variation of the energy per baryon
E/A with the isospin asymmetry α = 1 − 2Yp of strongly interacting matter at
constant baryon number density nB . It can be deˇned as the difference of E/A
for pure neutron matter and symmetric nuclear matter. In recent years, there have
been many experimental attempts to gain information on the symmetry energy
at saturation J = Es(nsat) and its density dependence, measured, e.g., with the
slope parameter L = 3nsat dEs(nb)/dnb|nb=nsat

, see, e.g., [15, 16]. The liquidÄ
gas phase transition in nuclear matter or the appearance of clusters at subsaturation
densities modiˇes the low-density behavior of the symmetry energy [5]. It is well
known that the neutron skin thickness rskin of heavy nuclei, i.e., the difference
between the neutron and proton root-mean-square radii, is strongly correlated
with the stiffness of the neutron matter EoS [17, 18] or, equivalently, the slope
parameter L [19]. A measurement of the neutron skin thickness, e.g., using parity
violating electron scattering on 208Pb in the approach of PREX@JLab [20], could
help to constrain L and thus the stiffness of the dense matter EoS that is relevant
for the structure of neutron stars. However, the rskin ↔ L correlation is based
only on relativistic and nonrelativistic mean-ˇeld calculations of nuclei that do
not take into account the effect of clustering beyond pairing correlations.

Calculations of heavy nuclei in the medium at ˇnite temperatures in spherical
WignerÄSeitz cells using an extended relativistic ThomasÄFermi (RTF) approxi-
mation with the gRDF including light clusters show an increased probability of
ˇnding light clusters on the surface of nuclei, see Fig. 11 in [14]. With appropri-
ate modiˇcations, the gRDF approach can be applied to the description of heavy
nuclei at zero temperature in the vacuum, see [21] for details. It is observed
that α clusters appear at the surface of nuclei and the size of the neutron skin
is reduced depending on the neutron excess of the nucleus and the amount of
α clustering. For the chain of Sn nuclei the effect on the neutron skin thickness
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is smallest for almost neutronÄproton symmetric nuclei and very neutron-rich nu-
clei. In the former case, α particles can form at the surface, but the neutron skin
is practically vanishing. In the latter case, the formation of α clusters is very
much suppressed at the surface since it is composed almost entirely of neutrons.

Introducing a series of parametrizations that differ only in the isospin-
dependent part of the effective interaction, see Table 1 in [21], the effect of
the surface α clustering on the rskin ↔ L correlation can be studied. In Fig. 5
of [21] the correlation of the neutron skin thickness in 208Pb with the slope
parameter L is depicted without and with α particle correlations at the surface.
A reduction of about 0.02 fm or approx. 10% of the neutron thickness is observed
when α particles are considered in the fully self-consistent structure calculations.
This sizeable shift should be taken into account at least as a systematic error in the
rskin ↔ L correlation if the slope parameter is determined from experimentally
measured neutron-skin thicknesses of heavy nuclei. The prediction of α-cluster
correlations on the surface of heavy nuclei will be tested experimentally with
quasi-free (p, pα) reactions in the future at RCNP, Osaka [22].

CONCLUSIONS

Many-body correlations in nuclear and stellar matter affect the thermody-
namic properties and the chemical composition of the system, e.g., through phase
transitions or the formation of clusters at subsaturation densities. In a gener-
alized relativistic density functional approach, clusters are included as explicit
degrees of freedom with medium-dependent properties. The parameters of this
phenomenological model are well constrained with density-dependent mesonÄ
nucleon couplings and appropriate parametrizations of the essential mass shifts
of composite quasiparticles. The main application of the gRDF approach is the
construction of equation-of-state tables for astrophysical simulations such as core-
collapse supernovae or for the description of static properties of neutron stars. In
the case of dilute matter at subsaturation densities, it is important to include the
©fullª table of nuclei in the model in order to predict the chemical composition
of matter, which strongly depends on temperature, baryon density and isospin
asymmetry. The gRDF model can also be used in nuclear structure calculations
with appropriate adjustments. As compared to conventional mean-ˇeld calculation
without cluster correlations, a reduction of the neutron skin thickness of heavy
nuclei is found due to the appearance of α particles on the surface. This result
affects the correlation of the neutron skin thickness with the symmetry energy
slope parameter and in turn with the stiffness of the neutron matter equation of
state that is relevant for the structure of neutron stars.
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