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HYPERON PUZZLE IN COMPACT STARS

I. Bednarek ∗

Institute of Physics, University of Silesia, Katowice, Poland

The objective of this paper is to solve the problem of the existence of hyperons in
the interior of massive neutron stars. Using the more sophisticated equation of state with
the extended sector of vector mesons, the model of a massive neutron star that includes
hyperons was constructed.

PACS: 97.60.Jd; 26.60.-c

INTRODUCTION

Realistic models of neutron stars take into account stratiˇcation of their
internal structure. Very general description of neutron stars shows that they
are composed of two main parts: a crust and a core. The crust, which splits
into the outer and inner parts, describes the outer layer of a neutron star with
subsaturation densities and contains only a small percentage of a neutron star
mass [1]. Therefore, the total mass of a neutron star is almost entirely determined
by the mass of its core. The density that characterizes the core of a neutron
star ranges from a few times the saturation density (n0) to about an order of a
magnitude higher and at such densities hyperons are expected to emerge [2]. This
paper has the goal of furthering the understanding of the existence of hyperons
in neutron star interiors and is closely connected with the discovery of massive
neutron stars. Observations of the binary millisecond pulsars J1614-2230 [3]
and J0348+ 0432 [4] have led to the precise estimation of neutron star masses:
(1.97 ± 0.04)M� and (2.01 ± 0.04)M�. The existence of such massive neutron
stars entails profound consequences for the equation of state (EoS) of dense
nuclear matter by imposing constraints on the form of the EoS. High values of
neutron star masses rule out most of the EoSs with hyperons because maximum
masses achievable within models that involve exotic particles are well below the
stated values. This in turn makes problematic the existence of hyperons in the
very inner part of a neutron star.
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1. NEUTRON STAR MAXIMUM MASS

The value of the total mass and the radius of a neutron star can be calculated
with the use of the TolmanÄOppenheimerÄVolkoff (TOV) equation

dP
dr

=
−G(E(r) + P(r))(m(r) + 4πr3P(r))

r2

(
1 − 2Gm(r)

r

) , (1)

dm

dr
= 4πr2E(r). (2)

The above equations supplemented with the EoS (P(r) = P(E(r))) allow one to
calculate the massÄradius relation and additionally to model the internal structure
of a neutron star, E denotes the energy density of a neutron star matter. This
provides data on the impact of parameters of a given model on the internal
structure of a neutron star.

2. FORMALISM

The theoretical description of strangeness-rich nuclear matter requires the in-
clusion of the full octet of baryons, additional hidden-strangeness meson ˇelds
(σ∗, ϕμ) should also be introduced to reproduce the hyperonÄhyperon interac-
tion. The EoS used to analyze the properties of a hyperon-rich neutron star
was constructed within the framework of the nonlinear realization of the chiral
SU(3)L × SU(3)R symmetry [5, 6]. As the model describes the β-equilibrated
neutron star matter, the inclusion of leptons is necessary. Thus, the main com-
ponents of the model are baryons B = {n, p, Λ, Σ+, Σ0, Σ−, Ξ0, Ξ−}, mesons
M = {σ, ωμ, ρa

μ} ∪{σ∗, ϕμ} and leptons L = {e−, μ−}. The Lagrangian density
of the model has the form

L =
∑
B

ψB(iγμDμ − meff,B)ψB +
1
2
∂μσ∂μσ +

1
2
∂μσ∗∂μσ∗ − 1

2
m2

σ∗σ∗2+

+
1
2
m2

ω(ωμωμ) +
1
2
m2

ρ(ρ
μaρa

μ) +
1
2
m2

φ(φμφμ) − 1
4
ΩμνΩμν−

− 1
4
RμνRμν − 1

4
ΦμνΦμν + Uscalar(σ) + Uvec

nonl(ωμ, ρa
μ, ϕμ) + Ll, (3)

where the covariant derivative equals Dμ = ∂μ + igBωωμ + igBφφμ + igBρIBρμ,
IB denotes isospin of baryon B, Ωμν , Rμν and Φμν are the ˇeld tensors of
the ω, ρ, and φ mesons ˇelds. The Lagrangian density of free leptons is given by
Ll =

∑
l=e,μ

ψl(iγμ∂μ −ml)ψl. The characteristic feature of the model is the very
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special form of the vector meson sector, which permits more accurate description
of asymmetric strangeness-rich neutron star matter [7, 8]:

Uvec
nonl(ω, ρ, φ) =

1
4
c3(ωμωμ)2+

1
4
c3(ρμaρa

μ)2+ΛV (gNωgNρ)2(ωμωμ)(ρμaρa
μ)+

+
1
4

(
1
2
c3 + ΛV (gNωgNρ)2

)
(φμφμ)2 +

+
1
2

(
3
2
c3 − ΛV (gNωgNρ)2

)
(ωμωμ + ρμaρa

μ)(φμφμ). (4)

The primary goal of this paper is to maximize the understanding of the in�uence
of the nonlinear vector meson couplings on the form of the EoS and through
this on a neutron star mass and structure. The potential (4) includes coupling of
different types between vector mesons. This allows one to modify the behaviour
of the EoS in the high density limit. The Lagrangian function (3) makes it
possible to calculate the equations of motion from the corresponding EulerÄ
Lagrange equations. Analysis of the equations of motion raises the issue of the
medium effects on the properties of the hadronic matter, namely, the effective
baryon and vector meson masses that are given by the following relations:

meff,B = meff,B(s0, s
∗
0) = mB − gBσs0 − gBσ∗s∗0, (5)

m2
eff,ω = m2

ω + 3c3w
2
0 + 2ΛV (gBωgBρ)2r2

0 +
(

3
2
c3 − ΛV (gBωgBρ)2

)
f2
0 ,

m2
eff,ρ = m2

ρ + 3c3r
2
0 + 2ΛV (gBωgBρ)2w2

0 +
(

3
2
c3 − ΛV (gBωgBρ)2

)
f2
0 , (6)

m2
eff,ϕ = m2

ϕ +
(

3
2
c3 − ΛV (gBωgBρ)2

)
(w2

0 + r2
0) +

(
3
4
c3 + ΛV (gBωgBρ)2

)
f2
0 .

The obtained results were calculated in the mean-ˇeld approximation and s0, s
∗
0,

w0, r0, f0 are the classical mean-ˇeld values of the meson ˇelds. The description
of dense, hyperon-rich nuclear matter given by the Lagrangian (3) in the case of
nonstrange matter is reduced to the standard TM1 [9] model with an extended
isovector sector. This extension refers to the presence of the ω−ρ meson cou-
pling and enables modiˇcation of the high density limit of the symmetry energy.
The strength of this coupling is characterized by the parameter ΛV . For each
value of the parameter ΛV , the parameter gNρ has to be adjusted to reproduce
the symmetry energy Esym = 25.68 MeV at kF = 1.15 fm−1 [10]. The knowl-
edge of the coupling constants that describe baryon interactions in the strange
sector of the model is essential for the correct construction of the EoS. However,
the incompleteness of the experimental data intensiˇes the uncertainties that are
connected with the evaluation of coupling constants that involve strange baryons.
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HyperonÄvector meson coupling constants are taken from the quark model. In
the scalar sector, the scalar couplings gBσ of the Λ, Σ and Ξ hyperons require
constraining in order to reproduce the estimated values of the potentials felt by
a single Λ, Σ and Ξ in the saturated nuclear matter, the following values of the
potentials were used:

U
(N)
Λ = −28 MeV, U

(N)
Σ = +30 MeV, U

(N)
Ξ = −18 MeV. (7)

The coupling of hyperons to the strange meson σ∗ were obtained from the fol-
lowing relations [11]:

U
(Ξ)
Ξ � U

(Ξ)
Λ � 2U

(Λ)
Ξ � 2U

(Λ)
Λ . (8)

3. NUMERICAL RESULTS

Results of the numerical solutions that were obtained for TM1 parameteriza-
tion are shown in Fig. 1. Calculations have been done for the nucleon matter and
the strangeness-rich neutron star matter. This ˇgure shows that the stiffness of
the EoS depends on the existence and strength of the mixed vector meson inter-
actions, and the extended nonlinear model makes it possible to construct a much
stiffer EoS than the one obtained for the TM1-weak model with the additional
hidden-strangeness meson ˇelds introduced in a minimal fashion. Figure 2 shows
the class of EoSs parametrized by ΛV , the increase of ΛV produces a stiffer EoS.
For comparison, the results for nonstrange matter for NL3 [12], TM1 [9] and

Fig. 1. The EoS calculated for the TM1 parameterization for nonstrange and strangeness-
rich neutron star matter. The arrow indicates the additional stiffening of the EoS in the
case of extended nonlinear model
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Fig. 2. The EoSs calculated for the extended nonlinear TM1 model for different values
of ΛV form a distinct class with the stiffest EoS obtained for ΛV = 0.017. Results
obtained for selected models are included

FSUGold [13] parameterizations are included. Modiˇcation of the properties of
neutron star matter concerns effective mass of baryons that arises from baryon
interactions with the background nuclear matter. The numerical solutions pre-
dicted by Eq. (5) for the ˇxed value of the parameter ΛV = 0.0165 both for the
nonlinear model and for the TM1-weak model are shown in Fig. 3. The effective
masses of strange baryons in the case of the nonlinear model drop less rapidly
than the effective masses obtained in the TM1-weak model. Another interesting
result is shown in Fig. 4, where the modiˇcation of vector meson masses is given.

Fig. 3. The effective baryon masses
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Fig. 4. The effective vector meson masses

The density dependence of the effective ρ and φ vector meson masses led to
the conclusion that their modiˇcation was produced by a strong ΛV dependence,
especially in the high density limit. The effective mass of the ω meson is almost
independent of the value of the parameter ΛV . The stiffness of the EoS depends
on the incompressibility of nuclear matter. In general, incompressibility comprises
terms resulting from the kinetic pressure of Fermi gas and from the potential of
the model. Factors that set an issue of the stiffness of the EoS are connected with
differences between the strength of the effective repulsive and attractive forces.
The strength of the effective repulsive force between strange baryons is mainly
altered by the factor 1/meff,φ. The in�uence of the ΛV parameter on the density
dependence of 1/meff,φ is depicted in Fig. 5. The increase of the parameter ΛV

considerably enhances the strength of the repulsive force in the system. A correct
model of a neutron star requires the inclusion of additional EoSs that describe the

Fig. 5. The density dependence of the factor
1/meff,φ

matter of the inner and outer crusts.
For the outer and inner crusts the
EoSs of Baym, Pethick, and Suther-
land (BPS) [14] and Baym, Bethe
and Pethick (BBP) [15] have been
used, respectively. The results ob-
tained for the set of EoSs given
in Fig. 2 led to the massÄradius re-
lations. The massÄradius relations
obtained for varying values of the
parameter ΛV are shown in Fig. 6.
The higher the value of ΛV , the
higher is the maximum mass of a
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Fig. 6. The massÄradius relations

neutron star. The OTV equation offers the ability to characterize the properties of
the interior of a neutron star. This can be done by ˇnding solutions of the given
equations for the radial distance from the center of the star. Thus, the composition
and concentrations of hyperons in the inner part of a neutron star calculated in
the nonlinear model can be traced for the chosen value of the parameter ΛV . The
radial dependence of the composition of the core of the maximum mass conˇgura-
tion is depicted in Figs. 8 and 9. The number density of Ξ− hyperons is reduced.
However, an interesting feature of this model is the abundance of Σ− hyperons

Fig. 7. Mass distributions for the maximum mass conˇgurations
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Fig. 8. The particle fraction Yi as a function of the radius of the neutron star, for the
maximum mass conˇguration for the TM1-weak model with ΛV = 0.0165

Fig. 9. The particle fraction Yi as a function of the radius of the neutron star, for the
maximum mass conˇguration for the extended nonlinear model with ΛV = 0.0165

in the core of the neutron star. There are still signiˇcant uncertainties associ-
ated with the experimental data on the hyperonÄnucleus interactions. Thus, it

is reasonable to investigate the effect of the hyperonÄnucleus potential U
(N)
Y on

the obtained results [16]. Particular attention was paid to the dependence of the

EoS on the Σ-nucleus potential U
(Σ)
Y . Detailed calculations were done for the

selected values of the U
(N)
Σ potential, assuming its both attractive and repulsive

character. Calculations performed for the extended nonlinear model resulted in
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a sequence of EoSs. The stiffest one was obtained for the repulsive potential

(U (N)
Σ = 30 MeV). The in�uence of the U

(N)
Σ potential on the internal structure

of the maximum mass conˇguration is given in Fig. 7. This ˇgure shows the
distribution of mass in the interior of a neutron star for the extended model for
different values of the U

(N)
Σ potential and for the weak model. Dots indicate the

boundary of the hyperon core.

CONCLUSIONS

The characteristic feature of models that describe neutron star matter with
nonzero strangeness is considerable softening of the EoS in comparison with the
case when neutron star matter includes only nucleons. This softening of the
EoSs leads to rather low values of the maximum neutron star masses achievable
in theoretical models. This fact in turn is inconsistent with the observational
results. In this paper the model with the more sophisticated sector of vector
mesons was used to modify the high density limit of the EoS and to offer the
possible solution of this problem. It was shown that the presence of different
nonlinear vector meson couplings especially with the strange meson φ leads to
the emergence of extra repulsive force in the strange sector of the system. Results
of numerical calculations have shown that the nonlinear vector meson couplings
signiˇcantly modify the in-medium properties of the effective baryon and meson
masses. The nonlinear vector meson couplings modify both the asymmetry and
strangeness content of the system and therefore lead to a model with a reduced
strangeness and an enhanced asymmetry. The EoS for strangeness-rich matter of
neutron stars calculated on the basis of the extended nonlinear model is much
more stiffer than EoSs obtained for a neutron star with hyperons with the use
of models in which vector meson φ is introduced in a minimal fashion (e.g.,
TM1-weak model). The consequences for the parameters of neutron stars are
straightforward and appear as the considerable growth of neutron star masses.
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