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PHASE TRANSITIONS IN COMPACT STARS Å
PROBLEM OF MICRO AND MACRO STABILITY

J. L. Zdunik ∗

N. Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw

Problem of microscopic stability of dense matter in the case of a phase transition
to the new, dense phase (for example, quark matter) is discussed. An analysis of the
constraints resulting from the observations of 2M� pulsars and the consequences for a
stiffness of a dense phase are presented. This may lead to the instability with respect to
reconversion to the basic nuclear phase before reaching maximum mass.

Macroscopic stability is deˇned as a dynamical stability with respect to radial oscil-
lations (in the case of rotating star Å axisymmetric pulsations). The conditions for the
stability of the star with a small, dense core of new phase are discussed and the universality
of the stability properties of the families of rotating neutron stars is presented.

PACS: 97.60.Jd; 26.60.-c

INTRODUCTION

Many models of dense matter predict existence of phase transitions at high
pressure and density, i.e., conditions typical to the interior of neutron stars.
In particular, strangeness of dense matter is postulated through appearance of
hyperons and deconˇnement of quarks. Phase transitions to other exotic phases
of matter, as pion or kaon condensates, were also considered [1]. Observations
of neutron stars and measurements of their parameters (mass, radius) seem to
be the only possibility to study properties of cold, catalyzed matter at density
ρ ∼ 1015 g · cm−3. Recent determinations of the mass of two pulsars (2M�)
put a constraint on the dense matter properties allowing only for a relatively stiff
equation of state (EOS). On the other side, phase transitions and appearance of
new particles (for example, hyperons) always result in softening of the EOS. As
a consequence, constructing models of neutron stars with phase transition in their
center requires strong tuning of the dense matter model.
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In the present paper we discuss two aspects of a stability properties of the
neutron stars in the case of a phase transition in the interior. For catalyzed matter
the microscopic stability corresponds to the minimum of the thermodynamical
potential. If two phases of dense matter are possible, the stable phase minimizes
the Gibbs thermodynamical function at a given pressure. The relation between
the observational constraint (Mmax > 2M�) and the stiffness of the EOS at high
density is discussed in Sec. 1.

The softening of the EOS could lead to the interesting properties of the
pulsar evolution. The back-bending phenomenon, a temporary spin-up era as
an isolated pulsar looses its energy and angular momentum, was proposed by
Glendenning et al. [2] as a signature of a phase transition to quark phase in the
center of neutron star. However, if phase transition is connected with relative
strong softening, it results in a dynamical destabilization of a star leading to a
minicollapse in a timescale of milliseconds. In Sec. 2 we present conditions for
dynamical stability of a neutron star with a small core of a new dense phase.

1. MICROSCOPIC STABILITY

Thermodynamically, microscopic stability corresponds to a minimum of the
baryon chemical potential μb (Gibbs energy per baryon) at given pressure. We
consider the possibility of the existence of matter in two different phases: N Å
normal, preferred in low-density region, and Q Å superdense high-density phase.
In this case the minimalization of μb can lead to a ˇrst-order phase transi-

Fig. 1. a) EOS with ˇrst-order phase transition from N to Q phase. Dotted line at
P � 280 MeV · fm−3 corresponds to the reconˇnement Q → N for stiff Q phase.
b) Baryon chemical potential with respect to N phase. Negative values Å stable Q phase.
Dots correspond to the parameters in the center of maximum mass star
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tion accompanied by the density jump ρN → ρQ which can be described by
a parameter λ = ρQ/ρN . The condition at transition pressure PNQ reads

μN
b (PNQ) = μQ

b (PNQ) and is equivalent to the Maxwell construction between N
and Q phases. The schematic equation of state (EOS) exhibiting ˇrst-order phase
transition is presented in Fig. 1, a. If we relax the condition of local electric
charge neutrality, two phases coexist in a mixed-phase state in a ˇnite pressure
range [3].

The phase transition results always in the softening of the EOS. This leads
to the decrease of the slope of the function M(Pc) (mass vs. central pressure) for
a conˇguration with central pressure equal to PNQ (see Eq. (1) in Sec. 2). As a
result, the maximum mass of a star with phase transition is usually lower than that
for N star. Observations of 2M� pulsars created some problems for the modeling
of phase transitions in the interior of neutron stars. The EOS of Q phase should
be sufˇciently stiff to overcome the softening effect of phase transition and to
obtain the maximum mass of two-phase star larger than 2M�. The role of the
stiffness of a phase Q for the maximum mass of a star is presented in Fig. 2, a.
To simplify our discussion, we decided to use linear EOS for Q phase. This is
a very good approximation of modern EOSs of quark matter [4, 5]. For the two
EOSs for dense phase of different stiffness Qsoft and Qstiff the phase transition
parameters are the same and deˇne the similar M(R) dependence for small core
of Q phase in the center of a star (see Eq. (1)). For higher central pressure the
stiffness of the dense phase is crucial and gives ∼ 0.4M� difference in maximum
mass. In high-density region Qstiff EOS is stiffer than N EOS without phase
transition, this results in higher value of maximum mass.

Fig. 2. a) MassÄradius relation for N stars and hybrid stars for different stiffness
of Q phase. b) Critical value of density jump at phase transition. For λ > λcrit star
looses its stability at conˇguration with Pc = PNQ
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However, a stiffening of the EOS is associated with the increase of the baryon
chemical potential and may lead to the violation, above a certain pressure, of the
condition μQ

b (P ) < μN
b (P ). This means that the stiff Q phase is thermodynam-

ically unstable with respect to the reconversion into the N phase. For complete
thermodynamical equilibrium a ˇrst-order phase transition back to the N phase
occurs Å for quark matter this reconversion to N phase is represented by a
reconˇnement.

In Fig. 1, b we present the difference between baryon chemical potentials
of three models of Q phase of different stiffness and N phase without phase
transition. Negative or positive value of δμ corresponds to microscopically stable
or unstable Q phase, respectively. At large pressures Qstiff EOS is unstable with
respect to the reconversion into the N phase. If we assume that matter is in a
complete equilibrium at pressure P � 280 MeV · fm−3, there exists a ˇrst-order
phase transition from Q to N phase.

Figure 2, a presents mass and radius of the considered stars. For ©typicalª
stiffness of Q phase (Q−soft) maximum mass is about 0.25M� lower than that
of N stars. One can reach larger maximum mass increasing stiffness of Q phase
(Q−stiff), but the matter in the center of hybrid star is then microscopically
unstable with respect to reconˇnement. Allowing for reconversion of Q phase
at high density, we will end up with a similar maximum mass as obtained for
N model. The largest stiffness of microscopically stable Q phase gives a maxi-
mum mass almost exactly equal to the value for N star (middle Q conˇgurations
in Fig. 1, b and Fig. 2, a). One can conclude that the assumption of the thermody-
namical equilibrium results in the very similar maximum masses for hybrid (Q)
and neutron stars without deconˇnement (N ).

2. MACROSCOPIC STABILITY

In this section we discuss macroscopic stability on neutron stars deˇned as
a stability with respect to small perturbation of the density proˇle. By stability
(instability) of an equilibrium conˇguration we will mean stability (instability)
with respect to radial perturbations in the nonrotating case, and with respect to
axisymmetric perturbations for rotating conˇgurations.

The well-known stability condition corresponds to the extremum of the grav-
itational or total baryon mass of a star [6]. In the case of nonrotating star at
maximum mass the star becomes unstable with respect to radial oscillations [7] Å
the fundamental mode of radial pulsations looses its stability. In linear theory the
corresponding condition reads: ω2

0(M = Mmax) = 0.
Phase transition in the interior of neutron star results in the appearance of

a new mode of radial oscillations, which has no counterpart in one-phase star.
The main property of this mode is a �ow of matter through the pulsating phase
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boundary transforming the N phase into Q, and vice versa [8]. The compress-
ibility of matter does not play a crucial role and this radial mode exists and has
ˇnite frequency even for a star built of the two phases of incompressible �uid.

2.1. Phase Transition in Neutron Star Core. The effect of a phase transition
occurring in the center of a star can be studied using a method of a linear response
of an equilibrium conˇguration to a perturbation of the boundary conditions at
stellar center. This approach describes how the basic parameters of the star
(X = Mb, I, R) change their dependence on the central pressure [9]. It could be
presented as a relation between derivatives taken at the transition pressure for N
and Q conˇgurations:

(
dX

dPc

)
Q

=
(3 − 2λ + 3xN)(1 + xN )

(λ + 3xN )(λ + xN )

(
dX

dPc

)
N

, (1)

where λ is density jump and we deˇne relativistic parameter xN ≡ PNQ/ρNc2.
The consequence of formula (1) used for gravitational or baryon masses of

a star is the stability condition at the appearance of a small, condensed core of a
new phase in the center of a star which reads [10,11]

λ < λcrit ≡
3
2
(1 + xN ). (2)

The relativistic factor xN leads to a signiˇcant increase of λcrit, stabilizing
stellar conˇguration with ˇrst-order phase transition in the center in GR as com-
pared to the Newtonian theory. The dependence of λcrit on the mass of neutron
star is presented in Fig. 2, b for the set of equations of state compatible with the
measured 2M� pulsars (for the list of EOSs presented, see [12]).

For weak ˇrst-order phase transition (deˇned by the condition λ < λcrit), a
star with a very small core of the new, dense Q phase is dynamically stable Å the
new mode of radial oscillation has frequency proportional to

√
3 − 2λ + 3xN . In

the case of strong phase transition (λ > λcrit), the appearance of an inˇnitesimally
small dense core destabilizes dynamically neutron star and results in a mini-
collapse into a new conˇguration with large core of Q phase. In this case there
exists a new branch of stable conˇgurations Å ©twins©.

3. ROTATING STAR

Rigidly rotating stellar conˇgurations are parametrized by two quantities.
One of them is the same as for nonrotating star Å central pressure Pc or den-
sity ρc. The second one, frequency Ω or total angular momentum J , describes
rigid rotation of a star. Three basic global parameters of rotating star are mass M ,
baryon mass Mb, and J . The onset of instability can be equivalently formulated
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Fig. 3. Total angular momentum J as a function of frequency of rotation for different
baryon masses ˇxed along curves. Dotted fragments correspond to conˇgurations unstable
with respect to axisymmetric pulsations

as an extremum of the two of them with third parameter ˇxed [13]. In Fig. 3
we employ this condition for the total angular momentum J presented at ˇxed
value of baryon mass Mb. This choice corresponds to the physical situation of
the evolution of the rotating star as J decreases. Each curve presented in Fig. 3
corresponds to the ˇxed Mb with central density ρc increasing downwards. Fig-
ure 3, a presents situation corresponding to a weak phase transition, which softens
EOS but does not destabilize rotating star. The softening manifests itself as a
backbending phenomenon Å increase of rotational frequency as the star looses
rotational energy and angular momentum [2]. In Fig. 3, b the softening of the
EOS by phase transition results in the existence of unstable segment of increas-
ing J as central density increases. This instability strip separates two families of
stable conˇgurations with large central density (and large compactness) and less
compact neutron stars. The study of a large set of EOSs with phase transitions at
constant pressure (ˇrst order) or through a mixed phase leads us to the conclusion
that rotation neither stabilizes nor destabilizes sequences of stationary conˇgura-
tions. If an EOS with a phase transition gives a single family of static neutron
stars, then it produces also a single family of rigidly rotating normal stars. If for
an EOS one obtains two disjoint families of stable static conˇgurations (©twin
neutron starsª) of the same baryon mass but different radius, then also for stable
rotating conˇgurations these two families are disjoint.

CONCLUSIONS

In the case of phase transition in the interior of neutron star, the M > 2M�
constraint results in a very stiff EOS of dense phase and instability at high
pressure with respect to reconversion to a phase preferred at low density. The
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consequence of a requirement of a complete thermodynamic equilibrium of dense
matter is then very similar Mmax for stars with and without phase transition.

Dynamical destabilization of a family of stellar conˇgurations with phase
transition is a general property which does not depend on the rigid rotation of
a star. If for static conˇgurations there exist ©twin starsª, then also for rotating
stars the families of very compact stars and stars with larger radius and the same
mass are separated by the ©instability stripª.
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