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This work provides an overview of our recent results in studying two most important
and widely discussed quantum processes: electronÄpositron pair production off a probe
photon propagating through a polarized short-pulsed electromagnetic (e.g., laser) wave
ˇeld or generalized BreitÄWheeler process, and a single photon emission off an electron
interacting with the laser pulse, the so-called nonlinear Compton scattering. We show that
the probabilities of particle production in both the processes are determined by interplay
of two dynamical effects, where the ˇrst one is related to the shape and duration of the
pulse, and the second one is nonlinear dynamics of the interaction of charged fermions
with a strong electromagnetic ˇeld. We elaborate suitable expressions for the production
probabilities and cross sections, convenient for studying evolution of the plasma in presence
of strong electromagnetic ˇelds.
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INTRODUCTION

The rapidly progressing laser technology [1] offers unprecedented opportuni-
ties for investigations of quantum systems with intense laser beams [2]. A laser
intensity IL of ∼ 2 · 1022 W/cm2 has been already achieved [3]. Intensities of
the order of IL ∼ 1023−1025 W/cm2 are envisaged in the near future, e.g., at the
CLF [4], ELI [5], HiPER [6]. Further facilities are in planning on construction
stage, e.g., PEARL laser facility [7] at Sarov/Nizhny Novgorod, Russia. The
high intensities are provided in short pulses on a femtosecond pulse duration
level [2, 8, 9], with only a few oscillations of the electromagnetic (e.m.) ˇeld or
even subcycle pulses. In order to achieve such high intensities in the focal spot
of the laser beam, a crucial technique is required. (The tight connection of high
intensity and short pulse duration is further emphasized in [10]. The attosecond
regime will become accessible at shorter wavelengths [11,12].)

Quantum processes occurring in the interactions of charge fermions in very
(inˇnitely) long e.m. pulse were investigated in detail in the pioneering works
of Reiss [13, 14] as well as Narozhny, Nikishov, and Ritus [15, 16] and some
other papers (see, for example, [17]). We call such approaches as an inˇnite
pulse approximation (IPA) since it refers to a stationary scattering process. Many
simple and clear expressions for the production probabilities and cross sections
have been obtain within IPA. It was shown that the charged fermion (electron,
for instance) can interact with n � 1 photon simultaneously (n is an integer
number), and cases with n > 1 correspond to the subthreshold, multiphoton
events. However, since the new laser generation is expected to operate with
the ˇnite (short and ultra-short) pulses, the question naturally arises whether
predictions of IPA are valid for the ˇnite pulses or not.

Indeed, recently it was shown that for the photon production off an electron
interacting with short laser pulse (Compton scattering) in [10, 18Ä24], and for
e+e− pair production off a probe photon interacting with short e.m. pulses
(BreitÄWheeler process) in [25Ä29], the ˇnite pulse shape and the pulse duration
become important. That means, the treatment of the intense and short laser ˇeld as
an inˇnitely long wave train is no longer adequate. The theory must operate with
essentially ˇnite pulse. We call such approaches as a ˇnite pulse approximation
(FPA). Formation of positrons from cascade processes in a photonÄelectronÄ
positron plasma [30, 31] generated by photonÄlaser [32], electronÄlaser [33, 34]
or laserÄlaser interactions [35] (see [36,37] for surveys) is an important problem
in laser physics. The evaluation of corresponding transport equations needs, as
an input, the probabilities/cross sections for the production of energetic photons
(e.g., in the nonlinear Compton scattering) and direct emission of e+e− pairs
(e.g., in the nonlinear BreitÄWheeler process).

Consider ˇrst the nonlinear BreitÄWheeler process. Corresponding linear
BreitÄWheeler e+e− pair production γ′+γ → e++e− [38] refers to a perturbative



QUANTUM PROCESSES IN SHORT AND INTENSIVE ELECTROMAGNETIC FIELDS 837

QED reaction; the generalization to the multiphoton process γ′ + nγ → e+ + e−

(nonlinear BreitÄWheeler process) in IPA was done in [13, 16, 17]. Attributing
theses processes to colliding null ˇelds, one can imagine another aspect. In
the antinode of suitably counter propagating e.m. waves, an oscillating purely
electric ˇeld can give rise to the dynamical Schwinger effect [39]; in the low-
frequency limit one recovers the famous Schwinger effect [40] awaiting still its
experimental veriˇcation. These kinds of pair creation processes are related to
highly nonperturbative effects [41, 42]. Once pair production is seeded in very
intense ˇelds, further avalanche-like particle production could screen the orig-
inal ˇeld or even limit the attainable ˇeld strength [30]. One can relate the
BreitÄWheeler process to the absorptive part of the probe-photon correlator in an
external e.m. ˇeld; in our case the latter being a null ˇeld, too. Later, we focus
on colliding null ˇelds in the multiphoton regime and consider the generalized
BreitÄWheeler effect for short pulses of e.m. wave ˇelds ranging from weak
to high intensities. Phrased differently, we analyze e+e− pair production by a
probe photon γ′ traversing a coherent e.m. (i.e., laser) ˇeld. We employ the four-
potential of a circularly polarized laser ˇeld in the axial gauge Aμ = (0, A(φ))
with

A(φ) = f(φ)
(
a1 cos(φ + φ̃) + a2 sin(φ + φ̃)

)
, (1)

where φ = k · x is invariant phase with four-wave vector k = (ω,k), obeying
the null ˇeld property k2 = k · k = 0 (a dot between four-vectors indicates the
Lorentz scalar product) implying ω = |k|, a(1,2) ≡ a(x,y); |ax|2 = |ay|2 = a2,
axay = 0; transversality means kax,y = 0 in the present gauge. The enve-
lope function f(φ) with lim

φ→±∞
f(φ) = 0 (FPA) accounts for the ˇnite pulse

length. (IPA would mean f(φ) = 1.) To deˇne the pulse duration, one
can use the number N of cycles in a pulse, N = Δ/π = (1/2)τω, where
the dimensionless quantity Δ or the duration of the pulse τ are further use-
ful measures. The carrier envelope phase φ̃ is particularly important if it is
varied in a range comparable with the pulse duration Δ. In IPA it is any-
how irrelevant; in FPA with φ̃ � Δ the cross section of the photon emission
would be determined by an involved interplay of the carrier phase, the pulse
duration, and pulse shape as well as the intensity of e.m. ˇeld as empha-
sized, e.g., in [43]) (see also [28, 44]). In the beginning, we drop the carrier
phase, thus assuming φ̃ � Δ, and concentrate on the dependence of the cross
sections on the parameters responsible essentially for multiphoton effects. Im-
pact of φ̃ on the differential production rate is discussed in Subsecs. 2.7 and
3.4. In present consideration we drop effect of the pulse focusing which,
however, is more relevant for longer pulses [45] than those covered in the
present review where we consider pulses with the number of oscillations less
than ten.
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The interaction of an electron with e.m. ˇeld is characterized by the dimen-
sionless ˇeld intensity ξ2. For simplicity, let us consider the case of generalized
Compton scattering, where the variable ξ2 can be determined through the av-
erage value of the manifestly covariant variable η = T μνpμpν/(p · k)2 [46]
(cf. also [15]), where p is the four-momentum of a target electron, and T μν

is the e.m. stress-energy tensor T μν = gαβFμαF βν + (1/4)gμνFαβFαβ , where
Fμν = ∂μAν − ∂νAμ stands for the e.m. ˇeld strength tensor. In the charge's
rest frame η = T 00/ω2, where the stress-energy tensor T 00 is equal to the energy
density of the e.m. ˇeld or to the pulse intensity IL. In IPA, the quantity ξ2 is
determined by

ξ2 =
e2

m2

1
τIPA

τIPA/2∫
−τIPA/2

dt η =
e2

m2ω2

1
2π

π∫
−π

dφ IL =
e2a2

m2
, (2)

where the averaging interval is set equal to the duration of one cycle, τIPA =
2π/ω (we use natural units with c = � = 1, e2/4π = α ≈ 1/137.036). The
generalization to a ˇnite pulse may be done in a straightforward manner:

ξ2
FPA =

e2

m2

1
τFPA

∞∫
−∞

dt η =
e2

m2ω2

1
2πN

∞∫
−∞

dφ IL. (3)

Now, the interval τFPA is determined by the number N of oscillations in a pulse
as 2πN/ω. That is, the quantity ξ2, which deˇnes the production probability and
the cross section, can be expressed through the averaged value of the intensity of
a ˇnite laser pulse

ξ2 = ξ2
FPA

N

N0
, (4)

or

ξ2 =
N

N0

e2

ω2m2
〈IL〉 �

N

N0

5.62 · 10−19

ω2[eV2]
〈IL〉

[
W

cm2

]
,

(5)

� N

N0
3.66 · 10−19λ2[μm2]〈IL〉

[
W

cm2

]
,

where λ = 2π/ω is the wave lenght of the background ˇeld and N0〈IL〉 =

(ω/2π)
∞∫

−∞
dt IL. Hence, the normalization factor N0 is determined as

N0 =
1
2π

∞∫
−∞

dφ (f2(φ) + f ′2(φ)) (6)
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Fig. 1. Reduced ˇeld intensity ξ2 as a function of averaged pulse intensity IL for different
wave lengths. Dashed, solid, and dash-dotted curves are for λ = 40, 0.8, and 0.01 μm,
respectively

and has a meaning of renormalized factor for the photon 
ux in the case of ˇnite
pulse. The factor N0 is described in some detail below in Sec. 1. In fact, for
the realistic envelope functions N0 � N and, therefore, ξ2 � ξ2

FPA. The general-
ization to the BreitÄWheeler process can be done strightforwardly by substitution
p → k′ and utilizing the center-of-mass system (c.m.s.).

For completeness, in Fig. 1 we exhibit explicit dependence of ξ2 on IL for
different wave lengths for N = N0. Dashed, solid, and dash-dotted curves are
for λ = 40, 0.8, and 0.01 μm, respectively, which correspond to the infrared,
optic, and X-ray scales.

The second relevant dimensionless variable characterizing both null ˇelds is

ζ =
sthr

s
, (7)

where sthr = 4m2 and s = 2ωω′(1 − cosΘkk′) (for head-on collision geometry,
Θkk′ = π); ω, ω′ and k,k′ are the frequencies and three-wave vectors of the laser
ˇeld and the probe photon, respectively. The variable sthr is the square of the
initial energy at the threshold, therefore, the variable ζ is a pure kinematic quantity
with the meaning that for ζ > 1 the linear BreitÄWheeler process γ′ + γ →
e+ + e− is subthreshold, i.e., kinematically forbidden. However, multiphoton
effects enable the nonlinear process γ′ + nγ → e+ + e− even for ζ > 1 which
we refer as subthreshold pair production. The nonlinear BreitÄWheeler process
has been experimentally veriˇed in the experiment E-144 at SLAC [47]. There,
the minimum number of photons involved in one e+e− event can be estimated
by the integer part of ζ(1 + ξ2), i.e., ˇve. To arrive at such an estimate, we
recall that the reduced strength ξ is related to the laser intensity IL via Eq. (5),
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and therefore, at ω′ = 29 GeV, ω = 2.35 eV, and at peak focused laser intensity
of 1.3 · 1018 W/cm2, one gets ξ = 0.36 and ζ = 3.83. The laser pulses contained
about thousand cycles in a shot, allowing to neglect the details of the pulse shape
and duration.

Some important difference between IPA and FPA is that in the ˇrst case
the variable n = 1, 2, . . . is integer, it refers to the contribution of the individual
harmonics. The value nω is related to the energy of the background ˇeld involved
into considered quantum process. Obviously, this value is a multiple of ω. In
FPA, the basic subprocess operates with l background photons, where l is a
continuous variable. The quantity lω can be considered as the energy partition
of the laser beam involved into considered process, and it is not a multiple ω.
Mindful of this fact, without loss of generality, we denote the processes with
l > 1 as generalized multiphoton processes, remembering that l is a continuous
quantity.

The Compton process is considered below as a spontaneous emission of one
photon off an electron in an external e.m. wave. Evaluation of corresponding
transition matrix is close to that of case of the BreitÄWheeler process because both
processes are crossed to each other. Despite the similarities of these two processes,
the physical meaning of the dynamical variables and observables is quite different.
For the sake of completeness, we start our analysis from fully differential cross
sections which are calculated as a function of the frequency of the outgoing photon
at ˇxed scattering angle. The main difference to the previous studies mentioned
above is utilizing a wider class of the pulse envelope functions including 
at-
top envelopes. However, the fully differential cross section has a complicated
structure being rapidly oscillating function of the energy of the outgoing photons
ω′ at ˇxed production angle θ′, especially in the kinematically forbidden region.
It is clear that experimental studying of the multiphoton dynamics in the case of
rapidly varying cross sections is a challenging task. Rather integrated observables
may overcome this problem.

But here one has to be careful. The totally integrated cross section is not
suitable for this aim, because in this case the integration starts from the min-
imum value of the energy of the outgoing photon, ω′

1, kinetically allowed for
the electronÄone-photon interaction, and this region dominates in the total cross
section, masking the relatively weak effects of electronÄmultiphoton interactions.
To highlight the role of the multiphoton interaction, the lower limit of integra-
tion ω′ must be shifted relative to ω′

1: ω′ > ω′
1. Such partially integrated cross

sections are smooth functions of ω′ and allow one to study directly the multi-
photon dynamics. Similarly to the variable ζ in the BreitÄWheeler process, the
ratio κ = ω′/ω′

1 > 1 may be considered as a subthreshold variable in nonlinear
Compton scattering.

We show below that in the considered quantum processes the production
probability (or cross section) is determined by the nontrivial interplay of two
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dynamical effects. The ˇrst one is related to the shape and duration of the pulse,
while the second one is the nonlinear dynamics of the electron (positron) in the
strong electromagnetic ˇeld, independently of the pulse geometry. These two
effects play quite different roles in two limiting cases. The pulse shape effects
manifest most clearly in the weak-ˇeld regime characterized by small values of the
reduced ˇeld intensity ξ2. The rapid variation of the e.m. ˇeld in very short (and,
in particular, in subcycle) pulses enhances strongly few-photon events such that
their probability may exceed the IPA result by orders of magnitude. Nonlinear
multiphoton dynamics of the strong electromagnetic ˇeld plays a dominant role at
large values of ξ2. In this case, results of the IPA and the FPA are close to each
other. In the transition region, i.e., at intermediate values ξ2 ∼ 1, the observables
are determined by the interplay of both effects which must be taken into account
simultaneously. For the quantum processes in IPA, we refer the reader to the
review paper [17].

This review is based on the methods and results obtained in [25Ä27] and [24].
It is organized as follows. In Sec. 1, we discuss the properties of envelope
functions used below. Section 2 is devoted to the nonlinear BreitÄWheeler process
for different pulse shapes, pulse durations and e.m. ˇeld intensities deriving the
basic expressions for the probability of e+e− creation in FPA. We successively
analyze the cases of (i) small pulse duration with number of oscillations N =
2−10 at different pulse intensities, (ii) the case of large ˇeld intensity where the
pulse shape becomes unessential, and (iii) subcycle pulses with N < 1, where the
pulse structure is particularly important. Special attention is paid to the impact
of the carrier phase. In Sec. 3, we discuss several aspects of nonlinear Compton
scattering for short and subcycle pulses. Our conclusions are presented in Sec. 4.
In Appendix, for completeness and easy reference, we present some details of a
derivation of the e+e− production probability for very high intensities, ξ2 
 1.

1. ENVELOPE FUNCTIONS

Below, we are going to analyze dependence of observables on the shape
of f(φ) in Eq. (1) for two types of envelopes: the one-parameter hyperbolic
secant (hs) shape and the two-parameter symmetrized Fermi (sF) shape widely
used for parameterization of the nuclear density [48]:

fhs(φ) =
1

cosh φ/Δ
, fsF(φ) =

cosh Δ/b + 1
cosh Δ/b + cosh φ/b

. (8)

These two shapes cover a variety of relevant envelopes discussed in literature (for
details, see [26]). The parameter b in the sF shape describes the ramping time in
the neighborhood of φ ∼ Δ. Small values of ratio b/Δ cause a 
at-top shaping.
At b/Δ → 0, the sF shape becomes a rectangular pulse [18]. In the following,
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we choose the ratio b/Δ as the second independent parameter for the sF envelope
function. The parameter Δ characterizes the pulse duration 2Δ with Δ = πN ,
where N has a meaning of a ©number of oscillationsª in the pulse. Certainly,
such a deˇnition is rather conditional and is especially meaningful for the 
at-top
envelope with small values of b/Δ. In the case of the hs envelope shape, the
number of oscillations with small amplitudes may exceed N . Nevertheless, for
convenience we call N as a ©number of oscillations in a pulseª for given f(φ),
relying on its relation to the shape parameter Δ. It was shown that the properties
of the two-parameter sF shape for large values of b/Δ � 0.3−0.5 are close to that
of the one-parameter hs shape. Therefore, as mentioned above, in order to stress
the difference between one- and two-parameter (
at-top) envelopes, we focus our
consideration on the choice of b/Δ = 0.15 throughout the present paper.

The envelope shape f(φ) and the integrand f2(φ) + f ′2(φ) (which is pro-
portional to the square of the e.m. ˇeld strength) in Eq. (6) as functions of the
invariant phase for hs and sF shapes are shown in Fig. 2, a and 2, b, respectively.
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Fig. 2. The envelope functions f(φ) and the integrand f2(φ) + f ′2(φ) in Eq. (6) as the
functions of the invariant phase φ = kx. The thick solid curves labeled by N are for f(φ).
The dotted, dashed, dash-dotted, and dot-dot-dashed curves are for f2(φ) + f ′2(φ) with
N = 0.5, 2, 5, and 10, respectively. Panels a and b are for hs and sF envelope shapes,
respectively
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The numbers in the plot indicate the number of oscillations in a pulse N . The
thick solid curves labeled by N are for f(φ). The dotted, dashed, dash-dotted
and dot-dot-dashed curves are for f2(φ) + f ′2(φ) with N = 0.5, 2, 5, and 10,
respectively. For the smooth hs shape the integrand is also a smooth function
(cf. Fig. 2, a). For the 
at-top sF envelope shape and N � 2, both f(φ) and
the integrand f2(φ) + f ′2(φ) are smooth functions of the invariant phase which
is more compact as compared with the hs shape with the same value of N . At
N = 0.5 and φ ∼ Δ, the integrand (see dashed curve in the right panel) displays
some overshoot resulting locally in the height h = 1/4 + (Δ/b/4Δ)2 � 1.37.
Increasing Δ (or b/Δ) leads to a vanishing of this overshoot.

For the hs envelope, the normalization factor in Eq. (6) has the form

Nhs
0 =

Δ
π

(
1 +

1
3Δ2

)
, (9)

while for the sF shape the normalization factor reads

N sF
0 =

Δ
π

(
F1 (t) + F2 (t)

b

Δ

)
, t =

1 + cosh Δ/b

sinh Δ/b
, (10)

where

F1(t) =
(t2 + 1)(−t4 + 10t2 − 1)

16t
,

(11)

F2(t) =
3t10 − 35t8 + 90t6 − 90t4 + 35t2 − 3

24(t2 − 1)3
.

In the limit b/Δ → 0,

N sF
0 =

Δ
π

+ O
(

exp
[
−Δ

b

])
� Δ

π
. (12)

The normalization factor N0 scaled by N = Δ/π as a function of N for
hs and sF shapes is exhibited in Fig. 3, shown by the dashed and solid curves,
respectively.

For the hs shape, N0 � N at N � 1 and slightly increases for the subcycle
envelopes with N < 1 (cf. Eq. (9)). In the case of a 
at-top envelope, the ratio
N0/N is independent of Δ, according to Eq. (11). The contribution of f ′2 in (6)
is weak and varies from 0.2 to 3.8% for b/Δ = 0.01 and 0.2, respectively. In
the limit b/Δ → 0 it vanishes and N0 → N and, therefore, the overshoot in the
integrand does not affect the integral in Eq. (6). But taking into account that very
small values of b/Δ seem to be not realistic, we restrict our actual calculations
to the ˇnite value b/Δ = 0.15, where the overshoot in f2(φ) + f ′2(φ) is minor.
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Fig. 3. The scaled normalization factor
N0/N as a function of the number of os-
cillations in the pulse, N = Δ/π, for hs
and sF shapes, shown by the dashed and
solid curves, respectively

For the sake of completeness, we
present also the behavior of e.m. po-
tential A and the electric ˇeld strength
E = −∂A/∂t, where A is given by
Eqs. (1) and (8) as functions of the in-
variant phase φ. The e.m. potential and
strength for the one- and two-parameter
envelope functions read

Ax = af(φ) cos φ, Ay = a f(φ) sin φ,
(13)

Ex = ωAx [−(ln f(φ))′ + tanφ] , (14)

Ey = ωAy [−(ln f(φ))′ − cotφ] , (15)

with a = |a1| = |a2| and

−(ln f(φ))′ =

⎧⎪⎪⎨⎪⎪⎩
1
Δ

tanh
φ

Δ
, hs,

1
b

sinh φ/b

cosh Δ/b + cosh φ/b
, sF.

(16)

The scaled potentials Ax/a and the scaled strengths Ex/aω as functions of
the invariant phase are exhibited by solid and dashed curves, respectively, in
upper and middle panels in Fig. 4 for the hs and sF shapes. The left and right
panels correspond to the pulses with N = 2 and 0.5, respectively. The result for
the hs shape with N = 0.5 is close qualitatively to that of [10]. One can see that
the duration of the pulse increases with increasing number of oscillations. The

at-top sF shape is more compact compared to the hs shape with the same value
of the pulse ©scaleª parameter Δ.

The result for y components is exhibited in Fig. 4, lower panels, where we
restrict ourselves to the example of the 
at-top sF envelope shape. For short pulses
with N > 2, the contribution of the ˇrst terms in Eqs. (14) and (15) are relatively
small and, therefore, the approximate relations Ay � Ex/ω and Ey � −ω Ax

are valid. Both Ay and Ey are ˇnite. The same is true for the sF shape with
N � 2. This is illustrated in Fig. 4, lower panel (left), where the result for the
sF envelope with N = 2 is shown. The approximate relations are valid also for
subcycle pulse with N = 0.5 and for the one-parameter hs shape. In the case of
the 
at-top envelope for N = 0.5, the above approximate relations are valid for
Ay and for the central part of Ey (cf. Fig. 4 lower panel (right)). In the border
area with φ ≈ Δ = π/2, the strength Ey has ˇnite narrow peaks with height h̃ =
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Fig. 4. The e.m. potentials A/a (solid curves) and ˇeld strengths E/aω (dashed curves)
as functions of the invariant phase φ. The upper and middle panels correspond to the
hyperbolic secant (hs) and symmetrized Fermi (sF) shapes, respectively, for the x compo-
nents. The lower panels correspond to the y components for the sF envelope shape. The
left and right panels are for pulses with N = 2 and N = 0.5, respectively

(
Δ
b

)
sin Δ
4Δ

+O(exp(−Δ/b)) � 1.06. The height of these peaks decreases with

increasing Δ at ˇxed b/Δ and for N � 2 it becomes negligibly small. This ©pick-
likeª behavior for the 
at-top shape can be compared with the popular rectangular
pulse [18], where the derivative f ′(φ) = θ′(φ − Δ) = δ(φ − Δ) is singular at
φ = Δ. But such a ©pick-likeª or even singular behavior of E at the border
does not affect the transition matrix elements, discussed in the next section (cf.
Eq. (18)), since they are determined by A and A2 rather than the e.m. strength.



846 TITOV A. I. ET AL.

Therefore, our plots and discussions for the e.m. strength Ex,y have an illustrative
character since the dynamics of the considered process is determined purely
by the e.m. potential Ax,y, which is taken, in our approach, as a primary
quantity.

2. THE e+e− PAIR PRODUCTION IN A FINITE PULSE

2.1. General Formalism. In our consideration of quantum processes, we
start from e+e− pair production in the interaction of a probe photon with a
circularly polarized e.m. ˇeld described by Eq. (1). Within the Furry picture,
the process is diagrammatically represented by the one-vertex graph, describing
the decay of the probe photon with the four-momentum k′ into a laser dressed
e+e− pair, where the presence of the background e.m. ˇeld is included in the
Volkov solution of the outgoing e+ and e−. (In the weak-ˇeld approxima-
tion this graph turns into the known two two-vertex graphs for the perturbative
BreitÄWheeler process.) Utilization of (1) leads to two signiˇcant modiˇcations
of the transition amplitude in FPA compared to IPA. In IPA, the Volkov so-

lutions [49, 50] refer to fermions with quasi-momenta qμ = pμ + kμ
ξ2m2

2(k · p)
and dressed masses m2

∗ = m2(1 + ξ2). In FPA, all fermion momenta and
masses take their vacuum values p and m, respectively, whereas the correspond-
ing wave functions are modiˇed in accordance with the Volkov solution (with
more complicated, compare to IPA, phase factor). The ˇnite (in space-time)
e.m. potential (1) for FPA requires the use of Fourier integrals for invariant
amplitudes, instead of Fourier series which are employed in IPA. The partial
harmonics become thus continuously in FPA. The S-matrix element is expressed
generically as

Sfi =
−ie√

2p02p′02ω′

∞∫
ζ

dl Mfi(l)(2π)4δ4(k′ + lk − p − p′), (17)

where k, k′, p, and p′ refer to the four-momenta of the background (laser)
ˇeld (1), incoming probe photon, outgoing positron and electron, respectively,
the low limit ζ is deˇned in Eq. (7). The transition matrix Mfi(l) consists of four
terms

Mfi(l) =
3∑

i=0

M (i) C(i)(l), (18)
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where

C(0)(l) =
1
2π

∞∫
−∞

dφ eilφ−iP(φ),

C(1)(l) =
1
2π

∞∫
−∞

dφf2(φ) eilφ−iP(φ),

(19)

C(2)(l) =
1
2π

∞∫
−∞

dφf(φ) cosφ eilφ−iP(φ),

C(3)(l) =
1
2π

∞∫
−∞

dφf(φ) sin φ eilφ−iP(φ),

with

P(φ) = z

φ∫
−∞

dφ′ cos (φ′ − φ0)f(φ′) − ξ2ζu

φ∫
−∞

dφ′ f2(φ′). (20)

The quantity z is related to ξ, l, and u ≡ (k′ · k)2/ (4(k · p)(k · p′)) via

z = 2lξ

√
u

ul

(
1 − u

ul

)
, (21)

with ul ≡ l/ζ. The phase φ0 is equal to the azimuthal angle of the direction of

ight of the outgoing electron in the e+e− pair rest frame φ0 = φp′ ≡ φe and
it is related to the azimuthal angle of the positron momentum as φ0 = φe+ + π.
Similarly to IPA, it can be determined through invariants α1,2 as cosφ0 = α1/z,
sin φ0 = α2/z with α1,2 = e (a1,2 · p/k · p − a1,2 · p′/k · p′).

The transition operators M (i) in Eq. (18) have the form

M (i) = ūp′ M̂ (i) vp, (22)

with

M̂ (0) = ε/′,

M̂ (1) = − e2a2 (ε′ · k) k/

2(k · p)(k · p′) , (23)

M̂ (2,3) =
ea/(1,2)k/ε/′

2(k · p′) −
eε/′k/a/(1,2)

2(k · p)
,
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where up′ and vp are the Dirac spinors of the electron and positron, respectively,
and ε′ is the polarization four-vector of the probe photon.

The integrand of the function C(0) in Eqs. (19) does not contain the envelope
function f(φ) and therefore it is divergent. One can regularize it by using the
prescription of [18] which leads to

C(0)(l) =
1

2πl

∞∫
−∞

dφ
(
z cos (φ − φ0) f(φ) − ξ2ζu f2(φ)

)
×

× eilφ−iP(φ) + δ(l) e−iP(0). (24)

This expression contains a singular (last) term which, however, does not contribute
because of kinematical restriction, implying l > 0.

The differential probability of e+e− pair production in terms of the transition
matrix Mfi(l) in Eq. (17) reads

dW =
αζ1/2

2πN0m

∞∫
ζ

dl |Mfi(l)|2
dp
2p0

dp′

2p′0
δ4(k′ + lk − p − p′). (25)

It may be represented in a conventional form as a function of u and φe,

dW

dφe du
=

αmζ1/2

16πN0

1
u3/2

√
u − 1

∞∫
ζ

dl w(l), (26)

with

1
2

w(l) = (2ul + 1)|C(0)(l)|2 + ξ2(2u − 1)(|C(2)(l)|2 + |C(3)(l)|2)+

+ ReC(0)(l)
(

ξ2C(1)(l) − 2z

ζ
(cosφ0C

(2)(l) + sinφ0C
(3)(l))

)∗
. (27)

The normalization factor N0 is determined by Eq. (6) and has been discussed in
the previous section.

It is convenient to express the C(i)(l) functions deˇned in Eqs. (19) and (24)
through the new, basic functions Yl and Xl, which may be considered as an
analog of the Bessel functions in IPA,

Yl(z) =
1
2π

e−ilφ0

∞∫
−∞

dφ f(φ) eilφ−iP(φ),

(28)

Xl(z) =
1
2π

e−ilφ0

∞∫
−∞

dφ f2(φ) eilφ−iP(φ).
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The new representation of the basic functions C(i)(l) reads

C(1)(l) = Xl(z) eilφ0 ,

C(2)(l) =
1
2

(
Yl+1ei(l+1)φ0 + Yl−1ei(l−1)φ0

)
,

C(3)(l) =
1
2i

(
Yl+1ei(l+1)φ0 − Yl−1ei(l−1)φ0

)
, (29)

C(0)(l) = Ỹl(z)eilφ0 ,

Ỹl(z) =
z

2l
(Yl+1(z) + Yl−1(z)) − ξ2 u

ul
Xl(z).

It allows one to express w(l) in Eq. (27) in the form

w(l) = 2Ỹ 2
l (z) + ξ2(2u − 1)

(
Y 2

l−1(z) + Y 2
l+1(z) − 2Ỹl(z)X∗

l (z)
)

, (30)

which resembles the expression for the probability in the case of IPA

wn = 2J2
n(z) + ξ2(2u − 1)

(
J2

n−1(z) + J2
n+1(z) − 2J2

n(z)
)
, (31)

with the substitution Ỹ 2
l (z) → J2

n(z), Y 2
l±1(z) → J2

n±1(z), and Ỹl(z)X∗
l (z) →

J2
n(z).

The differential probability dW in Eq. (26) is, in fact, the probability per unit
time (or rate), and it is related to the differential cross section dσ as

dW = Jργ dσ = 2
ωm2ξ2

4πα
dσ, (32)

where J = 2 and ργ are the 
ux of incoming probe photon and the density of the
background photons, respectively, ω is the frequency of the background photon.
Thus, the differential cross section reads

dσ

dφp du
=

α2ζ

2sthrξ2N0

1
u3/2

√
u − 1

∞∫
ζ

dl w(l). (33)

Later, for easy reference and comparison with the previous works (cf. [17]),
we present our results for the BreitÄWheeler process in terms of probabilities
dW (production rates) rather than the cross sections dσ, remembering Eq. (32)
connecting these two observables.

2.2. Short Pulses. In this section, we consider short pulses with the number
of oscillation N � 2, however, the developed methods for studying probabilities
of e+e− pair production are valid even for pulses with N ∼ 1. The subcycle
pulses with N < 1 will be considered separately. Recall that we consider two
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envelope shapes: hyperbolic secant (hs) shape and symmetrized Fermi (sF) shape
with b/Δ = 0.15.

As mentioned above, Eqs. (26) and (33) with Eq. (27) can be used for nu-
merical estimates of the e+e− production probability or cross section evaluating
ˇve-dimensional integral(s) with rapidly oscillating functions. Technically, such
an approach needs long calculation time for reasonable computational accuracy
which makes it difˇcult for applications in transport/Monte Carlo codes. How-
ever, a closer inspection of the functions P(φ) and Yl, Xl shows that the number
of integrations may be reduced and, in some cases, Eq. (30) may be expressed
in an analytical form. Thus, integrating by parts the function P(φ) might be
rewritten in the following form:

P(φ) ≡ P0(φ) − ξ2ζu

φ∫
−∞

dφ′ f2(φ′),

(34)

P0(φ) = z

(
sin(φ − φ0)f(φ) + O

(
1
Δ

))
,
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Fig. 5. The function P0(φ) deˇned in (34) with (solid curves) and without (dashed curves)
the term (35) for Δ = πN with N = 2 and 5, shown in panels a and b, respectively. The
term (35) is shown separately by dash-dotted curves
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with

O
(

1
Δ

)
= − 1

Δ

φ∫
−∞

dφ′ sin (φ′ − φ0)f ′(φ′). (35)

The contribution of this term to P(φ) is subleading for the ˇnite pulse size
Δ = πN with N � 2. First, because of the explicit factor 1/Δ, and second,
because the derivative f ′(φ) in the integrand reaches its maximum value at the
boundaries of the pulse, where this function is suppressed. For an illustration,
in Fig. 5 we present results of a numerical analysis of P0(φ) with the hyperbolic
secant envelope function. The solid and dashed curves exhibit calculations with
and without the term (35), respectively, for φ0 = 0 and π. The left and right
panels correspond to Δ = π N with N = 2 and 5, respectively. The term
(|O(1/Δ)|) is shown by dash-dotted curves. One can see, in fact, that this term
is rather small and may be omitted. The second term in expression for P(φ)
in Eq. (34) is a smooth function of φ and in case of hs shape it can be given
explicitly as −ξ2ζuΔ tanh(φ/Δ).

Now we are going to discuss separately the weak-, intermediate- and strong-
ˇeld regimes.

2.3. Pair Production at Small Field Intensities (ξ2 � 1). In case of small
ξ2 � 1, implying z < 1, we decompose l = n + ε, where n is the integer part
of l, yielding

Yl �
1
2π

∞∫
−∞

dψ eilψ−iz sin ψ f(ψ+φ0)f(ψ + φ0),

(36)

=
1
2π

∞∫
−∞

dψ

∞∑
m=0

(iz)m

m!
sinm ψ ei(n+ε)ψfm+1(ψ + φ0).

Similarly, for the function Xl(z) the substitution fm+1 → fm+2 applies. The
dominant contribution to the integral in (36) with rapidly oscillating integrand
comes from the term with m = n, which results in

Yn+ε �
zn

2nn!
e−iεφ0F (n+1)(ε), Xn+ε �

zn

2nn!
e−iεφ0F (n+2)(ε), (37)

where the function F (n)(ε) is the Fourier transform of the function fn(ψ).
As an example, let us analyze the e+e− production near the threshold, i.e.,

ζ ∼ 1. In this case, the contribution with n = 1 is dominant and, therefore, the
functions Y0+ε are crucial, including the ˇrst term in (30). The functions X0+ε

are not important because they are multiplied by the small ξ2 and may be omitted.
Negative ε = ζ − 1 and positive ε correspond to the above- and subthreshold pair
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production, respectively. The function Y0+ε reads Y0+ε = F (1)(ε) exp [−iφ0ε],
where the Fourier transforms F (1)(x) for the hs and sF envelope functions are
equal to

Fhs(x) =
Δ

2 cosh
1
2
πΔx

,

(38)

FsF(x) =
1 + exp [−Δ/b]
1 − exp [−Δ/b]

b sin Δl

sinh πbx
.

The φ0 dependence of the production probability disappears in this case because
the latter one is determined by the quadratic terms of the Y functions.

Consider ˇrst the pair production above the threshold. Keeping the terms
with leading power of ξ2 one can express the production probability as

dW

du
=

αMeζ
1/2

4N0

[
u

u1

(
1 − u

u1

)
+ u − 1

2

]
ξ2

u3/2
√

(u − 1)
I0, (39)

where, taking into account that, at ˇnite values of Δ, Fourier transforms for all
considered envelopes decrease rapidly with increasing ε, one can get

I0 �
1/2∫

1−ζ

dε F (1)2(ε) �
∞∫

−∞

dε F (1)2(ε) =
1
2π

∞∫
−∞

dφ f2(φ) � N0. (40)

Combining these two equations one recovers the IPA result [17]. Thus, we can
conclude that for small ˇeld intensities for a ˇnite pulse duration, the probabilities
of e+e− pair emission above threshold with ζ < 1 in IPA and FPA coincide,
independently of the shape of the envelope function. For an illustration, in Fig. 6
we show the partial probability w(l), calculated at u = 1 for the above-threshold
region with ξ = 10−2 and ζ = 0.5 in a ˇnite region of l for the envelope size
Δ = πN with N = 2 and 10, respectively. For the envelope with a hyperbolic
secant shape (Fig. 6, a) one can see smooth curves with maxima at integer values
of l. The widths of bumps decrease with increasing N . However, the integral
of w(l) over l in the neighborhood of the ˇrst maximum is independent of N
and coincides with the contribution of the ˇrst harmonic in IPA which leads to
an equality of IPA and FPA results. For the symmetrized Fermi shape (Fig. 6, b)
the situation is different in some sense. The corresponding Fourier transforms

F
(n)
sF (l) in (37) oscillate with l. For example, the function F

(1)
sF goes to zero at

a multiple of 1/N . This results in an oscillating structure of w(l). However,
the exponential decrease of w(l) with increasing of the integer values of l is the
same.
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Fig. 6. The partial probability w(l) deˇned in (30) as a function of l at u = 1. The solid
and dashed curves correspond to the parameter Δ = πN with N = 2 and 10, respectively.
Panels a and b exhibit results for the envelopes with hyperbolic secant and symmetrized
Fermi shapes, respectively, for ξ2 = 10−4 and ζ = 0.5

The situation changes when we are slightly below threshold, i.e., ζ > 1. In
this case, the function Y0+ε dominates again and the result for FPA is the same as

in (39) but with the substitution I0 → I1, with I1 �
1∫

ζ−1

dε F (1)2(ε). In the case

of smooth envelope shape (e.g., hyperbolic secant) the dominating contribution

to this integral comes from the lower limit and, therefore, I1 ∼ (F (1)
hs (ζ − 1))2.

As a result, the production probability strongly depends on the duration Δ of
the pulse. In the case of a 
at-top envelope, we have a similar effect, because

F
(1)
sF (l), in general, decreases exponentially as exp (−πbl), where b increases with

increasing N at ˇxed b/Δ.

In Fig. 7, we show the partial probability w(l) in the subthreshold region
with ζ = 1.25. One can see that for the hyperbolic secant envelope (Fig. 7, a) the
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Fig. 7. The same as in Fig. 6, but for the subthreshold region at ζ = 1.25

difference of w(l) at l � ζ for N = 2 and N = 10 is more than several orders
of magnitude, which will be re
ected in the total probability. In the case of the
symmetrized Fermi envelope shape, one also can see a signiˇcant enhancement
of w(l) for N = 2 compared to N = 10. But now, the difference between FPA
and IPA is larger compared to the case of the hyperbolic secant shape.

The total probability W of e+e− emission as a function of the subthreshold
parameter ζ in the vicinity ζ ∼ 1 is presented in Fig. 8. The dashed and solid
curves correspond to the hyperbolic secant and symmetrized Fermi envelope
shapes, respectively. Figure 8, a and b correspond to the short pulses with Δ =
πN for N = 2 and 10, respectively, at ξ2 = 10−4. For comparison, we present
also the IPA results. In the above-threshold region, results of IPA and FPA are
equal to each other according to Eqs. (39) and (40). However, in the subthreshold
region, where ζ is close to unity, the probability of FPA considerably exceeds
(by more than two orders of magnitude) the corresponding IPA result. In the
case of the hyperbolic secant envelope function, the probability increases with
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Fig. 8. The total probability W of the e+e− pair production as a function of ζ for short
pulses with Δ = πN for N = 2 and 10 is shown in panels a and b, respectively; ξ2 =
10−4. The dashed and solid curves correspond to the hyperbolic secant and symmetrized
Fermi envelope shapes, respectively. The thin solid curves marked by dots depict the IPA
result

decreasing pulse duration. The results of FPA and IPA become comparable at
N � 10. Qualitatively, this result is also valid for the case of the symmetrized
Fermi distribution. However, in this case the enhancement of the probability
in FPA is much greater. This is due to the fact that the maxima in the partial
probability w(l) (cf. Fig. 7) decreases with increasing l in different ways for
different envelope shapes. In the case of the hyperbolic secant, it decreases as
exp (−πΔl), whereas in the case of symmetrized Fermi shape it decreases as
exp (−2πbl). For the latter one, at b/Δ = 0.15 the slope is much smaller. Such
a strong gain of e+e− emission rate is expected for other values of ζ, when ζ
exceeds an integer number. This effect is illustrated in Figs. 9 and 10, where
the total e+e− production probability W is presented in a wide region of ζ at
ξ2 = 10−4.



856 TITOV A. I. ET AL.

Fig. 9. The total probability W of the e+e− pair production as a function of ζ for the
hyperbolic secant envelope shape. The solid curves are for the full calculation, while
the dashed curves marked by crosses correspond to the approximate result with the basic
functions taken in the form of Eq. (37). Panels a and b correspond to the number of
oscillation in a pulse N = 2 and 10, respectively; ξ2 = 10−4

In Fig. 9, we present the results for the hyperbolic secant envelope shape.
The solid curves are for the full calculation, while the dashed curves marked by
crosses correspond to the approximate result with the basic functions taken in the
form of Eq. (37). Figure 9, a and b corresponds to the number of oscillation in a
pulse N = 2 and 10, respectively. One can see that the approximate result is in
very good agreement with the full calculation and may be used in transport code
calculations since it is much easier acceptable.

Corresponding results for the symmetrized Fermi shape envelopes are shown
in Fig. 10. In the case of short pulse with N = 2, the approximate calculation is
valid at ζ � 1.7. However, when N increases, one can ˇnd agreement between
full and approximate results in a wide region of ζ. For the 
at-top shape with
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Fig. 10. The same as in Fig. 9, but for symmetrized Fermi shape

small b/Δ, the probability in FPA is larger than the result of IPA near integer
values of ζ.

In any case, at large values of N (Fig. 10, b, N = 10) results of FPA and IPA
become close to each other, especially for the one-parameter envelope shapes. For
this case, at least for ξ = 0.1, . . . , 0.01, N � 10 can be considered to be near by
inˇnite, when considering the overall ζ dependence.

To summarize this part, we would like to note that temporal beam shape
effects for short pulses are strong and even dominant at small ˇeld intensities
in the parameter region where the variable z is small, z < 1. At ˇnite z, the
nonlinear dynamics of e+e− production at high pulse intensity becomes essential.

2.4. The Case of Intermediate Field Intensity (ξ2 ∼ 1). At ˇnite values of
z, z � 1, the probability of e+e− emission needs to be calculated numerically
using Eqs. (26), (30), and (28). In Fig. 11, we present the total probability W as a
function of ζ at ˇxed ξ2 = 1 (plot a) and as a function of ξ2 at ˇxed ζ = 4 (plot b).
The calculations are performed for the hyperbolic secant and symmetrized Fermi
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Fig. 11. The total probability of e+e− pair production for two envelope shapes (dashed
and solid curves are for hyperbolic secant and symmetrized Fermi shapes, respectively).
The thin solid curves marked by dots are the result of IPA. a) The total probability as a
function of ζ at ξ2 = 1. b) The total probability as a function of ξ2 at ζ = 4

pulse envelope shapes, shown by the dashed and solid curves, respectively. The
duration of the pulse is Δ = πN with N = 2. For comparison, we also present
IPA results by the thin solid curves marked by dots. At ˇnite ξ2, the probability
decreases monotonically with increasing ζ (Fig. 11, a), contrary to the step-like
decrease typical for the small ξ2 � 1 (cf. Figs. 9, b and 10, b).

Concerning the ξ2 dependence (Fig. 11, b), one can see a sizeable enhance-
ment of the total probability W at small values of ξ2 for the 
at-top pulse
shape compared to the case of hyperbolic secant and the IPA result. The latter
two results are practically identical to each other. At ξ2 � 0.1, the produc-
tion probability does not sensitively depend on the pulse shape, and FPA and
IPA results are close to each other. This means that at large ˇeld intensity,
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Fig. 12. The differential probability of e+e−

pair production as a function of φe′ = φ0 at
ζ = 4 and N = 2 for different values of ξ2

the dynamical aspects of the pair
production gain a dominant role in
comparison with the pulse shape and
size effects.

Finally, we note that, at ˇnite
ξ2, the dependence of the probability
on the azimuthal angle φe disappears
and the distribution in the x−y plane
becomes isotropic.

As an example, in Fig. 12 we
present prediction for the differential
probability of e+e− pair production
as a function of φe = φ0 at ζ = 4
for the hyperbolic secant pulse shape
with N = 2 at ξ2 = 0.1, 1, and 10. This result re
ects the isotropy of the e+e−

emission and exposes the ξ2 dependence in the considered kinematical region.
2.5. Pair Production at Large Field Intensity (ξ2 
 1). At large values of

ξ2 
 1, the basic functions Yl and Xl in Eq. (28) can be expressed in the form
of (49):

Yl =

∞∫
−∞

dq F (1)(q)G(l − q), Xl =

∞∫
−∞

dq F (2)(q)G(l − q), (41)

where F (1)(q) and F (2)(q) are Fourier transforms of the functions f(φ) and
f2(φ), respectively, and G(l) may be written as

G(l) =
1
2π

∞∫
−∞

dφ ei(lφ−z sin φ+ξ2ζuφ). (42)

In deriving this equation we have considered the following facts: (i) at large ξ2 the
probability is isotropic, therefore we put φ0 = 0, (ii) the dominant contribution
to the rapidly oscillating exponent comes from the region φ � 0, where the
difference of two large values lφ and z sinφ is minimal, and therefore, one
can decompose the last term in the function P(φ) in (34) around φ = 0, and
(iii) replace in exponent f(φ) by f(0) = 1.

Equation (42) represents an asymptotic form of the Bessel functions Jl̃(z) [51]

with l̃ = l + ξ2ζu at l̃ 
 1, z 
 1, and therefore the following identities are
valid:

G(l̃ − 1) − G(l̃ + 1) = 2G′
z(l̃), G(l̃ − 1) + G(l̃ + 1) = 2

l̃

z
G(l̃), (43)

which allow one to express the partial probability w(l̃) in (30) as a sum of the
diagonal (relative to l̃) terms: Y 2

l̃
, Yl̃Xl̃, X2

l̃
and Y

′2
l̃

. The integral over l̃ from
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the diagonal term can be expressed as

IY Y =

∞∫
l̃0

dl̃ Y 2
l =

∫
dq dq′ F (1)(q)F (1)(q′)

∞∫
l̃0

dl̃ G(l̃ − q)G(l̃ − q′), (44)

where l̃0 = ζ(1 + ξ2u. Taking into account that for the rapidly oscillating G
functions G(l − q)G(l − q′) � δ(q − q′)G2(l − q) and 〈q〉 � 〈l〉 ∼ ξ2, one gets

IY Y =
1
2π

∞∫
−∞

dφ f2(φ)

∞∫
l̃0

dl̃ G2(l̃) = NY Y

∞∫
l̃0

dl̃ G2(l̃). (45)

Similar expressions are valid for the other diagonal terms with own normalization

factors. For the X2
l̃

term it is NXX = (1/2π)
∞∫

−∞
dφ f4(φ); and for Yl̃Xl̃,

NY X = (1/2π)
∞∫

−∞
dφ f3(φ). At large ξ2, the probability does not depend on

the envelope shape, because only the central part of the envelope is important.
Therefore, for simplicity, we choose the 
at-top shape with NY Y = NY X =
NXX = N0 = Δ/π which is valid for any smooth (at φ � 0) envelopes.

Making a change of the variable l → l̃ = l + ξ2ζu, the variable z takes the
following form:

z2 = 4ξ2ζ2
(
uul − u2

)
=

4ξ2l20
1 + ξ2

(
uul̃ − u2

)
, (46)

with l0 = ζ(1 + ξ2) and ul̃ ≡ l̃/l0, that is exactly the same as the variable z in

IPA with the substitution l → l̃. All these transformations allow one to express
the total probability in a form similar to the probability in IPA for large values
of ξ2 and a large number of partial harmonics n, replacing the sum over n by an
integral over n [17]:

W =
1
2
αMeζ

1/2

∞∫
l0

dl̃

ul̃∫
1

du

u3/2
√

u − 1

{
J2

l̃
(z)+

+ ξ2(2u − 1)

[(
l̃2

z2
− 1

)
J2

l̃
(z) + J ′2

l̃
(z)

]}
. (47)

Utilizing Watson's representation [51] for the Bessel functions at l̃, z 
 1
and l̃ > z, Jl̃(z) = (2πl̃ tanhα)−1/2 exp [−l̃(α − tanhα)] with coshα = l̃/z,
and employing a saddle point approximation in the integration in (47) we ˇnd the
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total probability of e+e− production as (for details see Appendix)

W =
3
8

√
3
2

αMeξ

ζ1/2
d exp

[
−4ζ

3ξ

(
1 − 1

15ξ2

)]
, d = 1 +

ξ

6ζ

(
1 +

ξ

8ζ

)
. (48)

This expression resembles the production probability in IPA which is the con-
sequence of the fact that, at ξ2 
 1 in a short pulse, only the central part of
the envelope at φ � 0 is important. In the case of ξ/ζ � 1, approximating
d = 1 + O(ξ/ζ), the leading order term recovers the Ritus result [17].

For completeness, in Fig. 13, a, we present FPA results of a full numerical
calculation for ˇnite values of ξ2 � 10 for the hyperbolic secant envelope shape
with N = 2 (curves are marked by ©starsª) and the asymptotic probability cal-
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Fig. 13. The total probability W of the e+e− pair production as a function of ξ2 for
various values of ζ. a) Results of full numerical calculation in FPA for ˇnite values of
ξ2 � 10 (curves marked by ©starsª in ©FPAª sections) and the asymptotic probability (48)
for large values of ξ2 (sections labeled by ©asymptoticª) at ζ = 2, 4, and 6. b) The
asymptotic probability (48) for various values of ζ as indicated in the legend
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culated by Eq. (48) at ζ = 2, 4, and 6, shown by solid, dashed, and dash-dotted
curves, respectively. The transition region between the two regimes is in the
neighborhood of ξ2 � 10. In Fig. 13, b, we show the production probability at
asymptotically large values of ξ2 for 5 � ζ � 20. The exponential factor in (48)
is most important at relatively low values of ξ2 ∼ 10 (large ζ/ξ). At extremely
large values of ξ2 (small ζ/ξ ), the pre-exponential factor is dominant.

2.6. Ultrashort Pulses. In this section, we consider e+e− pair production
due to interaction of the probe photon with an ultrashort pulse, where the number
of cycles is less than one.

2.6.1. e+e− Pair Production at Small Field Intensity (ξ2 � 1). Consider ˇrst
the case of small ˇeld intensity and a ˇnite subthreshold parameter ζ characterized
by the relations z � 1 or ξζ � 1.

The basic functions Yl in Eq. (30) can be expressed in this regime as

Yl =
1
2π

∞∫
−∞

dφ eilφ f(φ) g(φ), (49)

with

g(φ) � e−ic e−ilξ cos φ0φ, (50)

where c = z
0∫

−∞
dφ′f(φ′) cos (φ′ − φ0) − lφ0 is independent of φ. As a result,

one gets

|Yl| � |F (l(1 − ξ cosφ0))| � |F (l)|, (51)

where F (l) is the Fourier transform of the envelope function f(φ). Keeping the
leading terms in Eq. (30) with Y 2

l−1 � F 2(l − 1), one can obtain an approximate
expression for the total production probability:

W = αMeζ
1/2ξ2

∞∫
ζ

dl Φ(l)F 2(l − 1), (52)

with

Φ(l) = v

1∫
0

d cos θ

(
u

ul
− u2

u2
l

+ u − 1
2

)
, (53)

where u = 1/(1 − v2 cos2 θ); θ and v are the polar angle and the velocity of the
outgoing electron (positron) in the e+e− c.m.s., respectively: v =

√
1 − ζ/l. An

explicit calculation results in

Φ(l) =
1
2

{(
1 +

ζ

l
− ζ2

2l2

)
log

1 + v

1 − v
− v

(
1 +

ζ

l

)}
. (54)
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The Fourier transforms of the hs and sF envelope functions are given in Eq. (38),
and for illustration, the square of the Fourier transforms for a subcycle pulse with
N = 0.5 are exhibited in Fig. 14. Figure 14, a corresponds to the hyperbolic
secant shape. One can see a fast monotonic decrease of Fhs at large values
of l. The square of the Fourier transform for the symmetrized Fermi shape is
shown in Fig. 14, b, where the solid, dashed and dot-dashed curves correspond to
the ratio b/Δ = 0.15, 0.3, and 0.5, respectively. One can see large qualitative
and quantitative differences between the one-parameter and 
at-top symmetrized
Fermi shapes, in particular, at b/Δ � 0.3. In the second case, F 2 decreases
exponentially as exp [−2πΔ(b/Δ)]. The slope decreases proportionally to b/Δ
(at ˇxed Δ). Also, the function oscillates with the half-cycle δ l = π/Δ =
π/0.5π = 2. Contrary to the above one-parameter shapes, the function FsF has a
signiˇcant high-l component at 2 � l � 4. This strong effect is not seen in the φ
space (cf. Fig. 4, right top and middle top panels), where all envelope functions

Fig. 14. Square of the Fourier transforms of the envelope functions for a subcycle pulse
with N = 0.5. a) The hyperbolic secant shape. b) The solid, dashed and dash-dotted
curves show the symmetrized Fermi shape for b/Δ = 0.15, 0.3, and 0.5, respectively
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look similar to each other. However, the difference in l-space is very important
for the pair production.

Our prediction for the total probability of e+e− pair production as a function
of the subthreshold parameter ζ for the one-parameter envelope functions for an
ultrashort pulse with N = 0.5 is shown in Fig. 15. The solid curves exhibit result
of full numerical calculations using Eq. (26) with the hyperbolic secant shape.
The symbols ©starª display the result obtained by using the approximation (52).
The thin solid curves marked by dots correspond to the IPA case. Figure 15, a and
b display results for ξ2 = 10−2 and 10−4, respectively. One can see the identity
of predictions for the ultrashort pulse and IPA near and above the threshold at
ζ � 1, and a strong difference between them below the threshold, i.e., for ζ > 1.
Our approximate (analytical) solution of Eq. (52) is in a fairly good agreement

Fig. 15. The probability W of e+e− production as a function of the subthreshold para-
meter ζ for one-parameter hs envelope functions for an ultrashort pulse with N = 0.5.
The symbols ©starª are for the approximation (52). The thin solid curves marked by dots
correspond to IPA. Panels a and b are for ξ2 = 10−2 and 10−4, respectively
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with the full numerical calculation. The function Φ(l) in Eq. (52) is rather smooth
compared to the Fourier transform F (l− 1), therefore, the dominant contribution
to the integral in Eq. (52) comes from the lower limit of l, and qualitatively, the
slope of the probability as a function of ζ is determined by the scale parameter
Δ of the envelope functions

Whs(ζ) ∼ exp [−πΔζ] . (55)

Despite of the exponential decrease of the probability W as a function of ζ, one
can see a large difference (several orders of magnitude) between predictions for
the ultrashort pulse and IPA. In the latter case the probability decreases much
faster with increasing ζ.

Our results for the symmetrized Fermi envelope are presented in Fig. 16.
Now, the shape of the probability is determined by the two parameters b

Fig. 16. The same as in Fig. 15, but for symmetrized Fermi shape envelope. The solid,
dashed, and dash-dotted curves are for b/Δ = 0.15, 0.3, and 0.5, respectively. The
corresponding approximate solutions are shown by pluses, crosses, and stars, respectively
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(or b/Δ) and Δ

WsF(ζ) ∼ exp
[
−2πΔ

b

Δ
ζ

]
sin2 Δζ. (56)

The ˇrst term describes the slope of the probability as a function of ζ. The slope
is proportional to the ©ramping timeª of the envelope function b (or to the ratio
b/Δ at ˇxed Δ). The second term, following from the Fourier transform shown
in Fig. 14, describes some oscillations with a period inversely proportional to the
duration Δ of the 
at-top envelope and is independent of the ramping parameter b.
Again, one can see a great difference between results for the ultrashort pulse and
IPA on qualitative and quantitative levels. The probability in IPA has a typical
step-like behavior, where each new step indicates the contribution of the next
integer harmonic. In FPA, the probability decreases monotonically with a slope
determined by the shape of the envelope. The quantitative difference is rather
large and, as indicated by results shown in Figs. 15 and 16, can reach orders of
magnitude depending on the shape of the envelope.

2.6.2. Intermediate Field Intensity, Anisotropy. As we have shown above, at
small values of z, z � 1, the probability of e+e− production is essentially de-
termined by the pulse shape. The function g(φ) in Eq. (49) is not important and,
therefore, the total probability would be isotropic with respect to the azimuthal
angle φe = φ0 because only the function P(φ) in Eq. (20) contains a φ0 depen-
dence. For ˇnite values of z, however, the function g(φ) becomes important, and
the electron (positron) azimuthal angle distribution is anisotropic relative to the
direction of the vector ax ≡ a1 in Eq. (1), at least for the monotonically rapidly
decreasing one-parameter envelope shapes. The reason of such anisotropy is the
following. At ˇnite values of z, the function Y (l) in Eq. (49) is determined by the
integral over dφ with a rapidly oscillating function proportional to the exponent in

exp

⎧⎨⎩i

⎡⎣lφ − z

⎛⎝cosφ0

φ∫
−∞

dφ′ f(φ′) cosφ′ + sin φ0

φ∫
−∞

dφ′ f(φ′) sin φ′

⎞⎠⎤⎦
⎫⎬⎭ .

(57)
In the case of a fast-decreasing function f(φ′), the contribution of the term
proportional to sinφ0 is much smaller compared to the term proportional to cosφ0,
because the functions f(φ′) and sin φ′ in the second integral are in ©antiphaseª.
At ˇnite z, the dominant contribution to the functions Yl comes from the region
where the difference in the exponent is minimal, i.e., φe = φ0 � 0. This means
that the electrons would be emitted mostly along the vector ax and the positrons
in the opposite direction.

We deˇne the anisotropy of the electron emission as

A =
dW (φe) − dW (φe + π)
dW (φe) + dW (φe + π)

. (58)
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The differential probability of the e+e− pair emission and the anisotropy as
functions of the azimuthal angle φe are exhibited in Fig. 17. The calculations are
for the fast-decreasing one-parameter hs envelope functions for Δ = 0.5π, ζ = 4
and ξ2 = 0.1. One can see a rapidly decreasing probability with φe which leads
to the strong anisotropy of electron (positron) emission.

In the case of the symmetrized Fermi distribution with small b/Δ, the situa-
tion changes drastically. As b/Δ → 0, the envelope function goes to the 
at-top
(step-like) shape fFs(φ) → θ(Δ2 − φ2) with θ(x) = 1, 0 for x � 0 or x < 0,
respectively, and correspondingly

Yl �
1
2π

Δ∫
−Δ

dφ ei[l̃φ−z sin(φ−φ0)], (59)

with l̃ = l + ξ2ζu. The function Yl in the region ζ � l < lmax 
 1 is alternating,
rapidly oscillating with an amplitude that depends only on ξ, ζ, and u. It is not
sensitive to φ0. A change in φ0 leads to some phase shift of Y (l) in a range of
integration, leaving 〈|Yl|2〉 to be independent of φ0. Therefore, the dependence of
the integral of the partial probability w(l) ∼ |Yl|2 in Eq. (26) on φ0 is negligible.

Fig. 17. a) The differential production probability as a function of the azimuthal angle φe

of the electron emission. b) The anisotropy (58) for the hyperbolic secant shapes. For
ξ2 = 0.1 and ζ = 4
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and dashed curves, respectively, for the symmetrized Fermi envelope shape. Panel a
corresponds to small values of b/Δ = 0.15, while panel b is for b/Δ = 0.5. For ξ2 = 0.1
and ζ = 4

As an example, in Fig. 18, a, we present the partial probability w(l) as a function
of l, calculated at ξ2 = 0.1, ζ = 4, and u = 1 for the small values of b/Δ equal
to 0.15 at φ0 = 0 and π, shown by solid and dashed curves, respectively. One
can see some small modiˇcation of the frequency of oscillations at l ∼ lmin = ζ
at two extreme values of φ0, but the amplitudes of the oscillations are close
to each other. This situation is quite different from the case of a large value
of b/Δ = 0.5 exhibited in Fig. 18, b. One can see a strong difference in the l
dependence of w(l) for φ0 = 0 and π. In the ˇrst case, the function w(l) has
only one oscillation in a wide range of l and decreases smoothly with l. In the
second case, the probability has a number of oscillations decreasing rapidly with
increasing l. As a result, the total probability in the second case is much smaller.

In Fig. 19, we present our results for the symmetrized Fermi shape for the
production probability (plot a) and for the anisotropy (plot b) for b/Δ = 0.15
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Fig. 19. The same as in Fig. 17, but for the symmetrized Fermi shape. The solid and
dashed curves are for b/Δ = 0.15 and 0.5, respectively

and 0.5. The result for b/Δ = 0.5 is similar to that shown in Fig. 17. However,
for smaller values of b/Δ, the probability is a smooth function of φe which leads
to a small absolute value of the anisotropy.

2.7. Effect of the Finite Carrier Phase. Consider now the impact of the
ˇnite carrier phase φ̃ in the e.m. potential (1) for the e+e− production. In the

case of ˇnite φ̃, the functions C
(i)
l in the transition matrix (18) are modiˇed as

follows:

C(0)(l) =
1

2πl

∞∫
−∞

dφ
(
z cos(φ − φ0 + φ̃) f(φ) − ξ2ζu f2(φ)

)
eilφ−iP(φ),

C(1)(l) =
1
2π

∞∫
−∞

dφ f2(φ) eilφ−iP(φ),
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C(2)(l) =
1
2π

∞∫
−∞

dφ f(φ) cos (φ + φ̃) eilφ−iP(φ),

(60)

C(3)(l) =
1
2π

∞∫
−∞

dφ f(φ) sin (φ + φ̃) eilφ−iP(φ),

with

P(φ) = z

φ∫
−∞

dφ′ cos (φ′ − φ0 + φ̃)f(φ′) − ξ2ζu

φ∫
−∞

dφ′ f2(φ′). (61)

Utilizing the new basic functions

Yl(z) =
1
2π

e−il(φ0−φ̃)

∞∫
−∞

dφ f(φ) eilφ−iP(φ),

(62)

Xl(z) =
1
2π

e−il(φ0−φ̃)

∞∫
−∞

dφ f2(φ) eilφ−iP(φ),

one can obtain the following representation of the functions C(i)(l):

C(0)(l) = Ỹl(z) eil(φ0−φ̃),

Ỹl(z) =
z

2l
(Yl+1(z) + Yl−1(z)) − ξ2 u

ul
Xl(z),

C(1)(l) = Xl(z) eil(φ0−φ̃), (63)

C(2)(l) =
1
2

(
Yl+1 ei(l+1)φ0 + Yl−1 ei(l−1)φ0

)
e−ilφ̃,

C(3)(l) =
1
2i

(
Yl+1 ei(l+1)φ0 − Yl−1 ei(l−1)φ0

)
e−ilφ̃,

which allows one to express the partial probabilities w(l) in Eq. (27) in the form
of Eq. (30) but with the new basic functions (62). We recall that φ0 in the above
expressions is equal to the azimuthal angle φe of the outgoing electron momentum
in c.m.s.

It is natural to expect that the effect of the ˇnite carrier phase essentially
appears in the azimuthal angle distribution of the outgoing electron, because the
carrier phase is included in the expressions for the basic functions (62) in the
combination φe − φ̃.

As an example, in Fig. 20, a we show the probability of e+e− production as
a function of the azimuthal angle φe for different values of the carrier phase φ̃
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for the subcycle pulse with N = 0.5 for a hyperbolic secant shape with ζ = 4
and ξ2 = 0.1. One can see a clear bump-like structure of the distribution, where
the bump position coincides with the corresponding value of the carrier phase.
The reason of such a behaviour is the same as an alignment of the probability
along φe = 0 for φ̃ = 0 described in the previous subsection. Indeed, now the
basic functions Yl and Xl are determined by the integral over dφ with a rapidly
oscillating function proportional to the exponent

exp

⎧⎨⎩i

⎡⎣lφ − z

⎛⎝cos (φe − φ̃)

φ∫
−∞

dφ′ f(φ′) cosφ′+

+ sin (φe − φ̃)

φ∫
−∞

dφ′ f(φ′) sinφ′

⎞⎠⎤⎦
⎫⎬⎭ . (64)

Fig. 20. a) The production probability as a function of the azimuthal angle of the direction
of 
ight of the outgoing electron φe for different values of the carrier phase φ̃. The solid,
dot-dot-dashed, dashed and dash-dotted curves are for the carrier phase equal to 0, 90, 180
and 270 degrees, respectively. b) The anisotropy (58) for different values of φ̃. For the
hyperbolic secant shape with N = 0.5; ξ2 = 0.1 and ζ = 4
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Then, taking into account the inequality

φ∫
−∞

dφ′ f(φ′) cosφ′ 

φ∫

−∞

dφ′ f(φ′) sinφ′, (65)

which is valid for the subcycle pulse with hyperbolic secant shape, one can
conclude that the main contribution to the probability comes from the region
φe � φ̃, which is conˇrmed by the result of our full calculation shown in Fig. 20, a.

The corresponding anisotropies deˇned by Eq. (58) are exhibited in Fig. 20, b.
One can see a strong dependence of the anisotropy on the carrier phase which
leads to the ©bumpª structure of the differential probabilities shown in the left
panel. The anisotropy takes a maximum value A � 1 at φe = φ̃ and |A| < 1 at
φe �= φ̃. It takes a minimum value A � −1 at φe − φ̃ = ±π.

The effect of the carrier phase decreases when the duration of pulse increases.
Thus, when the number of oscillations in a pulse is N � 2, the inequality of two
terms in (65) does not hold, instead they have the same order of magnitude and
the alignment of the differential distributions with respect to φe � φ̃ becomes

Fig. 21. The same as in Fig. 20, but for short pulse with N = 2
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very weak. The corresponding results are exhibited in Fig. 21. The probabilities
(rates) 2πdW/dφe as a function of φe for the short pulse with N = 2, ζ = 4
and ξ2 = 0.1 for different φ̃ are shown in Fig. 21, a. One can see a very weak
dependence of the rates on φe and φ̃. The rates are concentrated near the value
∼ 10−3 eV. Although, a small enhancement in the vicinity of φe � φ̃ still exists.
This also is manifest in the anisotropy shown in Fig. 21, b. The anisotropy is
ˇnite, but its absolute value is less than 0.2.

In order to stress the alignment of the differential azimuthal-angle distribu-
tions along φe � φ̃, one can plot differential distributions and anisotropies as a
function of the ©scaleª variable Φ = φe − φ̃. In this case, all curves shown, for
example, in Fig. 20, a, are merged into a single carrier phase independent curve.
The corresponding result is exhibited in Fig. 22, where one can see a carrier phase
independence of the differential distributions and anisotropies shown in panels a
and b, respectively. Similarly, a carrier phase independent result is obtained for
the short pulse with N = 2 shown in Fig. 23.

Formally, this follows from the fact that the carrier phase is included in the
expressions for the basic functions (62) and (63) in the combination φe − φ̃.
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Fig. 22. The same as in Fig. 20, but as a function of the scale variable Φ = φe − φ̃
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Fig. 23. The same as in Fig. 21, but as a function of the scale variable Φ = φe − φ̃

Therefore, the differential distributions are a function of Φ = φe − φ̃ rather than
of φe (for ˇnite φ̃). From the physical point of view, this means that at ˇnite φ̃
the differential azimuthal distributions are convenient to study in the coordinates
x′, y′ rotated relative to the initial coordinates x, y by an angle equal to the carrier
phase φ̃.

3. COMPTON SCATTERING IN SHORT LASER PULSE

3.1. General Formalism. The Compton scattering process is considered
here as a spontaneous emission of one photon off an electron in an external e.m.
ˇeld. Similarly to the BreitÄWheeler process, we employ the four-potential of a
circularly polarized laser ˇeld in the form of Eq. (1) with the envelope function
f(φ) discussed in Sec. 1. Here, we also use one-parameter hyperbolic secant (hs)
envelope and two-parameter symmetrized Fermi (sF) shape with b/Δ = 0.15. All
details and notations are given in Sec. 1. Using the same arguments as before,
we start our consideration assuming φ̃ = 0 and discuss the impact of the ˇnite
carrier phase later.
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Utilizing the e.m. potential (1) and the Volkov solution for the electron
wave function in this background ˇeld, one ˇnds the following expression for the
S-matrix element:

S = −ie

∞∫
−∞

dl M(l)
(2π)4δ4(p + lk − p′ − k′)√

2E 2E′ 2ω′
, (66)

where k, k′ = (ω′,k′), p = (E,p), and p′ = (E′,p′) refer to the four-momenta of
the background (laser) ˇeld (1), scattered photon, as well as asymptotic incoming
(in-state) and outgoing (out-state) electrons. All quantities are considered in the
laboratory system. Similarly to the BreitÄWheeler process the transition matrix
M(l) consists of four terms (cf. Eq. (18)),

M(l) =
3∑

i=0

M (i) C(i)(l), (67)

where the transition operators have now the form M (i) = ūp′ M̂ (i) up, with

M̂ (0) = ε/′,

M̂ (1) =
e2a2(ε′ · k) k/

2(k · p)(k · p′) , (68)

M̂ (2,3) =
ea/(1,2)k/ε/′

2(k · p′) +
eε/′k/a/(1,2)

2(k · p)
.

Here, up and ūp′ are free Dirac spinors depending on the momenta p and p′;
and ε′ denotes the polarization four-vector of the scattered photon. Since the
Compton scattering is the crossing channel of the BreitÄWheeler processes, the

identity M̂
(i)
Compt(p, p′, k, k′) = M̂

(i)
BW(−p, p′, k,−k′) is realized. Utilizing the

prescription of Subsec. 2.1 one can express the coefˇcients C(i)(l) through basic
functions Yl(z) and Xl(z) (cf. Eqs. (28) and (29)) with

P(φ) = z

φ∫
−∞

dφ′ cos(φ′ − φ0)f(φ′) − ξ2 u

u0

φ∫
−∞

dφ′ f2(φ′) (69)

and

z = 2lξ

√
u

ul

(
1 − u

ul

)
, u ≡ (k′ · k)

(k · p′) , ul =
l

u0
, (70)

where u0 = 2k · p/m2. Now, the phase φ0 is equal to the azimuthal angle of
the direction of 
ight of the outgoing electron, φ0 = φe′ , and it is related to the
azimuthal angle of the momentum of the outgoing photon as φγ′ = φ0 + π.
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This representation of functions C(i)(l) allows one to deˇne a partial differ-
ential cross section

dσ(l)
dω′ dφe′

=
2α2

N0 ξ2 (s − m2) |p − lω| w(l), (71)

with

w(l) = −2Ỹ 2
l (z) + ξ2

(
1 +

u2

2(1 + u)

)
×

×
(
Y 2

l−1(z) + Y 2
l+1(z) − 2Ỹl(z)X∗

l (z)
)

. (72)

Equation (72) resembles the corresponding expression for the partial probability
of photon emission in the case of IPA [50] with the substitutions l → n = 1, 2, . . .
and Ỹ 2

l (z), Y 2
l (z), Ỹl(z)X∗

l (z) → J2
n(z′), namely:

wn = −2J2
n(z′) + ξ2

(
1 +

u2

2(1 + u)

)
×

×
(
J2

n−1(z
′) + J2

n+1(z
′) − 2J2

n(z′)
)
, (73)

where Jn(z′) denotes Bessel functions with z′ =
2nξ√
1 + ξ2

√
u

un

(
1 − u

un

)
and

un =
2n(k · p)

m2(1 + ξ2)
. Similarly to IPA, the phase φ0 can be determined through

invariants α1,2 as cosφ0 = α1/z, sin φ0 = α2/z with α1,2 = e(a1,2 · p/k · p−
a1,2 · p′/k · p′). The dimensionless ˇeld intensity ξ2 is described by Eqs. (2)Ä(6).

The frequency ω′ of the emitted photon is related to the auxiliary variable l
and the polar angle θ′ of the direction of the momentum k′ via

ω′ =
l ω(E + |p|)

E + |p| cos θ′ + lω(1− cos θ′)
(74)

and increases with l at ˇxed θ′ since ω′ is a function of l at ˇxed θ′. For
convenience, we also present a similar expression for IPA, where the fermions
are dressed and the integer quantity n, together with the ˇeld intensity ξ2, appear:

ω′ =
n ω(E + |p|)

E + |p| cos θ′ + ω

(
n +

m2ξ2

2(k · p)

)
(1 − cos θ′)

. (75)

The differential cross section of the one-photon production is eventually

dσ

dω′ =
∫
η

dl

2π∫
0

dφe′
dσ(l)

dω′dφe′
δ (l − l(ω′)) . (76)
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The lower integration limit η > 0 is deˇned by kinematics, i.e., by the minimum
value of the considered ω′, in accordance with Eq. (74). In the IPA case, the
variable n = 1, 2, . . . refers to the contribution of the individual harmonics (n = 1
with ξ2 � 1 recovers the KleinÄNishina cross section, cf. [17]). The value nω
is related to the energy of the background ˇeld involved in Compton scattering.
Obviously, this value is a multiple of ω. In FPA, the internal quantity l is a
continuous variable, implying a continuous distribution of the differential cross
section over the ω′−θ′ plane. The quantity lω can be considered as energy of the
laser beam involved in the Compton process, which is not a multiple ω. Mindful
of this fact, without loss of generality, we denote the processes with l > 1 as a
multiphoton generalized Compton scattering, remembering that l is a continuous
quantity.

The multiphoton effects become most clearly evident in the partially energy-
integrated cross section

σ̃(ω′) =

∞∫
ω′

dω̄′ dσ(ω̄′)
dω̄′ =

∞∫
l′

dl
dσ(l)

dl
, (77)

where
dσ(l)

dl
=
(

dσ(ω′)
dω′

)(
dω′(l)

dl

)
, and the minimum value of l′ is

l′ =
ω′

ω

E + |p| cos θ′

E + |p| − ω′(1 − cos θ′)
. (78)

The cross section (77) has the meaning of a cumulative distribution. In this case,
the subthreshold multiphoton events correspond to frequencies ω′ of the outgoing
photon which exceed the corresponding threshold value ω′

1 = ω′(l = 1) (cf.
Eq. (74)), and ratio κ = ω′/ω′

1 > 1 represents the subthreshold parameter.
3.2. The Differential Cross Section. In IPA [17, 50], the cross section

of the multiphoton Compton scattering increases with θ′ towards 180◦. For
instance, it peaks at about 170◦ for the chosen electron energy of 4 MeV (all
quantities are considered in the laboratory frame) and rapidly drops to zero when
θ′ approaches 180◦ for the harmonics n > 1 yielding thus the blind spot for back-
scattering. Therefore, in our subsequent analysis we choose the near-backward
photon production at θ′ = 170◦ and an optical laser with ω = 1.55 eV. Deˇning
one-photon events by n = 1, this kinematics leads via Eq. (75) to ω′

1 ≡ ω′(n =
1, ξ2 � 1, θ′ = 170o) � 0.133 keV which we refer to as a threshold value.
Accordingly, ω′ > ω′

1 is enabled by nonlinear effects, which, in turn, may be
related loosely to multiphoton dynamics with n > 1 in IPA or l > 1 in FPA
where, we remind again, the internal variable l cannot be interpreted strictly as
a number of laser photons involved (cf. [52]). Note that all calculations for IPA
are performed in a standard way [17, 50]. The energy of the outgoing photon in
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IPA is calculated using Eq. (75), where dressing of electrons in the background
ˇeld is taken into account.

Let us consider ˇrst an example of short pulses with moderate intensity, ξ2 =
10−3, similar to a recent experiment of the Compton back-scattering [53]. Results
for the hs and sF shapes are exhibited in Fig. 24. The solid and dashed curves
correspond to pulses with N = 2 and 5, respectively. The stars depict the IPA
results, i.e., the harmonics at ˇxed scattering angle θ′. Their positions correspond
to integer values of n = 1, 2, . . . in accordance with Eq. (75), i.e., the distribution
of scattered photon energies is a discrete function of ω′. We stress that the cross
section at ω′ > ω′

1 is essentially ©subthresholdª, i.e., outside the kinematically
allowed region of the KleinÄNishina process due to multiphoton effects.

In the FPA case, the energy distribution becomes a continuous function of ω′.
The actual shape is determined by both the pulse duration and the envelope form.
Consider ˇrst the case of the hs shape (cf. Fig. 24, a). The cross section displays

Fig. 24. Differential cross section dσ/dω′|θ′=170◦ of the Compton scattering for ξ2 =
10−3. The solid and dashed curves are for N = 2 and 5, respectively. The stars depict
the IPA results for the lowest harmonics. Panels a and b correspond to hyperbolic secant
(hs) and symmetrized Fermi (sF) shapes of the envelopes, respectively
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sharp bumps with peak positions corresponding to integer values of l = n (as in
IPA). In the vicinity of the bumps, at l = n±ε, ε � 1, the cross section is rapidly
decreasing. Such a behavior re
ects the properties of the functions Yl=n+ε(z) (cf.
Eq. (37)) which is proportional to the Fourier transform of the (n + 1)-th degree
of the envelope function F (n+1)(ε). At ξ2 � 1, the contribution of terms ∝ Xl

is negligible.

The behavior of the cross section in the vicinity of the ˇrst bump is pro-
portional to F 2

hs(ε) with Fhs(ε) given in Eq. (38), or Fhs(x) � Δ exp [−πΔx/2].
Thus, the cross section becomes steeper with increasing pulse duration Δ. This
result qualitatively agrees with that of [23].

In the case of the sF shape, the dependence FsF(ε) is more complicated (cf.
Eq. (38)). Together with the overall decrease of the cross section proportional to
exp [−2πb l(ω′)] it also indicates fast oscillations with a frequency ∝ Δ. Such

Fig. 25. Differential cross section dσ/dω′|θ′=170◦ of the Compton scattering for ξ2 =
0.01, 0.1, and 1, shown by solid, dashed, and dash-dotted curves, respectively, for N = 2.
The crosses, stars and pluses depict the IPA results for the lowest harmonics for ξ2 =
0.01, 0.1, and 1, respectively. Panels a and b correspond to hyperbolic secant (hs) and
symmetrized Fermi (sF) shapes of the envelopes
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oscillations show up in the cross section as some secondary bumpy structures.
These properties are manifest in Fig. 24, b: the overall decrease of the cross section
decreases with decreasing pulse duration, and the number of the secondary bumps
in the region of ω′, corresponding to the nearest integer values of l, increases
with pulse duration.

In Fig. 25, we present the differential cross sections for different ˇeld in-
tensities ξ2 = 0.01, 0.1, and 1, depicted by solid, dashed, and dash-dotted
curves, respectively. The duration of the pulse corresponds to N = 2. The
bump positions for FPA in Fig. 25 are shifted relative to the discrete positions
of contributions from the individual harmonics in IPA, shown by corresponding
symbols. These shifts are a consequence of the electron dressing in IPA which
depends on ξ2.

For completeness, in Fig. 26 we exhibit the differential cross sections for a
subcycle pulse with N = 0.5 for ξ2 = 10−3 and 1, shown by solid and dash-

Fig. 26. Differential cross section dσ/dω′|θ′=170◦ of the Compton scattering for ξ2 = 10−3

and 1 shown by solid and dash-dotted curves, respectively, for N = 0.5. Crosses and
pluses depict the discrete IPA results for the lowest harmonics for ξ2 = 10−3 and 1,
respectively. Panels a and b correspond to hyperbolic secant (hs) and symmetrized Fermi
(sF) envelope shapes
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dotted curves, respectively, for the hs (plot a) and sF (plot b) envelope shapes.
Crosses and pluses depict the IPA results for ξ2 = 10−3 and 1. For the hs
shape, the cross sections decrease almost monotonically, with a large enhance-
ment of the FPA result compared to IPA for small ˇeld intensities (ξ2 � 1).
In the case of the 
at-top envelope, the cross section exhibits some oscilla-
tions which point to more complicated spectral properties of the 
at-top enve-
lope shape.

To summarize this part, we can conclude that the results for fully differential
cross sections for IPA and FPA are quite different. In IPA, the cross section
represents the discrete spectrum where the frequencies of the outgoing photons
ω′ are ˇxed according to Eq. (75). In FPA, the differential cross sections are
continuous functions of ω′. Some similarities of IPA and FPA can be seen in
the case of small ˇeld intensities ξ2 � 1 and the smooth one-parameter envelope
shape with N = 2−10. Here, the differential cross sections have a bump structure,
where the position of bumps and bump heights are close to that of IPA. The
situation changes drastically for more complicated (and probably more realistic)

at-top envelope shapes. In this case one can see a lot of additional bumps
which re
ect the more complicated spectral properties of the 
at-top shape; it
is difˇcult to ˇnd a relation not only between IPA and FPA, but also within
FPA for different pulse durations. Experimentally, studying multiphoton effects,
the use of rapidly oscillating fully differential cross sections seems to be rather
complicated. An analysis of integral observables helps one to overcome this
problem. In particular, the partially integrated cross sections have a distinct
advantage: they are smooth functions of ω′ and allow one to study directly the
multiphoton dynamics.

3.3. Partially Integrated Cross Sections. The nonlinear dynamics be-
comes most transparent in the partially energy-integrated cross section deˇned in
Eq. (77). In this case, the subthreshold multiphoton events are ˇltered when the
lower limit of integration ω′ exceeds the threshold value ω′

1 = ω′(n = 1, ξ2) (with
ξ2 � 1 for the pure KleinÄNishina process). Thus, events with ω′(l) 
 ω′

1 and
l 
 1 correspond essentially to multiphoton process, where the energy lω 
 ω
is absorbed from the pulse. Experimentally, this can be realized by an absorptive
medium which is transparent for frequencies above a certain threshold ω′. Other-
wise, such a partially integrated spectrum can be synthesized from a completely
measured spectrum. Admittedly, the considered range of energies with a spectral
distribution uncovering many decades is experimentally challenging.

The partially integrated cross sections of Eq. (77) are presented in Fig. 27.
The thin solid curve (marked by dots) depicts IPA results given by

σ̃IPA(ω′) =

∞∫
l′(ω′)

dl

∞∑
n=1

dσIPA
n

dω′
n

dω′
n

dn
θ(n − l), (79)
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where ω′(n) is deˇned by Eq. (75). That is, the partially integrated cross sec-
tion becomes a step-like function, where each new step corresponds to the con-
tribution of a new (higher) harmonic n, which can be interpreted as n-laser
photon process. Results for the ˇnite pulse exhibited by solid, dashed, and
dash-dotted curves correspond to N = 2, 5, and 10, respectively. In the above-
threshold region with ω′ � ω′

1, the cross sections do not depend on the widths
and shapes of the envelopes, and the results of IPA and FPA coincide. The sit-
uation changes signiˇcantly in the deep subthreshold region, where ω′ > ω′

1

(l 
 1), n 
 1. For short pulses with N � 2, the FPA results exceed
that of IPA considerably, and the excess may reach several orders of magni-
tude, especially for the 
at-top envelope shown by the solid curve in Fig. 27, b.
However, when the number of oscillations in a pulse increases (N � 10)
there is a qualitative convergence of FPA and IPA results, independently
of the pulse shape. Thus, at N = 10 and ω′ = 0.6 keV, the difference
between predictions for hs and sF shapes is a factor of two, as compared

Fig. 27. The partially integrated cross section (77) for ξ2 = 10−3. The thin solid curve
marked by dots depicts the IPA result. The solid, dashed, and dash-dotted curves corre-
spond to N = 2, 5, and 10, respectively. Panels a and b are for hyperbolic secant (hs)
and symmetrized Fermi (sF) envelopes
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with the difference of the few orders of magnitude at N = 2 for the same
value of ω′.

To highlight the difference of the hs and sF (
at-top) shapes for short pulse,
we exhibit in Fig. 28, a results for N = 2. At ω′ � 0.6 keV, the difference
between them is more than two orders of magnitude.

Consider now the case of subcycle pulses with N < 1. Our result for
N = 0.5 is exhibited in Fig. 28, a. One can see a large enhancement of the
cross section with respect to the IPA case for the subcycle pulse in the sub-
threshold region. The enhancement for the sF shape is much greater pointing
to a sensible dependence on the actual pulse shape. For a qualitative estimate
of such a behavior we can drop the φe′ dependence by taking φe′ = 0. This
choice is quite reasonable for the 
at-top sF envelope shape and may serve as
an upper limit for the cross sections in the case of the smooth hs envelope

Fig. 28. The partially integrated cross section (77) for ξ2 = 10−3. a) N = 2, for the
hyperbolic secant (hs, dashed curve) and symmetrized Fermi (sF, solid curve) shapes.
b) The same as in panel a, but for a subcycle pulse with N = 0.5. The crosses and pluses
correspond to the asymptotic solutions for hs and sF shapes, respectively, described in the
text
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shape. Under the considered conditions, the basic function Yl in Eq. (28) can be
approximated as

Yl �
1
2π

e−ilφ0

∫
dq F (q)

∫
dφ ei(l−q)φ−iP(φ) �

� 1
2π

∫
dq F (q)

∫
dφ ei(l−q−lβξ)φ−iδ = e−iδF (l̃), (80)

where F (l) is the Fourier transform of the envelope function, l̃ = l(1 − βξ)

with β = 2
√

u

ul

(
1 − u

ul

)
< 1 and δ = z

0∫
−∞

dφ cos φf(φ) − lφ0. As a re-

sult, the cross section is almost completely deˇned by the square of the Fourier
transforms (cf. Eqs. (38)), i.e., σ̃(ω′) � g(l(ω′))F 2(l̃(ω′) − 1), where g(ω′) is
a smooth function of l = l(ω′) (cf. Eq. (86)). The Fourier transform for the
sF shape decreases slower with increasing l. Such a dependence is evident
in Fig. 27, b. For an illustration, the crosses depict the result of a calculation,
where the basic functions Yl and Xl in the partial probability ω′(l) in Eq. (72)
are replaced by their asymptotic values F (1)(l̃ − 1) and F (2)(l̃ − 1), respec-
tively. A more detail discussion of the asymptotic result is presented below
(cf. Eq. (86)).

The dependence of the partially integrated cross section as a function of ξ2

at ˇxed ratio κ ≡ ω′/ω′
1 = 3 for short pulses with N = 0.5 and 2 is exhibited in

Fig. 29, a and b, respectively. Note that the minimum value of l′(ω′) is related to
κ as

l′(ω′) = κ
E + |p| cos θ′

E + |p| cos θ′ + ω(1 − κ)(1 − cos θ′)
, (81)

meaning l′ < κ. Similarly, for nmin one has nmin = x, for I(x) = x and
nmin = x + 1 for I(x) < x with

x =
E + |p| cos θ′ +

ωm2ξ2

2(k · p)
(1 − cos θ′)

E + |p| cos θ′ + ω

(
1 − κ +

m2ξ2

2(k · p)

)
(1 − cos θ′)

. (82)

The solid curves and symbols correspond to IPA and FPA, respectively, with
different pulse shapes. One can see that the main difference of IPA and FPA,
as well as the pulse shape dependence, appears at small ˇeld intensities ξ2 � 1,
where the dependence of the cross section on the pulse shape and duration is
essential.

To explain this result, we use the asymptotic solution for σ̃ which is obtained
by keeping leading terms in ξ2 in Eqs. (72) and (73) and taking into account
that the dominant contribution to the integrals of Eqs. (77) and (79) stems from
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Fig. 29. The partially integrated cross section as a function of ξ2 at κ = ω′/ω′
1 = 3 for

short pulses with N = 0.5 (a) and 2 (b). The solid curve and symbols correspond to IPA
and FPA (hs and sF envelope functions), respectively

l ∼ l′ and n ∼ I(l′) + 1, respectively. Consider ˇrst the partially integrated cross
section in IPA. Using the asymptotic expression for the Bessel functions

Jk(z) �
(z

2

)k 1
k!

for z � 1 (83)

and keeping the leading terms in Eq. (73) with J2
n−1(z) and n = I(l′) + 1, one

obtains

σ̃IPA � 2πα2

(E + |p| cos θ′)|p|ξ
2kΦ(k), (84)

where k = I(l′) � I(κ) and

Φ(k) =
(k + 1)2(k+1)

(k + 1)!2
(tk(1 − tk))2k

(
1 +

u

2(1 + u)
− 2tk(1 − tk)

)
, (85)

with tk = u/uk, where u = ω′(1 − cos θ′)/(E + |p| − ω′(1 − cos θ′)) and uk =
2kω(E+|p|)/m2. Within the considered kinematics, tk does not depend on k and
can be approximated by tk � m2(1−cos θ′)/(2(E + |p| cos θ′)(E + |p|)) � 0.35.
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Fig. 30. The partially integrated
cross sections as a function of ξ2 �
1 for a subcycle pulse with N =
0.5. The stars are for the full
IPA result. The solid curve cor-
responds to the asymptotic solution
of Eq. (84). The pluses and crosses
are for full calculations for sF and
hs shapes, respectively, while the
dashed and dash-dotted curves are
the corresponding asymptotic re-
sults of Eq. (86)

The result for the asymptotic solution for IPA of (84) is shown by the solid
curve in Fig. 30 together with a full calculation depicted by stars. One can see an
excellent agreement of these two results.

For FPA, in the case of subcycle pulse with N = 0.5, we use the asymptotic
representation for the basic functions Yl in the form of Eq. (80) which allows one
to express the partially integrated cross section as

σ̃ � 2πα2

N0(E + |p| cos θ′)|p|×

×
(

1 +
u

2(1 + u)
− 2tl′(1 − tl′)

) l′+1∫
l′

dl F 2(l̃ − 1), (86)

where F (x) is the Fourier transform of the envelope function (cf. Eq. (38)).
Results for the subcycle pulse with N = 0.5 are presented in Fig. 30, where the
pluses and crosses are for full calculations for the sF and hs shapes, respectively.
The dashed and dash-dotted curves are the asymptotic solution of Eq. (86) for sF
and hs shapes, respectively.

We would like to note that, at ξ2 � 1, our asymptotic solution for subcycle
pulse weakly depends on ξ only through the weak l(1 − βξ) dependence in the
Fourier transform. The leading ξ2 dependence of the partial harmonics wl in (72)
is compensated by the ξ2 dependence of the 
ux factor in the denominator of
Eq. (71). Nevertheless, such a weak ξ dependence is in qualitative agreement
with full and asymptotic solutions, both for sF and hs envelope shapes. Thus, we
can conclude that the partially integrated cross section for the subcycle pulse at
ξ2 � 1 is almost completely determined by the square of the Fourier transform
of the envelope function which is a measure of high momentum frequencies
generated by the pulse shape.
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In the case of a short pulse with N = 2 and ξ2 � 0.1, we use for the
asymptotic solution the asymptotic expression of the basic functions of Eq. (37).
Note that such an expression is valid only for the smooth one-parameter envelope
shapes, where the function P(φ), deˇned in Eq. (28), takes a simple form P(φ) =
z sin (φ−φ0)f(φ)+O(ξ2) (cf. Eq. (34)). One can see that, if the argument obeys
l′ > I(l′), then the main contribution to the cross section comes from the two
terms with

Yk,ε1 (z) and Yk+1,ε2(z), (87)

where k = I(l′), ε1 = l′ − I(l′) ≡ ε > 0, and ε2 = ε − 1 < 0. Then, keeping
the leading terms in ξ2 in (72), one can get an approximate expression for the
partially integrated cross section in the form

σ̃ � 2πα2

N0(E + |p| cos θ′)|p|ξ
2(k−1)×

×

⎛⎝Φ(k − 1)

1∫
ε

dε (F (k)(ε))2 + ξ2 Φ(k)

1∫
ε−1

dε(F (k+1)(ε))2

⎞⎠ , (88)

where F (m) is the Fourier transform of mth power of the envelope function f(φ).
The full and approximate results for σ̃ are shown in Fig. 31 by crosses and the
dash-dotted thick curve, respectively. One can see a fairly good agreement of
approximate and full results up to ξ2 = 0.1.

In the case of the 
at-top envelope, the integrand of σ̃ has a more complicated
structure with a large number of bumps. The asymptotic solution for the basic
functions of Eq. (37) does not apply here. However, as a ˇrst approximation
one can use the asymptotic solution of Eq. (80). Then, the cross section σ̃ is
determined by Eq. (86). The full and approximate results for σ̃ are shown in
Fig. 31 by pluses and the dashed curve, respectively. One can see an agreement
of full and approximated results, however, in a very limited range of ξ2 � 1.

Fig. 31. Results for a short pulse
with N = 2. The symbols stars,
pluses and crosses are full calcula-
tions for IPA and FPA for sF and
hs shapes, respectively; the solid,
dashed, and dash-dotted curves are
the corresponding asymptotic re-
sults of Eqs. (84), (86), and (88),
respectively
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To summarize this part, we note that, in the case of short pulses and small
ˇeld intensities, the partially integrated cross section is determined by the interplay
of pulse shape and multiphoton dynamics. For both considered shapes, the cross
sections are described by the simple asymptotic expressions which can be used
in practical research.

At large values ξ2 
 1, our analysis shows that the dependence on the
envelope shape disappears because, similar to the BreitÄWheeler process, only
the central part of the envelope becomes important. Formally, under a change
of the variable l → leff = l + m2ξ2u/2(k · p), the basic functions Yl(z) with
l 
 1, z 
 1 become similar to the asymptotic form of the Bessel functions
Jl(z) and, as a consequence, one can get the total production probability (or
the total cross section) in the form of IPA [17] with a slightly modiˇed pre-
exponential factor.

3.4. Effect of the Finite Carrier Phase. The generalization of our approach
to the case of the ˇnite carrier phase φ̃ in e.m. potential (1) is carried out by the
same method as in the case of e+e− pair production described in Subsec. 2.7. The
functions C(i)(l) in transition matrix (67) are transformed according to Eq. (60)
with

P(φ) = z

φ∫
−∞

dφ′ cos (φ′ − φ0 + φ̃)f(φ′) − ξ2 u

u0

φ∫
−∞

dφ′ f2(φ′), (89)

where the variables z, u, and u0 are deˇned in (70). Then, using the basic
functions Yl(z) and Xl(z) in the form of Eq. (62) and utilizing Eq. (63), one can
obtain the partial differential cross section dσ(l)/dω′dφe′ in the form of Eq. (71)
with w(l) given by Eq. (72), but with new basic functions Yl and Xl which now
depend on carrier phase φ̃ according to Eq. (62) with (89). Recall, that φ0 = φe′ is
the azimuthal angle of the outgoing electron momentum. The differential partially
integrated cross section reads

dσ̃(ω′)
dφe′

=

∞∫
ω′

dω̄′ dσ(ω̄′)
dω̄′ dφe′

. (90)

It is natural to expect that the effect of the ˇnite carrier phase essentially
appears in the differential cross section of the generalized Compton scattering as
a function of the azimuthal angle of the outgoing electron momentum because
the carrier phase is included in the expressions for the basic functions (62) in the
combination φe′ − φ̃.

As an example, in Fig. 32, a we show the differential cross section (90) as
a function of the azimuthal angle φe′ for different values of the carrier phase
φ̃ for the subcycle pulse with N = 0.5 for the hyperbolic secant shape with
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Fig. 32. a) The differential cross section (90) as a function of the azimuthal angle of the
outgoing electron momentum φe′ for different values of the carrier phase φ̃. The solid,
dot-dot-dashed, dashed, and dash-dotted curves correspond to the carrier phase equal to 0,
90, 180, and 270◦, respectively. b) The anisotropy (58) as a function of φe′ for different φ̃.
For the hyperbolic secant shape with N = 0.5; ξ2 = 0.1 and κ = ω′/ω′

1 = 4

κ = ω′/ω′
1 = 4 and ξ2 = 0.1. One can see a clear bump-like structure of the dis-

tribution, where the bump position coincides with the corresponding value of the
carrier phase. The reason of such a behaviour is the same as an alignment of the
probability along φe = φ̃, described in Subsec. 2.7. Corresponding anisotropies
deˇned as

A =
dσ̃(φe′ ) − dσ̃(φe′ + π)
dσ̃(φe′ ) + dσ̃(φe′ + π)

(91)

are exhibited in Fig. 32, b. One can see a strong dependence of the anisotropy on
the carrier phase which follows to the bump-like behavior of the differential prob-
abilities shown in Fig. 32, a. Similar to the BreitÄWheeler process, the anisotropy
takes a maximum value A � 1 at φe′ = φ̃ and |A| < 1 at φe′ �= φ̃. It takes a
minimum value A � −1 at φe − φ̃ = ±π.
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Fig. 33. The same as in Fig. 32, but as a function of the scale variable Φ = φe′ − φ̃

The differential cross sections and anisotropies as functions of the ©scaleª
variable Φ = φe′ − φ̃ at ˇxed values of φ̃ are exhibited in Fig. 33, a and b,
respectively. All curves shown in the left and right panels in Fig. 33, a and b,
are merged into a single carrier phase independent curve. Similar to the BreitÄ
Wheeler process, such a carrier phase independence of the differential cross
sections and anisotropies is a consequence of the φ0 − φ̃ = φe′ − φ̃ dependence
of the basic functions in Eqs. (62) and (63).

The effect of the carrier phase decreases with increasing pulse duration.
Taking into account the similarity between BreitÄWheeler and the Compton scat-
tering processes, we do not show here the result for the Compton scattering (for
N � 2), limiting to the most striking example of subcycle pulse, exhibited in
Figs. 32 and 33.

4. SUMMARY

In summary, we have considered two elementary quantum processes occur-
ring in a short and intense electromagnetic (laser) pulses. They are the e+e−

pair production (generalized BreitÄWheeler process) and the crossed process, i.e.,
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emission of single photon off an electron (generalized Compton scattering). We
emphasized the very signiˇcant impact of the temporal pulse structure. Still, the
pulses are approximated by plane waves, meaning that curved wave fronts deserve
in future also dedicated investigations.

The pair production in the subthreshold region with ζ > 1 is currently a
subject of great interest. We have shown that the production probability is deter-
mined by a nontrivial interplay of two dynamic effects. The ˇrst one is related to
the shape and duration of the pulse. The second one is the nonlinear dynamics of
charged particles in the strong electromagnetic ˇeld itself, independently of the
pulse geometry. These two effects play quite different roles in two limiting cases.
The pulse shape effects are manifested clearly at small values of the product ξζ,
where ξ characterizes the laser intensity and ζ refers to the threshold kinemat-
ics. The rapid variation of the e.m. ˇeld in a very short pulse ampliˇes the
multiphoton events, and moreover, the probability of multiphoton events in the
ˇnite pulse approximation (FPA) can exceed the prediction of the inˇnite pulse
approximation (IPA) by orders of magnitude. Thus, for example, in the case of
an ultrashort (subcycle) pulse with the ©number of oscillationsª N in the pulse
less than one, the production probability as a function of ζ is almost completely
determined by the square of the Fourier transform of the pulse envelope func-
tion. High-l components, where l is the Fourier conjugate to the invariant phase
variable φ, lead to the enhancement of the production probability. Among the
considered envelope shapes, the 
at-top shape with fast ramping and deramping
intervals is most promising to obtain the highest probability. We also ˇnd that the
different envelope shapes lead to anisotropies of the electron (positron) emission
which can be studied experimentally. For short pulses with N < 10, the effects
of the pulse shape are also important and the ˇnal yield differs signiˇcantly from
the IPA prediction. This difference depends on the envelope shapes and the pulse
duration.

Contrary to that, the nonlinear multiphoton dynamics of e+e− production in
a strong electromagnetic ˇeld plays a crucial role at large ˇeld intensities, ξ2 
 1.
Here, the effects of the pulse shape and duration disappear since the dominant
contribution comes from the central part of the envelope function. As a result,
the probabilities in FPA and IPA coincide.

In the transition region of intermediate intensities ξ2 ∼ 1, the probability is
determined by the complex interplay of both the effects, and they must be taken
into account simultaneously by a direct numerical evaluation of the multidimen-
sional integrals with rapidly oscillating integrands.

The effect of the carrier phase manifests itself most clearly in ultrashort
(subcycle) pulses in azimuthal distributions of direction of 
ight of the outgoing
electron (positron). The production probability has a bump-like structure where
the bump position coincides with the value of carrier phase. This leads to a
deˇnite alignment of the differential cross section and anisotropy in the x − y
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plane along the angle equal to the carrier phase. The impact of the carrier phase
decreases with increasing pulse duration.

The considered generalized nonlinear (multiphoton) Compton scattering in
short and ultrashort (subcycle) laser pulses is a crossing channel to the BreitÄ
Wheeler process and, therefore, re
ects the main features of the latter one. We
have shown that the fully differential cross section as a function of the fre-
quency of the outgoing photon at ˇxed production angle is a rapidly oscillating
function for short pulses with the duration determined by the number of oscil-
lations N = 2−10, especially for the 
at-top envelope shapes. An experimental
study of multiphoton effects in the case of rapidly oscillating cross sections
seems to be rather challenging. To overcome the problem of such a stagger-
ing, we suggest to utilize the partially integrated cross section which seems to
be a powerful tool for studying the nonlinear (multiphoton) dynamics in the
subthreshold region. We ˇnd that these cross sections at selected pulse prop-
erties (ˇeld intensity, pulse duration) are very sensitive to the pulse shape. In
the case of small e.m. ˇeld intensities, the cross section may be enhanced by
several orders of magnitude as compared to an inˇnitely long pulse. Such an
enhancement is more important for 
at-top envelope shapes which generate in-
tensive high-frequency harmonics and play a role of a power ampliˇer. In the
above-threshold region, the partially integrated cross section manifest some ©uni-
versalityª, i.e., an independence of the pulse shape structure, where results for
FPA and IPA are close to each other. Note that such a ©universalityª does not
appear in fully differential cross section, where one can ˇnd rapidly oscillat-
ing cross section as a function of ω′, especially for the 
at-top envelope shape.
At high ˇeld intensity, the central part of envelopes becomes dominant and the
integrated cross sections coincide with that for inˇnitely long pulses. It pro-
vides a rationale for the use of simple analytical expressions of IPA for Monte
Carlo transport approaches. Finally, we have shown that the effect of the car-
rier phase is important and might be seen clearly in subcycle pulses. Similarly
to the BreitÄWheeler process, we predict a deˇnite alignment of the differen-
tial cross section and anisotropy in the xÄy plane along the angle equal to the
carrier phase.

Our considerations are focused on circularly polarized photon beams. How-
ever, we expect that qualitatively, in the case of a linearly polarized pulse, our
main results, i.e., the sensitivity of the production probability of pair production
and partially integrated cross section of the Compton scattering to the subthreshold
multiphoton interactions and to the pulse structure, would be similar. The main
difference is expected for the anisotropies since the momentum of the outgoing
electron will be correlated with the direction of pulse polarization.

Our considerations are devoted essentially to the elementary processes in
optical laser beams. With the availability of X-ray beams (XFELs cf. (LCLS,
SACLA, European XFEL, Swiss XFEL, . . .)) already now or in the near future a
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further ˇeld of interesting phenomena is entered, where the here presented theory
also applies.

Acknowledgements. The authors acknowledge fruitful discussions with
D. Seipt, T. Nousch, T. Shibata, R. Sauerbrey, and T. E. Cowan.

Appendix

PRODUCTION PROBABILITY AT LARGE VALUES OF ξ

The total probability W in the limit of large ξ and small ξ/ζ, was evaluated
by Narozhny and Ritus [15] and summarized by Ritus [17] in compact form.
Below, for completeness and easy reference, we recall some details of Ritus's
evaluation making an expansion for an arbitrary value of ξ/ζ, applying it for the
case of the ˇnite pulse (cf. Subsec. 2.5).

In IPA, the total probability is represented as an inˇnite sum of partial
harmonics [17]:

W =
1
4
αMeζ

∞∑
n=n0

un∫
1

du

u3/2
√

u − 1
{2J2

n(z)+

+ ξ2(2u − 1)
(
J2

n+1(z) + J2
n−1(z) − 2J2

n(z)
)
}, (92)

where n0 ≡ nmin = ζ(1 + ξ2), un = n/n0, and Jn(z) is the Bessel function of
the ˇrst kind (cylindrical harmonics). Using the identities

2
n

z
Jn(z) = Jn−1(z) + Jn+1(z),

(93)
2 J ′

n(z) = Jn−1(z) − Jn+1(z),

the total probability takes the following form:

W =
1
2
αMeζ

1/2
∞∑
n0

un∫
1

du

u3/2
√

u − 1
×

×
(

J2
n(z) + ξ2(2u − 1)

((
n2

z2
− 1
)

J2
n(z) + J ′2

n(z)
))

. (94)

At large ξ 
 1, ζ 
 1, n, z 
 1 and n > z one can replace the sum over integer
n by an integral over dn, replacing, for convenience, integer n to continuous l
with lmin ≡ l0 = ζ(1+ ξ2). Using Watson's asymptotic expression for the Bessel
functions one ˇnds

Jl

(
l

cosh α

)
=

1√
2πl tanhα

e−l(α−tanh α) + O
(

1
ξ

)
, (95)



894 TITOV A. I. ET AL.

with cosh α = l/z. If l is large, the ˇrst term represents a good approximation
irrespectively whether ξ/ζ is small or large [51]. The corresponding derivative
reads

J ′
l (z) � sinh α Jl(z)

(
1 +

1
2l sinh2 α tanhα

)
. (96)

Consider ˇrst the case of small ξ/ζ � 1, when the second term in (96) can be
neglected. Then, the total probability becomes

W =
e2Meζ

1/2

8π2

∞∫
l0

dl

ul∫
1

du

u3/2
√

u − 1
1 + 2ξ2(2u − 1) sinh2 α

l tanh α
ef(u,l), (97)

where ul = l/l0 and f̂(u, l) = −2l(α − tanh (α)) with

tanh2(α) =
1 + ξ2

(
1 − 2u

ul

)2

1 + ξ2
. (98)

To avoid a notational confusion with respect to the standard variable α, we replace
below the ˇne structure constant by e2/4π.

The two-dimensional integral is evaluated using the saddle point approxima-
tion since the function f̂(u, l) has a sharp minimum at the point u = ū deˇned
by the equation f̂ ′

u(u = ū) = 0. That allows one (i) to expand it into the Taylor
series

f(u, l) � f̂(ū, l) +
1
2
f̂ ′′

u (ū, l)(u − ū)2, (99)

and (ii) to take the rest (smooth) part of the integrand in Eq. (97) at the point
u = ū yielding

W =
e2Meζ

1/2

16π2

∞∫
l0

dlA0(ū, l) ef̂(ū,l)

ul∫
1

du√
u − 1

exp
[
1
2
f̂ ′′(ū, l)(u − ū)2

]
,

(100)
with

A0(u, l) =
1 + 2ξ2(2u − 1) sinh2 α

u3/2l tanhα
. (101)

The explicit expression

f̂ ′
u(u, l) =

4l0 sinh2 α

tanhα

ξ2

1 + ξ2

(
1 − 2u

ul

)
(102)

leads to the solution

ū =
ul

2
=

l

2l0
, (103)
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which results in the following equalities:

tanh ᾱ ≡ tanh α(ū) =
2√

1 + ξ2
, sinh ᾱ =

1
ξ
, f̂ ′′

u (ū, l) = − 8l20

l
√

1 + ξ2
,

(104)

A0 =
1 + 2(2ū − 1)

ū3/2l

√
1 + ξ2, f̂(ū, l) = −2l(ᾱ− tanh ᾱ).

Using the substitutions u = t + 1, a = 2(ᾱ − tanh ᾱ), and A = (−1/2)f̂ ′′(ū, l),
one can rewrite Eq. (100) as

W =
e2Meζ

1/2

16π2

∞∫
l0

dlA0(ū, l) e−al−A(1−ū)2
∞∫
0

dt tν−1 e−βt2−γt, (105)

with ν = 1/2, β = A, and γ = 2A(1 − ū). The integral over dt is expressed via
the parabolic cylinder function D−ν

∞∫
0

dt tν−1 e−βt2−γt =
(

1
2β

)ν/2

Γ(ν) exp
(

γ2

8β

)
D−ν

(
γ√
2β

)
, (106)

which results in

W =
e2Meζ

1/2

16π3/2

∞∫
l0

dl

(
1

2A

)1/4

A0(ū, l) exp
[
−al − A

2
(1 − ū)2

]
D−1/2(y),

(107)
with y =

√
2A(1 − ū). The main contribution to this integral comes from the

region ū ∼ 1 (l ∼ l̄ = 2l0) and, therefore, one can use the substitution

∞∫
l0

dl = − 2l0√
2A

−∞∫
√

A/2

dy ≈ 2l0√
2A

∞∫
−∞

dy, (108)

which results in

W =
e2Meζ

1/2

16π3/2

(
1

2A

)1/4 2l0√
2A

A0(ū, l̄) e−2l0a

∞∫
−∞

dy eZy−y2/4D−1/2(y),

(109)
with Z = 2l0a/

√
2A. Using the identity

∞∫
−∞

dy eZy−y2/4D−1/2(y) =

√
2π

Z
eZ2/2, (110)
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one can rewrite the production probability as

W =
e2Meζ

1/2

16π

√
2l0
aA

A0(ū, l̄) exp
(
−2l0a +

l20a
2

A

)
. (111)

In order to reproduce the Ritus result [17] in terms of the kinematic factor
ζ and the ˇeld intensity ξ, one has to use the identity l0 = ζ(1 + ξ2) and to
represent a(ᾱ) as a series for small values 1/ξ utilizing the expansions

ᾱ = arsinh
1
ξ
� 1

ξ
− 1

6ξ3
+

3
40ξ5

,

(112)

tanh ᾱ =
1√

1 + ξ2
� 1

ξ
− 1

2ξ3
+

3
8ξ5

, A0 =
3

2ζξ
,

which leads to (48) with d = 1. Inclusion of the second term in (96) modiˇes
eventually A0 as

A0 =
3

2ζξ

(
1 +

ξ

6ζ

(
1 +

ξ

8ζ

))
, (113)

yielding the result displayed in (48), which generalizes the Ritus result for ar-
bitrary values of ξ/ζ. We emphasize that, in the strong ˇeld regime, IPA is
representative (with taking into account the pre-exponential factor d(ξ/ζ) in (48))
since, as stressed above, pulse shape and pulse duration effects are subleading.
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