РАСПАДЫ $au \to (\pi^0, \eta, \eta', K^0) K^- \nu_{ au}$ В РАСШИРЕННОЙ МОДЕЛИ НАМБУ–ИОНА-ЛАЗИНИО

М.К.Волков^{*}, *А.А.Пивоваров* Объединенный институт ядерных исследований, Дубна

Приведено сравнение результатов вычисления процессов $\tau \to (\pi^0, \eta, \eta', K^0) \times K^- \nu_{\tau}$ в рамках расширенной модели Намбу–Иона-Лазинио, полученных в предыдущих работах. Указаны их полные ширины. Учтены вклады от промежуточных векторных и скалярных мезонов как в основном, так и в первом радиально-возбужденном состояниях ($K^*(892), K^*(1410), K_0^*(800), K_0^*(1430), \rho(770), \rho(1450)$). Полученные результаты находятся в удовлетворительном согласии с экспериментальными данными.

The comparison of the results of calculation of the decays $\tau \to (\pi^0, \eta, \eta', K^0) K^- \nu_{\tau}$ obtained in the previous works is shown. The full widths of these processes are given. The intermediate vector and scalar mesons in ground and first radially excited states ($K^*(892)$, $K^*(1410)$, $K_0^*(800)$, $K_0^*(1430)$, $\rho(770)$, $\rho(1450)$) are taken into account. The obtained results are in satisfactory agreement with the experimental data.

PACS: 13.35.Dx; 12.40.Vv

введение

Поскольку при низких энергиях теория возмущений квантовой хромодинамики неприменима, при вычислении τ -распадов приходится использовать различные феноменологические модели. Как правило, они основаны на методах векторной доминантности и киральной симметрии сильных взаимодействий [1–5]. Однако в большинстве из них приходится использовать произвольные параметры для корректного описания экспериментальных данных.

Модель Намбу–Иона-Лазинио (НИЛ) [6–9] позволяет избежать введения дополнительных произвольных параметров, что повышает предсказательную силу. Расширенная модель НИЛ [10–13] позволяет также учесть первые радиально-возбужденные состояния мезонов.

^{*}E-mail: volkov@theor.jinr.ru

В настоящей работе проводится сравнительный анализ результатов, полученных в ряде предыдущих работ по странным распадам τ -лептона на псевдоскалярные мезоны и нейтрино в рамках модели Намбу–Иона-Лазинио.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕЗУЛЬТАТОВ

Диаграммы процесса $\tau \to K^- \pi^0 \nu_{\tau}$ изображены на рисунке.

Этот процесс был вычислен в работе [14]. Поскольку порог рождения конечных состояний в данном распаде в отличие от остальных трех рассматриваемых процессов достаточно низок, вклады от подпроцессов с промежуточными возбужденными мезонами сильно подавлены вкладами от подпроцессов с промежуточными основными состояниями, и мы можем в качестве промежуточных рассматривать только основные состояния векторного и скалярного мезонов и ограничиться стандартной моделью НИЛ.

В рамках стандартной модели НИЛ для брэнчинга данного процесса получаем

$$Br(\tau \to K^- \pi^0 \nu_\tau) = 4.13 \cdot 10^{-3}.$$
 (1)

Экспериментальное значение [15]

Br
$$(\tau \to K^- \pi^0 \nu_\tau)_{\text{exp}} = (4,29 \pm 0,15) \cdot 10^{-3}.$$
 (2)

Как видно, полученные результаты согласуются с экспериментальными данными.

В процессах $\tau \to (\eta, \eta', K^0) K^- \nu_{\tau}$ из-за высокого порога рождения конечных мезонов необходимо учитывать также и вклады от диаграмм с промежуточными первыми радиально-возбужденными состояниями.

Диаграммы процессов $\tau \to (\eta, \eta')K^-\nu_{\tau}$ имеют структуру, аналогичную структуре диаграмм распада $\tau \to K^-\pi^0\nu_{\tau}$. Однако в промежуточных состояниях здесь добавляются вклады от мезонов $K^*(1410)$ и $K_0^*(1430)$. Для их учета необходимо использовать расширенную модель НИЛ. Соответствующие вычисления были сделаны в работе [16].

Диаграммы распада $\tau \to K^- \pi^0 \nu_{\tau}$

В рамках данной модели получаем

$$Br(\tau \to \eta K^- \nu_{\tau}) = 1.45 \cdot 10^{-4}.$$
 (3)

Экспериментальное значение [15]

$$Br(\tau \to \eta K^- \nu_\tau)_{exp} = (1,52 \pm 0,08) \cdot 10^{-4}.$$
 (4)

Предсказание для брэнчинга распада $\tau \to \eta' K^- \nu_{\tau}$ получено также в работе [16]:

$$Br(\tau \to \eta' K^- \nu_\tau) = 1.25 \cdot 10^{-6}.$$
 (5)

Экспериментальное значение [15]

$$Br(\tau \to \eta' K^- \nu_\tau)_{exp} < 2.4 \cdot 10^{-6}.$$
 (6)

Как видно, результаты удовлетворительно согласуются с экспериментальными данными, а предсказание не выходит за пределы экспериментальных ограничений.

В рассмотренных процессах $\tau \to (\pi^0, \eta, \eta') K^- \nu_{\tau}$ в конечных состояниях присутствует один странный мезон. Поэтому в качестве промежуточных учитывались только мезоны с отличной от нуля странностью. В процессе распада $\tau \to K^0 K^- \nu_{\tau}$ в конечных состояниях находятся два странных мезона. Следовательно, в качестве промежуточных странные мезоны выступать не могут. Данный процесс был вычислен в работе [17]. Диаграммы этого процесса имеют структуру, аналогичную структуре диаграмм остальных рассматриваемых распадов. Однако в качестве промежуточных здесь участвуют мезоны $\rho(770)$ и $\rho(1450)$. Вклад от диаграмм с промежуточными скалярными мезонами пропорционален разности масс кварков, из которых эти мезоны состоят. В данном процессе это разность масс u- и d-кварков, поэтому вклад от скалярного канала здесь пренебрежимо мал.

В расширенной модели НИЛ для брэнчинга данного распада получаем

$$Br(\tau \to K^0 K^- \nu_\tau) = 12.7 \cdot 10^{-4}.$$
(7)

Экспериментальное значение [15]

$$Br(\tau \to K^0 K^- \nu_\tau)_{exp} = (14.9 \pm 0.5) \cdot 10^{-4}.$$
(8)

ЗАКЛЮЧЕНИЕ

Продемонстрированные результаты показывают, что использование модели НИЛ в различных версиях позволяет удовлетворительно описать экспериментальные значения для ширин распадов $\tau \to (\pi^0, \eta, \eta', K^0) K^- \nu_{\tau}$ без введения дополнительных произвольных параметров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Jamin M., Pich A., Portoles J. // Phys. Lett. B. 2006. V. 640. P. 176.
- 2. Escribano R., Gonzalez-Solis S., Roig P. // JHEP. 2013. V. 1310. P. 039.
- 3. Li B. A. // Phys. Rev. D. 1997. V. 55. P. 1436.
- 4. Czyz H., Grzelinska A., Kuhn J. H. // Phys. Rev. D. 2010. V. 81. P. 094014.
- 5. Dubnicka S., Dubnickova A. Z. // Acta. Phys. Slov. 2010. V. 60. P. 1.
- 6. Volkov M. K. // Ann. Phys. 1984. V. 157. P. 282.
- 7. Volkov M. K. // Sov. J. Part. Nucl. 1986. V. 17. P. 186 (Part. Nucl. 1986. V. 17. P. 433).
- 8. Ebert D., Reinhardt H. // Nucl. Phys. B. 1986. V. 271. P. 188.
- 9. Ebert D., Reinhardt H., Volkov M. K. // Prog. Part. Nucl. Phys. 1994. V. 33. P. 1.
- 10. Volkov M. K., Weiss C. // Phys. Rev. D. 1997. V. 56. P. 221.
- 11. Volkov M. K. // Phys. At. Nucl. 1997. V. 60. P. 1920 (Yad. Fiz. 1997. V. 60. P. 2094).
- 12. Volkov M. K., Yudichev V. L. // Phys. Part. Nucl. 2000. V. 31. P. 282 (Part. Nucl. 2000. V. 31. P. 576).
- 13. Volkov M. K., Radzhabov A. E. // Phys. Usp. 2006. V. 49. P. 551.
- 14. Volkov M. K., Pivovarov A. A. // Mod. Phys. Lett. A. 2016. V. 31. P. 1650043.
- 15. Olive K.A. et al. (Particle Data Group) // Chin. Phys. C. 2014. V. 38. P. 090001 (and 2015 update).
- 16. *Volkov M. K., Pivovarov A. A. //* Pis'ma ZhETF. 2016. V. 103. P. 697; arXiv:1602.04970 [hep-ph].
- 17. Volkov M. K., Pivovarov A. A. // Mod. Phys. Lett. A. 2016. V. 31, No. 23. P. 1650138. arXiv:1603.06396 [hep-ph].