ДИССОЦИАЦИЯ РЕЛЯТИВИСТСКИХ ЯДЕР ¹⁰В В ЯДЕРНОЙ ЭМУЛЬСИИ

А. А. Зайцев ^{1, 2,*}, Д. А. Артеменков ¹, В. Браднова¹, П. И. Зарубин ^{1, 2}, И. Г. Зарубина ^{1, 2}, Р. Р. Каттабеков ¹, Н. К. Корнегруца ¹, К. З. Маматкулов ¹, Е. К. Мицова ^{1, 3}, А. Неагу ⁴, П. А. Рукояткин ¹, В. В. Русакова ¹, В. Р. Саркисян ⁵, Р. Станоева ³, М. Хайдук ⁴, Е. Фиру ⁴ ¹ Объединенный институт ядерных исследований, Дубна ² Физический институт им. П. Н. Лебедева Российской академии наук, Москва ³ Юго-западный университет «Неофит Рильский», Благоевград, Болгария ⁴ Институт колических исследований, Магурель-Бухарест, Румыния

⁵ Ереванский физический институт, Ереван

В диссоциации ядер 10 В при энергии 1AГэВ в ядерной эмульсии исследуются структурные особенности этого изотопа. В распределении по зарядовым состояниям фрагментов доля канала 10 В \rightarrow 2He + H составляет 78 %. На основе измерений углов испускания фрагментов в нем установлено, что нестабильные ядра $^8{\rm Be}_{\rm gs}$ проявляются с вероятностью (26 ± 4) %, причем (14 ± 3) % из них возникают в распадах нестабильного ядра $^9{\rm B}_{\rm gs}$. Канал Be + H оказался подавленным и составил около 1 %.

In dissociation of ¹⁰B nuclei at energy of 1*A* GeV in nuclear track emulsion, structural features of this isotope are studied. In a charge state distribution of fragments the share of the channel ¹⁰B \rightarrow 2He + H is 78%. On the basis of measurements of fragment emission angles, it is determined that unstable ⁸Be_{gs} nuclei manifest with a probability of (26±4)%, where (14±3)% of them occur in decays of the unstable ⁹B_{gs} nucleus. Channel Be + H appeared subdued, accounting for about 1%.

PACS: 21.45+v; 23.60+e; 25.10+s

В качестве фундаментальных элементов своей структуры атомные ядра содержат виртуальные ассоциации нуклонов, или кластеры. Их простейшие наблюдаемые проявления — легчайшие ядра ^{4,3}Не и ^{3,2}Н, не имеющие возбужденных состояний. Суперпозиции легчайших кластеров и нуклонов образуют следующие ядра, в том числе нестабильные ⁸Ве и ⁹В, которые,

^{*}E-mail: zaicev@lhe.jinr.ru

в свою очередь, играют роль составляющих кластеров. Баланс возможных суперпозиций в состояниях с подходящим спином и четностью определяет факт связанности и параметры основного состояния соответствующего ядра. Кластеризация основного состояния легкого ядра определяет структуру его возбуждений и начальные условия реакций с его участием. Дальнейшее присоединение нуклонов и легчайших ядер ведет к оболочечному типу структуры. Переплетение кластерных и оболочечных степеней свободы делает группу легких ядер своего рода «лабораторией» ядерной квантовой механики, полной сюрпризов. Кластеризация лежит в основе процессов, сопровождающих явления физики ядерных изобар, гиперъядер, кварк-партонных степеней свободы. Представления о кластеризации ядер важны для применения в ядерной астрофизике, физике космических лучей, ядерной медицине и, возможно, в ядерной геологии.

В рамках проекта BECQUEREL [1], ориентированного на изучение кластерной структуры легких ядер, на нуклотроне ОИЯИ проведен цикл облучений ядерной эмульсии (ЯЭ) релятивистскими изотопами Be, B, C и N, включая радиоактивные [2]. Продольно облученные слои ЯЭ позволяют полно анализировать ансамбли фрагментов. Особенно ценными в этом отношении являются события когерентной диссоциации ядер, в которых отсутствуют следы медленных фрагментов и заряженных мезонов («белые» звезды, см. рис. 1). Облучение ЯЭ ядрами ¹⁰В с энергией 1А ГэВ было проведено в 2002 г. в первом сеансе на выведенном пучке нуклотрона. Успех этого облучения стал основанием для последующих облучений во вторичных пучках, обогащенных ядрами ⁸В и ⁹Ве, которые формировались на основе ускорения и фрагментации ¹⁰В. При диссоциации ядра ¹⁰В был отмечен эффект доминирования «белых» звезд 2He + H (около 70%), однако он не был исследован. Кроме того, оказался подавленным канал Be + H (не более 2%). Это облучение оказалось в «тени» облучений релятивистскими радиоактивными ядрами с дефицитом нейтронов. Обнаружение значительного вклада

Рис. 1. Макрофотография события когерентной диссоциации ядра ¹⁰В на фрагменты Не и Н; IV — примерное положение вершины взаимодействия. Характеристики данного события: $\Theta_{2\alpha} = 5,3$ мрад, $Q_{2\alpha} = 87$ кэВ, $Q_{2\alpha p} = 352$ кэВ

нестабильного ядра ⁹В в структуре радиоактивного ядра ¹⁰С [3] указывает на важность углубленного анализа диссоциации ¹⁰В \rightarrow 2He + H. Его целью является определение вероятностей когерентной диссоциации ядра ¹⁰В с участием ⁸Ве, а также ядра ⁹В. Возобновление исследований по структуре ядра ¹⁰В стало актуальным для интерпретации данных по ядру ¹¹С, в котором ¹⁰В может играть роль структурного элемента [4].

Роль основ в ¹⁰В должны играть ядра с выраженной кластерной структурой, на что указывают пороги отделения нуклонов и легчайших ядер ⁶Li + α (4,5 MэB), ⁸Be + d (6,0 MэB), ⁹Be + p (6,6 MэB) и ⁹B + n (8,4 МэB). Как и в случае ядра ¹⁰С, при диссоциации ¹⁰В распады нестабильного ядра ⁹В могут быть источником ядер ⁸Be_{gs} в основном состоянии 0⁺. Источником ядер ⁸Be в первом возбужденном состоянии 2⁺ могла бы быть кластерная конфигурация ⁸Be₂₊ + d. Другая компонента ¹⁰В основана на ядре ⁹Be, в структуре которого ⁸Be_{gs} и ⁸Be₂₊ присутствуют с примерно равными весами. При диссоциации ¹⁰В эта компонента может проявиться как в образовании ядер ⁹Be, так и пар α -частиц ⁸Be_{gs} и ⁸Be₂₊. В случае когерентной диссоциации по ка-

налу ⁹B + n можно ожидать ту же вероятность, как и для зеркального канала ⁹Be + p. Аналогично ядро ⁶Li может присутствовать как целостное образование и как виртуальная связь $\alpha + d$.

Эти соображения привели к возобновлению анализа облучения 10 В в 2015 г. К настоящему времени выполнен просмотр ЯЭ по следам пучковых ядер 10 В на длине 241 м, в результате чего найдено 1664 неупругих взаимодействия. Распределение 127 «белых»

Распределение 127 «белых» звезд ¹⁰В по зарядовым конфигурациям фрагментов

Канал	Число звезд
Be + H	1 (1%)
2He + H,	99, 24, 13
включая ⁸ Be, ⁹ B	(78, 19, 10%)
He + 3H	16 (12%)
Li + He	5 (4%)
Li + 2H	5 (4%)
5H	1 (1%)

звезд ¹⁰В по зарядовой топологии (таблица) из их числа подтверждает лидирование канала 2He + H (78 %) и подавление канала Be + H (~1%), который должен соответствовать конфигурации ⁹Be + p.

Для получения надежного опорного сигнала о ядрах ⁸Ве и ⁹В по угловым измерениям статистика событий ¹⁰В \rightarrow 2He + H была доведена до 296, включая 166 «белых» звезд. Такое увеличение достигнуто путем их ускоренного поиска 2He + H по площади и добавлением в измерения «небелых» звезд 2He + H. Выборка обусловлена 2He + H в основном геометрическим расположением событий в объеме эмульсии относительно маркировки и не вносит каких-либо дополнительных критериев отбора.

Распределение пар 2Не данной выборки по пространственному углу $\Theta_{2\text{He}}$ (рис. 2, *a*) в интервале $0 < \Theta_{2\text{He}} < 10,5$ мрад указывает на наличие 56 распадов ⁸Ве_{еs}, включая 40 из «белых» звезд. Из распределения событий по

Рис. 2. Распределение событий 10 B \rightarrow 2He + H по углу разлета $\Theta_{2\text{He}}$ в парах 2He (*a*) и углу разлета $\Theta_{8\text{Be+H}}$ в парах 8 Begs и H (*b*) для всех найденных событий (штриховые линии) и в «белых» звездах (заштрихованные области)

пространственному углу $\Theta_{2\text{He}+\text{H}}$ между направлением ⁸Be_{gs} и H в интервале $0 < \Theta_{^8\text{Be}+\text{H}} < 25$ мрад можно выделить 28 распадов, относимых к $^{9}\text{B}_{gs}$ (аналогично [5]) во всех измеренных событиях, включая 22 таких распада в «белых» звездах (рис. 2, δ). Таким образом, только для половины событий образование ядер $^{8}\text{Be}_{gs}$ происходит через распады $^{9}\text{B}_{gs}$.

Реконструкция распадов релятивистских ядер ⁸Ве и ⁹В возможна по энергии возбуждения $Q = M^* - M$, представляющей собой разность инвариантной массы фрагментов M^* , $M^{*2} = \sum (P_i P_k)$ и суммарной массы фрагментов M; P_{i,k} — 4-импульсы, определенные в приближении сохранения фрагментами начального импульса на нуклон. В области малых углов разлета оправданно предположение о соответствии изотопа Н протонам, а Не
 — α -частицам. Распределение по энергии $Q_{2\alpha}$ (рис. 3, *a*) в области $0 < Q_{2\alpha} < 200$ кэВ имеет среднее значение (105 \pm 7) к
эВ при RMS 46 кэВ и соответствет основному состоянию ⁸Be_{gs}. В свою очередь, распределение по энергии $Q_{2\alpha}$ троек 2lpha+p (рис. 3, б) в области $0 < Q_{2lpha p} < 400$ кэВ имеет среднее значение (261 ± 23) кэВ при RMS 91 кэВ и соответствует основному состоянию ${}^{9}B_{gs}$. Распределение по поперечному импульсу $P_{T(^{9}\text{B})}$ ядер $^{9}\text{B}_{gs}$ (рис. 4) описывается распределением Рэлея с параметром $\sigma_{P_{\tau}}({}^{9}\mathrm{B}) = (121 \pm 30) \text{ МэВ/c},$ не противоречащим статистической модели (96 МэВ/с). В настоящее время ведется идентификация изотопов Не и Н методом многократного рассеяния, что позволит расширить область интерпретируемых углов разлета фрагментов.

Итак, нестабильные ядра ⁸Ве и ⁹В проявляют себя в когерентной диссоциации по каналу ${}^{10}B \rightarrow 2He + H$ с вероятностью (26 ± 4)% и (14 ± 3)% соответственно и, следовательно, являются существенными ингредиентами

Рис. 3. Распределение событий 10 В \rightarrow 2He + H по энергии $Q_{2\alpha}$ пар α -частиц (*a*) и $Q_{2\alpha p}$ троек $2\alpha + p$ (δ) для всех найденных событий (штриховые линии) и в «белых» звездах (заштрихованные области); на вставках — увеличенные распределения $Q_{2\alpha}$ и $Q_{2\alpha p}$

ядра ¹⁰В. Неожиданным представляется тот факт, что число «белых» звезд ${}^{9}B + n$ в 10 раз превысило ${}^{9}Be + p$ (см. таблицу). Это наблюдение может указывать на более широкое пространственное распределение нейтронов в ядре ${}^{10}B$ по сравнению с протонами, что приводит к большему сечению канала ${}^{9}B + n$ по сравнению с зеркальным каналом.

Возможная физическая картина состоит в следующем. Ядро ${}^9\text{B}$ представляет собой «разреженную» ядерно-молекулярную структуру из кластеров $2\alpha + p$. Кулоновский барьер может усиливать удержание протона. Возможно, что в ядре ${}^{10}\text{B}$ ядро-основа ${}^9\text{B}$ е также присутствует

Рис. 4. Распределение «белых» звезд по поперечному импульсу $P_{T(^9B)}$ троек 2He + H с образованием ядра $^{9}B_{gs}$

в «разреженном» виде $2\alpha + n$ как примерно равная суперпозиция связей ${}^{8}\text{Be}_{gs}$ и ${}^{8}\text{Be}_{2+}$ с нейтроном, а не как целостное образование. Тогда превышение распадов ${}^{8}\text{Be}_{gs}$ над ${}^{9}\text{B}_{gs}$ в диссоциации может быть обусловлено дополнительным вкладом «разреженного» ядра ${}^{9}\text{Be}$. Для сравнения отметим, что в структуре ${}^{10}\text{C}$ присутствие ${}^{9}\text{Be}$ невозможно. Действительно, в «белых» звездах ${}^{10}\text{C}$ распады ${}^{8}\text{Be}_{gs}$ всегда ассоциируются с распадами ${}^{9}\text{B}_{gs}$. Возможно, что ядро Li, слабо проявляющееся в диссоциации 10 B (см. таблицу), также присутствует в 10 B в основном в «растворенном» виде и дает в распределение $\Theta_{2\text{He}}$ нерезонансный вклад.

При изучении ядра ¹⁰В, позволяющем проследить эволюцию от кластерного к оболочечному типу ядерной структуры, требуется привлечение сведений о релятивистской диссоциации ядер ⁶Li и ⁹Ве, а также идентификация фрагментов H в канале 2He + H. В свою очередь, детальное понимание когерентной диссоциации ядра ¹⁰В служит основой интерпретации структуры следующего изотопа — ¹¹C.

СПИСОК ЛИТЕРАТУРЫ

- 1. The BECQUEREL Project. http://becquerel.jinr.ru.
- Zarubin P. I. "Tomography" of the Cluster Structure of Light Nuclei via Relativistic Dissociation // Lect. Notes Phys. 2014. V. 875, No. 3 "Clusters in Nuclei". P. 51; arXiv:1309.4881.
- Маматкулов К. З. и др. Диссоциация ядер ¹⁰С с энергией 1,2А ГэВ в ядерной фотографической эмульсии // ЯФ. 2013. Т. 76. С. 1286 (Mamatkulov K.Z. et al. Dissociation of ¹⁰C Nuclei in a Track Nuclear Emulsion at Energy of 1.2 GeV per Nucleon // Phys. At. Nucl. 2013. V. 76. P. 1224); arXiv:1309.4241.
- Артеменков Д. А. и др. Зарядовая топология когерентной диссоциации релятивистских ядер ¹¹С и ¹²N // ЯФ. 2015. Т. 78. С. 845 (Artemenkov D. A. et al. Charge Topology of Coherent Dissociation of ¹¹C and ¹²N Relativistic Nuclei // Phys. At. Nucl. 2015. V. 78. P. 794); arXiv:1411.5806.
- Toshito T. et al. Measurements of Projectile-Like ⁸Be and ⁹B Production in 200– 400 MeV/nucleon ¹²C on Water // Phys. Rev. C. 2008. V.78. P.067602.