НЕДАВНИЕ РЕЗУЛЬТАТЫ Т2К

М. М. Хабибуллин*

Институт ядерных исследований Российской академии наук, Москва

Ускорительный нейтринный эксперимент T2K (Tokai-to-Kamioka) в Японии в 2010 г. начал набор данных в нейтринной моде, а с 2014 г. переключился в антинейтринную моду. Представлены первые результаты анализа данных антинейтринной моды.

The long-baseline accelerator neutrino oscillation experiment T2K (Tokai-to-Kamioka) in Japan had been running in the neutrino mode since 2010, and in 2014 it switched to the antineutrino mode. The first results of the antineutrino mode analysis are presented. PACS: 14.60.Pq; 29.20.dk

ОСНОВНЫЕ ЦЕЛИ ЭКСПЕРИМЕНТА Т2К

Т2К (Tokai-to-Kamioka) — это осцилляционный нейтринный эксперимент с длинной базой, в котором поток мюонных (анти)нейтрино, образованный в протонном ускорительном комплексе J-PARC (Токай), направляется в сторону дальнего детектора Super-Kamiokande (SK), расположенного в 295 км [1]. Основными задачами эксперимента Т2К являются: открытие переходов $\nu_{\mu} \rightarrow \nu_{e}$, т. е. подтверждение ненулевого значения угла смешивания θ_{13} и прецизионное измерение параметров осцилляций $\nu_{\mu} \rightarrow \nu_{\mu}$. С открытием ненулевого значения θ_{13} на передний план выступает задача поиска СР-нарушения в лептонном секторе.

Т2К начал набор данных в 2010 г. в нейтринной моде, а с 2014 г. переключился в антинейтринную моду. В данном докладе приводятся предварительные результаты анализа данных, полученных в антинейтринной моде, а также наиболее значимые результаты анализа данных нейтринной моды.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА Т2К

Поток мюонных (анти)нейтрино в T2K получается в результате распадов заряженных мезонов, образовавшихся в результате взаимодействий протонов с ядрами графитовой мишени. Заряженные мезоны фокусируются с помощью

^{*}E-mail: marat@inr.ru

трех электромагнитов и направляются в распадную зону. Меняя направление импульсного тока в электромагнитах, окружающих графитовую мишень, можно переключаться из нейтринной в антинейтринную моду.

В Т2К впервые на практике используется метод *внеосевого* детектирования нейтрино: один из ближних детекторов (ND280), а также дальний детектор SK расположены под небольшим углом (2,5°) по отношению к оси пучка. В этом случае благодаря кинематике распадов заряженных пионов энергетический спектр нейтрино имеет почти монолинию, соответствующую осцилляционному максимуму ($E_{\nu} = 600$ МэВ), и, кроме того, тем самым подавляется нежелательный высокоэнергетический фон.

На расстоянии 280 м от мишени расположены ближние детекторы INGRID и ND280, которые необходимы для получения данных о нейтринном пучке до осцилляций.

Задача детектора INGRID (Interactive Neutrino GRID), установленного *на оси* нейтринного пучка, заключается в мониторировании направления и интенсивности нейтринного пучка в реальном времени [2].

Внеосевой ближний детекторный комплекс ND280 состоит из магнита UA1, внутри которого помещен трекер и другие детекторы частиц. Комплекс ND280 служит для определения состава нейтринного пучка, а также для ограничения систематических погрешностей, связанных с потоком нейтрино и с сечениями нейтринных взаимодействий.

В качестве дальнего детектора T2K используется хорошо известный детектор SK, представляющий собой цилиндрический бак с водой (полный вес 50 кт), способный различать черенковские кольца, вызванные мюонами и электронами с эффективностью > 99 % [3].

Для синхронизации работы ближних и дальнего детекторов используется GPS-система (Global Positioning System).

МЕТОД АНАЛИЗА И НЕДАВНИЕ РЕЗУЛЬТАТЫ Т2К

Анализ данных в T2K представляет собой многоступенчатую процедуру, что обусловлено отсутствием полных данных о нейтринном потоке и сечениях взаимодействия нейтрино с веществом.

Для расчета ожидаемого числа событий, а также спектра нейтрино в SK данные с ближних детекторов экстраполируются с учетом ряда моделей: потока нейтрино, сечений взаимодействия нейтрино, а также отклика детекторов. Параметры потока и сечений взаимодействия нейтрино предварительно определяются с помощью данных других экспериментов, а также INGRID и мониторов ускорительного канала. Затем проводится настройка этих параметров с использованием данных ближнего детектора ND280, на основании чего рассчитывается ожидаемое число нейтринных событий в SK-детекторе в отсутствие осцилляций. После этого ожидаемое число событий сравнивается с экспериментальными данными SK, и в результате процедуры подгонки получаются осцилляционные параметры (анти)нейтрино. Для отбора (анти)нейтринных событий в SK-детекторе применяются специальные критерии, основное назначение которых — подавление фоновых событий.

В результате анализа данных *нейтринной* моды (2010–2013), соответствующих 6,57 · 10²⁰ протона на мишени (РОТ), получено наиболее точное значение θ_{23} , а также открыты осцилляции $\nu_{\mu} \rightarrow \nu_{e}$ на уровне значимости 7,3 σ [4]. Кроме того, удалось получить первое ограничение на СР-нарушающую фазу $\delta_{\rm CP}$ в лептонном секторе [5].

В 2014—2015 гг. в *антинейтринной* моде набрана статистика, соответствующая $4,01 \cdot 10^{20}$ РОТ (к концу мая 2016 г. набрано уже $\sim 7,5 \cdot 10^{20}$ РОТ в той же моде).

В результате анализа данных $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ (2014–2015) отобрано 34 кандидата $\bar{\nu}_{\mu}$ -событий в SK-детекторе, спектр восстановленной энергии которых, совмещенный с рассчитанным спектром, показан на рисунке. Наилучшая подгонка параметров смешивания антинейтрино ($\sin^2(\bar{\theta}_{23})$, $|\Delta \overline{m}_{32}^2|$) дает результаты, согласующиеся с результатами, полученными в нейтринной моде: $\sin^2(\bar{\theta}_{23}) = 0.45^{+0.29}_{-0.12}$ и $|\Delta \overline{m}_{32}^2| = 2.51 \pm 0.28 \cdot 10^{-3}$ (эВ²) [6].

В результате анализа данных «на появление» отобрано три кандидата $\bar{\nu}_e$ событий, что пока не позволяет однозначно ни подтвердить, ни опровергнуть наблюдение переходов $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$.

а) Экспериментальный и рассчитанный спектры восстановленной энергии 34 кандидатов $\bar{\nu}_{\mu}$ -событий в дальнем детекторе (точки); δ) отношение экспериментального спектра к спектру, вычисленному в предположении отсутствия осцилляций

В дальнейшем будет осуществлен комбинированный анализ данных обеих мод (нейтринной и антинейтринной) с использованием всей набранной статистики с варьированием параметров как для нейтрино, так и для антинейтрино, а также СР-фазы (θ_{23} , $\bar{\theta}_{23}$, θ_{13} , $\bar{\theta}_{13}$, $|\Delta m^2_{32}|$, $|\Delta \overline{m}^2_{32}|$, $\delta_{\rm CP}$).

Работа поддержана Российским фондом фундаментальных исследований (грант РФФИ № 15-52-50015).

СПИСОК ЛИТЕРАТУРЫ

- Abe K. et al. (T2K Collab.). The T2K Experiment // Nucl. Instr. Meth. A. 2011. V. 659. P. 106–135.
- Abe K. et al. (T2K Collab.). Measurements of the T2K Neutrino Beam Properties Using the INGRID On-Axis Near Detector // Nucl. Instr. Meth. A. 2012. V.694. P.211–223.
- Fukuda S. et al. (Super-Kamiokande Collab.). The Super-Kamiokande Detector // Nucl. Instr. Meth. A. 2003. V. 501. P. 418-462.
- 4. *Abe K. et al. (T2K Collab.).* Observation of Electron Neutrino Appearance in a Muon Neutrino Beam // Phys. Rev. Lett. 2014. V. 112. P. 061802.
- Abe K. et al. (T2K Collab.). Measurements of Neutrino Oscillation in Appearance and Disappearance Channels by the T2K Experiment with 6.6 · 10²⁰ Protons on Target // Phys. Rev. D. 2015. V.91. P. 072010.
- 6. *Abe K. et al. (T2K Collab.).* Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam // Phys. Rev. Lett. 2016. V. 116. P. 181801.