КАЛОРИМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ИСТОЧНИКА НЕЙТРИНО НА ОСНОВЕ ⁵¹Cr

Ю. П. Козлова^{*}, Е. П. Веретенкин, В. Н. Гаврин, О. В. Грехов, Т. В. Ибрагимова, А. В. Калихов, А. А. Мартынов

Институт ядерных исследований РАН, Москва

В рамках проекта эксперимента BEST создана калориметрическая система для измерения активности высокоинтенсивных (несколько мегакюри) источников нейтрино на основе ⁵¹Cr. В интервале тепловых мощностей 250–520 Вт неопределенность измерения тепловыделения составила менее 0,25 %. С учетом величины неопределенности значения энерговыделения при распаде ⁵¹Cr (0,23 %) активность источника нейтрино может быть определена с точностью ~ 0,5 %.

Within the framework of the BEST experiment project, a calorimetric system was developed to measure the activity of high-intensity (several MCI) neutrino sources based on $^{51}\mathrm{Cr}$. In the range of thermal capacities of 250–520 W, the uncertainty of the heat release measurement is less than 0.25%. Taking into account the uncertainty of the energy release value for the $^{51}\mathrm{Cr}$ decay (0.23%), the activity of the neutrino source can be determined with an accuracy of $\sim 0.5\%$.

PACS: 95.55.Vj

введение

Впервые искусственные источники нейтрино на основе ⁵¹Cr и ³⁷Ar были использованы для калибровки телескопов солнечных нейтрино в экспериментах SAGE (⁵¹Cr [1] и ³⁷Ar [2]) и GALLEX (дважды ⁵¹Cr [3,4]). Средневзвешенное значение отношения измеренной в этих экспериментах скорости захвата нейтрино к теоретически ожидаемой составило $R = 0.87 \pm 0.50$, т. е. более чем на два стандартных отклонения меньше единицы, что получило название галлиевой аномалии [5]. Галлиевая аномалия может быть объяснена введением осцилляций электронных нейтрино в стерильное состояние на очень коротких расстояниях с Δm^2 порядка 1 эВ² [6]. Для экспериментальной проверки этой гипотезы был предложен эксперимент BEST [7],

^{*}E-mail: julia@inr.ru

одной из задач которого является создание калориметрической системы для высокоточного (с неопределенностью $\leq 1\%$) измерения активности искусственного источника нейтрино на основе ⁵¹Cr с первоначальной активностью более 3 МКи. Тепловыделение такого источника после облучения в атомном реакторе составит около 650 Вт [8]. Для сравнения тепловыделение источника, использованного в эксперименте SAGE, составляло ~ 90 Вт и измерялось системой на основе калориметра Кальве с точностью 1,2% [1]. Параллельно с калориметрическим методом активность источника в эксперименте BEST будет определяться по спектрам рентгеновского тормозного излучения от источника с использованием германиевого полупроводникового детектора [9].

1. КАЛОРИМЕТРИЧЕСКАЯ СИСТЕМА ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ИСТОЧНИКА НЕЙТРИНО

1.1. Основные факторы, определяющие точность измерения активности. Радиоактивный изотоп ⁵¹Cr распадается с захватом электрона с внутренних оболочек на основное состояние ⁵¹V (90%) и на возбужденное состояние ⁵¹V (10%), при этом возбуждение снимается испусканием гамма-кванта с энергией 320 кэВ, поглощение которого вносит основной вклад в тепловыделение. Согласно уточненным данным [10], среднее значение энерговыделения составляет (36,750 ± 0,084) кэВ/распад с неопределенностью 0,23%.

Помимо ⁵¹Сг вклад в тепловыделение могут вносить другие радионуклиды, наработанные при облучении хрома в атомном реакторе. В калибровочном эксперименте SAGE в источнике ⁵¹Сг были детектированы радионуклиды ⁴⁶Sc, ⁵⁹Fe, ⁶⁰Co, ¹⁸²Ta. Расчеты показывают [8], что даже при составе, аналогичном первому источнику, вклад примесных радионуклидов в новом источнике составит 0,02 % сразу после облучения, т.е. будет являться пренебрежимо малым, и 0,11 % в конце измерений, когда примесный состав будет известен из результатов гамма-спектрометрических измерений и может быть корректно учтен. В эксперименте BEST концентрация примесей значительно уменьшится вследствие применения современных способов получения металлического хрома и вклад примесных нуклидов в тепловыделение снизится. Часть энергии от распада ⁵¹Сг, уносимая гамма-квантами за пределы измерительной ячейки, согласно расчетам, составляет 0,03 %.

Таким образом, основной вклад в неопределенность измерения активности источника вносит ошибка измерения тепловыделения, которую необходимо снизить до уровня неопределенности энерговыделения, при этом точность определения активности источника составит около 0,5 %.

1.2. Лабиринтный калориметр проточного типа. Для измерения тепловыделения источника в диапазоне тепловых мощностей 50–700 Вт был вы-

бран лабиринтный калориметр проточного типа, в котором при установлении теплового равновесия все выделяемое источником тепло передается теплоносителю. Гидравлическая схема калориметра показана на рис. 1.

Источник б помещается в контейнер д измерительной ячейки 1. Контейнер окружен лабиринтным теплообменником г. Для предотвращения тепловых потерь контейнер с теплообменником окружен теплоизоляцией а, которая, в свою очередь, окружена биологической защитой в, необходимой при работе с радиоактивным источником. В качестве теплоносителя используется деионизованная вода. Входная и выходная температуры теплоносителя измеряются платиновыми термометрами сопротивления ПТСВ-2-1 (производства ВНИИФТРИ) с погрешностью измерения температуры не более 0,002 К. Стабилизация входной температуры теплоносителя осуществляется термостатом Unistat с точностью поддержания температуры теплоносителя ±0,01 К. Шестеренчатый насос Ismatec Reglo-Z Digital с точностью поддержания расхода теплоносителя ±0,05% обеспечивает стабилизацию расхода теплоносителя, который измеряется кориолисовым массовым расходомером Micro Motion с ошибкой измерения ±0,05 %. С помощью манометра определяется давление теплоносителя для вычисления гидродинамического вклада в тепловыделение.

Для измерения метрологических характеристик прототипа калориметра был изготовлен тепловой имитатор источника с электронагревом. Геометрия имитатора соответствовала геометрии реального источника нейтрино. На рис. 2 показана электрическая схема измерения подаваемой мощности,

Рис. 1. Гидравлическая схема калориметра проточного типа. 1 — измерительная ячейка: a — теплоизоляция; δ — источник нейтрино; s — биологическая защита; c — теплообменник; δ — контейнер; T_1 — входное термосопротивление; T_2 — выходное термосопротивление; 2 — расходомер; 3 — термостат; 4 — байпас; 5 — шестеренчатый насос; δ — температурный демпфер; M — манометр

Рис. 2. Электрическая схема измерения подаваемой на имитатор мощности

в которой используется следующее прецизионное оборудование: а) программируемый источник питания постоянного тока Sorensen XHR 300-3.5; б) двухканальный цифровой мультиметр ADVATEST R6452E с погрешностью измерения напряжения не более 0,01 В; в) измерительный шунт ИШМ (калибровка ВНИИФТРИ) с сопротивлением ($52,14 \pm 0,01$) Ом. Основной вклад в неопределенность измерения подаваемой мощности вносит ошибка сопротивления шунта, неопределенность значения подаваемой мощности составляет 0,03 %.

1.3. Разработка программного обеспечения калориметрической системы. Для автоматизации работы калориметрической системы было разработано программное обеспечение на основе пакета LabVIEW (National Instruments). Программа обеспечивает считывание и сохранение данных расхода, плотности, массы и температуры теплоносителя, проходящего через расходомер; входной и выходной температуры теплоносителя, проходящего через источник; напряжения на нагревателе и на токовом шунте, определяющего подаваемую на имитатор источника мощность.

Полученные данные расхода и температуры теплоносителя представляются в виде временного графика. Для определения установившегося режима проводится линейная аппроксимация разности выходной и входной температуры теплоносителя в заданном временном интервале. Для проведения калибровки калориметра в динамическом режиме разработанное программное обеспечение позволяет регулировать подаваемую на имитатор источника мощность по закону $N(t) = N0 e^{-\lambda t}$ с учетом распада ⁵¹Cr с периодом полураспада 27,7 сут.

1.4. Калибровка калориметра. В калориметре проточного типа тепловыделение прямо пропорционально разности выходной и входной температуры теплоносителя:

$$N = kQ(T_0 - T_i),\tag{1}$$

где N — тепловыделение источника, Вт; k — коэффициент пропорциональности, который в случае отсутствия тепловых потерь равен удельной тепло-

Рис. 3. Калибровочная зависимость калориметра: • — экспериментальные точки, сплошная линия — линейная аппроксимация

емкости теплоносителя, Дж/(кг · град); Q — расход теплоносителя, кг/с; T_0 — температура на выходе из теплообменника, К; T_i — температура на входе в теплообменник, К.

На рис. 3 представлены результаты проведенной калибровки калориметра в статическом режиме (при постоянной подаваемой мощности). Получена линейная зависимость мощности от изменения температуры теплоносителя со следующими параметрами аппроксимации: $N(dT) = (69,677 \pm 0,079) dT + (0,62 \pm 0,36)$, с коэффициентом корреляции 0,99998.

Полученное из калибровочной зависимости значение теплоемкости дистиллированной воды составило $c_p^{3\kappa c} = (4180, 6 \pm 2, 3)$ Дж/кг · К и совпадает с табличным значением $c_p^{\mathrm{табл}} = 4180, 2$ Дж/кг · К [11], что свидетельствует о крайне малых теплопотерях. Теплопотери измерительной ячейки были оценены по падению выходной температуры при поддержании повышенной входной температуры теплоносителя (35° C) без подачи мощности на нагреватель и составили 0,3 Вт/К. В реальном эксперименте измерения тепловыделения будут проводиться в условиях, когда средняя температура теплоносителя будет поддерживаться равной температуре окружающей среды, чтобы свести теплообмен с окружающей средой к минимуму, а теплопотери — к нулю.

На основании полученных экспериментальных данных была изготовлена измерительная ячейка калориметра, которая будет использоваться в измерениях с реальным источником (рис. 4). Для проведения калибровки калориметра как в статическом, так и в динамическом режимах изготовлен тепловой имитатор источника с теплофизическими параметрами (геометрия, теплоемкость и теплопроводность), максимально приближенными к параметрам ре-

М1:4 Теплоизоляция калориметра не показана

Рис. 4. Чертеж и фотографии измерительной ячейки калориметра без и с теплоизоляцией

Рис. 5. Калориметрическая система измерения активности искусственного источника нейтрино на основе $^{51}{\rm Cr}$

ального источника. Внешний вид калориметрической системы представлен на рис. 5.

В таблице и на рис. 6 представлены результаты калибровки калориметра в статическом режиме. В качестве теплоносителя использовался 40 %-й изопропиловый спирт.

Ошибка измерений тепловыделения в диапазоне тепловой мощности источника 150–520 Вт составляет менее 0,5 %, а при значениях 270–700 Вт — менее 0,25 %.

Калибровочная зависимость калориметра является линейной со следующими параметрами аппроксимации: $N(dT) = (49,726 \pm 0,070) dT + (-0,08 \pm 0,43)$, с коэффициентом корреляции 0,999999.

$T_2 - T_1$, K	$\sigma_{(T_2-T_1)}, \mathbf{K}$	N, Вт	σ_N , Bt	$\sigma_N, \%$
0,950	0,002	47,05	0,45	0,96
1,680	0,003	83,19	0,47	0,57
2,707	0,001	134,65	0,48	0,36
3,772	0,008	187,33	0,64	0,34
5,353	0,002	266,80	0,58	0,22
5,954	0,003	296,54	0,62	0,21
6,432	0,004	320,12	0,65	0,20
7,620	0,004	377,67	0,72	0,19
9,380	0,006	465,60	0,83	0,18
10,426	0,008	519,09	0,95	0,18

Экспериментальные данные калибровки калориметра в статическом режиме

Рис. 6. Калибровочная зависимость калориметра в статическом режиме: • — экспериментальные точки; сплошная линия — линейная аппроксимация

Рис. 7. Разность между подаваемой мощностью, меняющейся по экспоненциальному закону радиоактивного распада, и мощностью, рассчитанной из статической калибровочной зависимости

Реальные измерения активности искусственного источника нейтрино будут происходить в условиях распада 51 Cr, поэтому для оценки влияния изменения активности источника в течение измерений (~ 6 ч) были проведены первые измерения тепловыделения при подаче на имитатор мощности, меняющейся по экспоненциальному закону радиоактивного распада: $N_2 = N_1 \exp\left(-\ln 2 \cdot t/T_{1/2}\right), T_{1/2} = 27,7$ сут. На рис. 7 показана разность между подаваемой мощностью и мощностью, рассчитанной из статической калибровочной зависимости $dN = N_{\text{set}} - k_{\text{stat}} dT$. Среднее значение этой разности составило $dN = 0.24 \pm 0.09$ Вт, что составляет 0,06% от подаваемой мощности, т. е. является пренебрежимо малой величиной.

ЗАКЛЮЧЕНИЕ

Разработана и изготовлена калориметрическая система для измерения активности искусственного источника нейтрино на основе ⁵¹Cr с начальной активностью 3 МКи. Неопределенность измерения тепловыделения источника составила менее 0,5 % в диапазоне тепловых мощностей 150–600 Вт и менее 0,25 % в диапазоне 270–600 Вт. С учетом полученного значения неопределенности измерения тепловыделения и известного значения неопределенности энерговыделения при распаде ⁵¹Cr (0,23 %) активность искусственного источника нейтрино может быть определена с точностью ~ 0,5 %. Предварительные результаты калибровки системы в динамическом режиме показали, что систематическая ошибка определения активности источника, связанная с изменением активности во времени, составила не более 0,06 %.

Благодарности. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 16-02-00800).

СПИСОК ЛИТЕРАТУРЫ

- 1. Abdurashitov J. N. et al. (SAGE Collab.) // Phys. Rev. C. 1999. V. 59. P. 2246.
- 2. Abdurashitov J.N. et al. (SAGE Collab.) // Phys. Rev. C. 2006. V. 73. P. 045805.
- 3. Anselmann P. et al. (Gallex Collab.) // Phys. Lett. B. 1995. V. 342. P. 440.
- 4. Hampel W. et al. (Gallex Collab.) // Phys. Lett. B. 1998. V. 420. P. 114.
- 5. Giunti C. // Mod. Phys. Lett. A. 2007. V. 22. P. 2499.
- 6. Gariazzo S., Giunti C., Laveder M., Li Y. F., Zavanin E. M. arXiv:1507.08204. 2015.
- 7. Gavrin V.N., Gorbachev V.V., Veretenkin E.P., Cleveland B.T. arXiv:1006.2103. 2010. 10 p.
- Veretenkin E. P., Gavrin V. N., Danshin S. N., Ibragimova T. V., Kozlova Yu. P., Mirmov I. N. // Phys. At. Nucl. 2015. V. 78, No. 14. P. 1606–1609.
- 9. Gorbachev V. V., Gavrin V. N., Ibragimova T. V., Kalikhov A. V., Malyshkin Yu. M., Shikhin A. A. // Phys. At. Nucl. 2015. V. 78, No. 14. P. 1617–1620.
- Chechev V. P., Kuzmenko N. K. et al. Table de Radionucléides ⁵¹Cr. V. 1. P. 51–54. BIPM, 2004.
- 11. Wagner W., Pruß A. // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 387.