СОВРЕМЕННЫЕ МЕТОДЫ ОЧИСТКИ ЖИДКИХ СЦИНТИЛЛЯТОРОВ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ РЕГИСТРАЦИИ РЕДКИХ СОБЫТИЙ

Г. Я. Новикова*

Институт ядерных исследований РАН, Москва

Методами хромато-масс-спектрометрии и UV/VIS-спектроскопии исследованы состав и свойства линейного алкилбензола (ЛАБ) российского производства как базового растворителя для создания низкофоновых жидких сцинтилляторов. Исследовалась эффективность очистки ЛАБ от внутренней радиоактивности (U, Th) с помощью водной экстракции (с добавлением сильного комплексона — диметиламинометилендифосфоновой кислоты) и сорбции на Al_2O_3 и силикагеле. Разработана методика очистки от калия сцинтилляционных добавок (РРО, ВРО, р-терфенила). Показано, что водные растворы NdCl₃ могут быть эффективно очищены от U и Th путем экстракции с раствором 0,1 моль/л ТОРО в псевдокумоле.

The composition and properties of linear alkyl benzene (LAB) (Russian production) were subjected to a study by chromato-mass-spectrometry and UV/VIS-spectroscopy. The efficiency of removing U and Th from LAB by water extraction with 0.1 mol/l dimethy-laminomethylendiphosphonic acid and by sorption on Al₂O₃ and silica gel was investigated. A purification procedure for removal of ⁴⁰K from flours (PPO, BPO, p-terphenyl) was developed. NdCl₃ purification by extraction with 0.1mol/l TOPO in pseudocumene was studied.

PACS: 29.40.Mc

введение

Жидкие органические сцинтилляторы в настоящее время находят все более широкое применение в экспериментах, нацеленных на поиски редких событий. Для осуществления таких задач особенно важен низкий внутренний радиоактивный фон и высокие оптические характеристики самого сцинтиллятора. Обычно для очистки сцинтилляторов и базовых растворителей используются следующие методы:

^{*}E-mail: g-novikova@mail.ru

• хроматографическая очистка на колонках, заполненных Al_2O_3 или силикагелем (удаляются органические и радиоактивные примеси, увеличивается прозрачность);

• водная экстракция (удаляются ионные соединения, содержащие радиоактивные элементы);

• вакуумная молекулярно-пленочная дистилляция (удаляются радиоактивные и органические примеси, увеличивается прозрачность);

• продувка очищенным азотом или аргоном (удаляются радиоактивные газы, растворенный кислород и следы воды, увеличивается световыход);

• фильтрация через 0,05-мкм фторопластовый фильтр (удаляются частицы пыли, содержащие радиоактивные элементы).

На сегодняшний день самый низкий радиоактивный фон достигнут в сцинтилляторе, использующемся в эксперименте Borexino (238 U < 9,7 \cdot 10⁻¹⁹ г/г, 232 Th < 1,2 \cdot 10⁻¹⁹ г/г), благодаря чему были идентифицированы события от низкоэнергетических солнечных нейтрино, а также геонейтрино [1–4]. Состав действующего сцинтиллятора в Borexino очень простой: 1,2,4-триметилбензол (псевдокумол, PC) с добавкой 1,5 г/л 2,5-дифенилоксазола (PPO). Для очистки сцинтиллятора в Borexino использовались все перечисленные выше методы очистки, кроме хроматографической [5,6], но последняя также опробовалась в CTF Borexino [7] при исследовании альтернативного более высококипящего растворителя — фенилксилилэтана (PXE).

Недостатком псевдокумола для применения его в более крупномасштабных экспериментах является его низкая температура вспышки (48 °C), малый объем производства и высокая стоимость. Общий объем сцинтиллятора в Borexino 278 т, а эффективный объем составляет 100 т.

В настоящее время близко к завершению создание полномасштабного сцинтилляционного детектора в JUNO массой 20 кт [8]. Для эксперимента в JUNO выдвигаются следующие требования по содержанию в сцинтилляторе основных радиоактивных элементов: U < 10^{-17} г/г, Th < 10^{-17} г/г, K < 10^{-18} г/г (для регистрации солнечных нейтрино по рассеянию на электроне); U < 10^{-15} г/г, Th < 10^{-15} г/г, K < 10^{-16} г/г (для регистрации антинейтрино по реакции обратного бета-распада) [9]. Состав сцинтиллятора в JUNO: линейный алкилбензол (ЛАБ), PPO, bis-MSB (1,4-bis(2-метилстирил)бензол).

По сравнению с псевдокумолом ЛАБ имеет значительно более высокую температуру вспышки (143 °С), низкую токсичность, многотоннажное производство во многих странах, очень высокую прозрачность, достаточно высокий световыход (78 % от псевдокумола [10]).

В России в БНО также планируется создание большого сцинтилляционного детектора на основе ЛАБ [11].

В данной работе приводятся результаты исследования химического состава ЛАБ российского производства методами хромато-масс-спектрометрии и UV/VIS-спектроскопии, а также результаты его очистки от органических примесей и радиоактивных элементов (U, Th, 40 K) методами хроматографической очистки (с использованием оксида алюминия и силикагеля) и экстракции деионизированной водой с добавлением специального комплексона (диметиламинометилендифосфоновой кислоты). Показана возможность опline сорбционной очистки сцинтиллятора при использовании сцинтилляционных добавок, не содержащих в своем составе атомов кислорода и азота (р-терфенила и bis-MSB). Также приводятся результаты очистки от калия-40 сцинтилляционных добавок (РРО, ВРО, р-терфенила) и концентрата ЛАБ, содержащего 15 г/л РРО и 0,15 г/л РОРОР (master solution).

Кроме того, приводятся результаты экстракции урана и тория из водных растворов NdCl₃, которые служат промежуточными соединениями для создания Nd-содержащих сцинтилляторов [12], предназначенных для поиска редких событий от двойного безнейтринного бета-распада.

ИССЛЕДОВАНИЕ СОСТАВА ЛАБ ХРОМАТО-МАСС-СПЕКТРОМЕТРИЧЕСКИМ МЕТОДОМ

В отличие от псевдокумола ЛАБ не является индивидуальным химическим соединением и его состав зависит как от сырья (нефтяной фракции нефти и бензола), так и от технологических особенностей синтеза (применение разных катализаторов и оборудования). Поэтому прежде чем исследовать способы очистки ЛАБ до нужного нам уровня, необходимо определить его химический состав для того, чтобы, во-первых, подсчитать точное количество атомов водорода, углерода и число электронов, а во-вторых, постараться выявить органические соединения, влияющие на его прозрачность. В настоящее время в России ЛАБ выпускается единственным заводом ЛАБ/ЛАБС ПО ООО «Киришнефтеоргсинтез» в г. Кириши Ленинградской обл.

Для определения химического состава ЛАБ был прежде всего проведен хромато-масс-спектрометрический анализ разных партий российского ЛАБ, а также для сравнения — анализ ЛАБ канадского производства (Petresa). Подробности анализа представлены в препринте [13]. Было найдено, что российский ЛАБ является смесью 20 алкилбензолов с общей формулой $C_6H_5C_nH_{2n+1}$ (n = 10-13), которые можно разбить на четыре группы, содержащие все возможные изомеры, с молярными массами 218 (12,5%), 232 (29,3%), 246 (31,5%) и 260 (26,7%). Все алкильные радикалы являются разветвленными, наличия в заметных количествах каких-либо других соединений кроме алкилбензолов не выявлено.

Сравнивая данные по составу в разных партиях ЛАБ (табл. 1), можно сделать вывод о том, что изменения состава ЛАБ от партии к партии незначительны, что можно объяснить стабильностью состава исходного сырья для его синтеза.

Farme	Моляр-	оляр-		ЛАБ (Petresa,		ЛАБ (Кинеф), $d = 0,856$ г/мл (22 °С)					
don-	ная	H/C	Канада), d = 0,855 г/мл		Партия 1		Партия 2		Партия 3		
фор- мула	масса,	11/C			(нояб. 2007 г.)		(февр. 2008 г.)		(окт. 2013 г.)		
Mysta	г/моль		ω,	$\nu_{\mathrm{H}},$	ω,	$\nu_{\mathrm{H}},$	ω,	$\nu_{\mathrm{H}},$	ω,	$\nu_{\mathrm{H}},$	
			%	моль/г	%	моль/г	%	моль/г	%	моль/г	
$C_{16}H_{26}$	218	1,625	20,4	0,0243	12,2	0,0145	12,7	0,0151	12,5	0,0149	
$C_{17}H_{28} \\$	232	1,647	26,1	0,0315	27,3	0,0329	31,0	0,0374	29,3	0,0353	
$C_{18}H_{30}$	246	1,667	29,0	0,0354	31,6	0,0385	30,1	0,0367	31,5	0,0384	
$C_{19}H_{32} \\$	260	1,684	24,5	0,0302	28,9	0,0356	26,2	0,0322	26,7	0,0329	
			100	$\sum 0,1214$	100	$\sum 0,1215$	100	$\sum 0,1214$	100	$\sum 0,1215$	

Таблица 1. Массовая доля алкилбензолов (ω , %) и количество атомов водорода ($\nu_{\rm H}$, моль/г) в разных партиях российского ЛАБ (Кинеф) и канадского ЛАБ (Petresa)

Из данных, представленных в табл. 1, также можно сделать вывод о том, что общее содержание атомов водорода в российском ЛАБ (моль/г) практически одинаково в каждой партии и совпадает с содержанием водорода в ЛАБ канадского производства. На основании полученных данных и плотности ЛАБ (0,856 г/мл при 20 °C) легко можно посчитать концентрацию атомов водорода, углерода и общего числа электронов в ЛАБ, которые равны, соответственно: $N_{\rm H} = 6,26 \cdot 10^{28}$ атомов/м³, $N_{\rm C} = 3,77 \cdot 10^{28}$ атомов/м³, $N_e = 2,89 \cdot 10^{29}$ частиц/м³.

UV/VIS-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ЛАБ И ЕГО ОЧИСТКА НА ОКСИДЕ АЛЮМИНИЯ ОТ ОРГАНИЧЕСКИХ ПРИМЕСЕЙ, ВЛИЯЮЩИХ НА ПРОЗРАЧНОСТЬ

ЛАБ российского производства невозможно спутать с аналогичным продуктом, производимым в Канаде, Китае или Корее, так как на UV/VISспектре российского ЛАБ имеются три характерные полосы поглощения с максимумами при 350, 368 и 389 нм. Эти пики являются как бы визитной карточкой российского ЛАБ (рис. 1).

Исследуя очистку ЛАБ на оксиде алюминия, мы заметили, что эти пики полностью исчезают при соотношении объема сорбента ($V_{Al_2O_3}$) к объему ЛАБ ($V_{ЛАБ}$), равному $V_{Al_2O_3}$: $V_{ЛАБ} = 1$: 2 при d : h = 1 : 4, где d диаметр колонки, h — высота сорбента. По форме они напоминают пики антрацена, только сдвинуты в более длинноволновую область. Было сделано предположение, что пики принадлежат 9-метилантрацену, и эта гипотеза полностью подтвердилась. На рис. 2 показаны спектры растворов 9метилантрацена разной концентрации в очищенном ЛАБ ($V_{Al_2O_3}$: $V_{ЛАБ} = 1$: 2), а также спектр неочищенного ЛАБ (нижний), а на рис. 3 — зависимость поглощения от концентрации 9-метилантрацена при 368 нм (сред-

Рис. 1. Спектры ЛАБ при разной степени очистки: I — ЛАБ, очищенный при $V_{Al_2O_3}$: $V_{ЛАБ} = 1:2, 2$ — ЛАБ, очищенный при $V_{Al_2O_3}: V_{ЛАБ} = 1:6, 3$ — неочищенный ЛАБ

Рис. 2. Спектр неочищенного ЛАБ (нижний) и спектры растворов 9-метилантрацена в очищенном ЛАБ ($V_{\rm Al_2O_3}: V_{\rm ЛАБ} = 1:2$) с концентрациями $1,11\cdot 10^{-5}, 2,07\cdot 10^{-5}, 2,9\cdot 10^{-5}$, $2,9\cdot 10^{-5}$ моль/л

ний пик), которая соответствует закону Ламберта–Бера. Отсюда была подсчитана концентрация 9-метилантрацена в неочищенном ЛАБ, которая составила $4.7 \cdot 10^{-6}$ моль/л.

Очевидно, что при столь малой концентрации 9-метилантрацен в целом не будет оказывать существенного влияния на свойства сцинтиллятора. Длина ослабления света в e раз (attenuation length (L)) свежего российского ЛАБ (только что полученного с завода) при 430 нм составляет 18 м, что выше соответствующего значения для лучших образцов китайского ЛАБ (Jinling Petrochemical Corporation) ($L_{430} = 15$ м).

Рис. 3. Зависимость величины поглощения света от концентрации 9-метилантрацена

Для исследования хроматографической очистки ЛАБ мы использовали стеклянные колонки диаметром 30 мм и длиной 800 мм, с высотой сорбента h = 120 мм. В качестве сорбента использовался Al_2O_3 производства)дштуикуфл Донецкого завода (ТУ 6-09-3916-75), который, как было показано ранее [14], по своим свойствам соответствует нейтральному Al_2O_3 фирмы Aldrich (Aluminum oxide, activated neutral, Brockman I, standard grade — 150 mesh, 58 Å).

За критерий очистки ЛАБ мы принимали длину ослабления света при 420, 430 нм, которую считали по формуле $L_{420} = d/2,3(A_{420} - A_{\min})$, где d - длина кварцевой кюветы (d = 10 см), A_{420} — поглощение света при данной длине волны, A_{\min} — минимальное поглощение света в области 500–600 нм. Спектры снимали в 10-см кварцевых кюветах по отношению к пустой кювете на спектрофотометре PerkinElmer Lambda 35.

Следует заметить, что сорбция органических примесей на оксиде алюминия не является необратимой, а зависит от времени удерживания данного соединения на данном сорбенте. Поэтому важно указывать не только соотношение между диаметром и высотой сорбента, но и объем пропущенного растворителя, при котором получены данные значения длины ослабления света.

В нашем случае (d: h = 1: 4) было определено, что $L_{420} > 20$ м достигается при соотношении объемов $V_{AL_2O_3}: V_{ЛAF} = 1: 6$.

ИССЛЕДОВАНИЕ СТАБИЛЬНОСТИ ЛАБ

Была исследована также стабильность российского ЛАБ, и было показано, что длина ослабления света очищенного ЛАБ, оставленного на воздухе в маленькой стеклянной колбе, примерно через год становится такой же, как у исходного неочищенного ЛАБ. Очевидно, компоненты ЛАБ подвергаются окислению кислородом воздуха, и именно продукты окисления оказывают существенное влияние на прозрачность ЛАБ. Неочищенный ЛАБ при хранении в лаборатории в стеклянной колбе при колебаниях температуры от 10 °C (зимой) до 30 °C (летом) за год уменьшил свою прозрачность с $L_{420} = 14$ м до $L_{420} = 9$ м [15]. Тем не менее ЛАБ, хранящийся в большом объеме (500 л) в темном помещении при постоянной температуре (не больше 20 °C), не теряет свои оптические свойства более 3 лет.

СОРБЦИЯ U И Th НА Al₂O₃ И СИЛИКАГЕЛЕ

Исторически очистка с использованием оксида алюминия применялась для улучшения оптических свойств сцинтиллятора, впервые она была применена для создания крупномасштабного сцинтиллятора в работе [16]. Но сорбционная очистка может также с успехом применяться и для удаления радиоактивных примесей. Так, в работе [7] была исследована очистка фенилксилилэтана (РХЕ) от U, Th на силикагеле. Анализ радиоактивности проводился с помощью нейтронно-активационного метода (NA) [17].

В нашей работе [18] для исследования сорбции урана и тория на Al_2O_3 и силикагеле (Silicawoelm DC) были использованы растворы ЛАБ с заранее введенными в него определенными количествами урана и тория в виде комплексов с триоктилфосфиноксидом (ТОРО). Анализ радиоактивности осуществлялся сцинтилляционным способом до и после прохождения колонки с сорбентом при разных соотношениях между объемами сорбента и пропущенного ЛАБ. Было показано, что уран и торий сорбируются как на Al_2O_3 , так и на силикагеле при соотношениях объема сорбента к объему ЛАБ не больше 1 : 10. При бо́льших соотношениях торий начинает выходить с колонки, заполненной Al_2O_3 , в то время как уран не выходит вплоть до соотношения объемов, равного 1 : 30.

СОРБЦИОННАЯ ОЧИСТКА СЦИНТИЛЛЯТОРА

Важно также проверить возможность очистки ЛАБ с введенными туда сцинтилляционными добавками. В нашей работе [18] было показано, что РРО (0,065 моль/л) не выходит с колонки, заполненной Al₂O₃, вплоть до соотношения объемов $V_{Al_2O_3}/V_{ЛAE} = 1:10$, в то время как р-терфенил, взятый с такой же концентрацией (0,065 моль/л), практически полностью выходит из колонки уже при соотношении объемов 1:6. Следует заметить, что после растворения р-терфенила в ЛАБ длина ослабления света при 420 нм падает с 16 до 8 м, а после пропускания через колонку она становится такой же,

как у чистого ЛАБ (без р-терфенила). Это говорит о том, что в р-терфениле содержатся органические примеси, влияющие на прозрачность и имеющие время удерживания на сорбенте больше, чем сам р-терфенил, т.е. при пропускании раствора ЛАБ с р-терфенилом через Al₂O₃ очищается не только ЛАБ, но и р-терфенил.

Обычно р-терфенил употребляют в паре с bis-MSB. Наши исследования [18] показали, что bis-MSB также в достаточном количестве выходит с колонки с Al₂O₃ при соотношении объемов $V_{Al_2O_3}/V_{JAE} = 1 : 8$. Слабую сорбцию р-терфенила и bis-MSB на Al₂O₃ по сравнению с PPO можно объяснить тем, что, в отличие от последнего, молекулы р-терфенила и bis-MSB не содержат в своем составе атомов кислорода и азота.

Таким образом, сцинтиллятор на основе ЛАБ с сцинтилляционными добавками р-терфенил (1,5 г/л) и bis-MSB (30 мг/л) можно успешно очищать на оксиде алюминия при соотношении объемов $V_{Al_2O_3}/V_{ЛAE} = 1:8$.

ВОДНАЯ ЭКСТРАКЦИЯ С ДОБАВЛЕНИЕМ ДИМЕТИЛАМИНОМЕТИЛЕНДИФОСФОНОВОЙ КИСЛОТЫ

Водная экстракция является общепризнанным методом для очистки органических растворителей от радиоактивных солей и с успехом применяется в Borexino [5–7]. Обычно для экстракции используют чистую деионизированную воду. Анализ производится либо методом NA [17], либо непосредственно в сцинтилляторе, если он достаточно большого объема, порядка 5 т, как в CTF Borexino [7]. Для исследования водной экстракции в лабораторных условиях в органическую фазу обычно вводят радиоактивные носители в виде соединений, растворимых в исследуемом органическом растворителе [18, 19].

В нашей работе [12] для увеличения эффективности водной экстракции был использован 0,1 моль/л водный раствор диметиламинометилендифосфоновой кислоты (ДАМДФК), которая образует с торием и ураном устойчивые комплексы, растворимые в воде. Применение ДАМДФК позволило извлечь и сконцентрировать торий и уран в 50 раз и анализировать их непосредственно в водной фазе методом ICP MS. В табл. 2 представлены результаты анализа Th и U в водной фазе после 1-й и 2-й экстракции с раствором 0,1 моль/л ДАМДФК.

Из результатов, приведенных в табл. 2, видно, что Th очень хорошо извлекается из ЛАБ раствором 0,1 моль/л ДАМДФК, при этом видна четкая тенденция к уменьшению его концентрации при повторной экстракции (после 2-й экстракции концентрация тория в водной фазе в 32 раза меньше, чем после 1-й экстракции). С учетом того, что при переходе в водную фазу осуществлялось концентрирование в 50 раз и, принимая, что за две экстракции торий практически полностью перешел из ЛАБ в водную фазу, можно оценить концентрацию тория в ЛАБ: $C_{\rm Th} = (29,82 + 0,93)/50 = 0,615$ нг/мл =

	0,1 моль/л раствор ДАМДФК до экстракции			После 1-й экстракции			После 2-й экстракции		
Эле- мент	С, нг/мл	Стан- дартное откло- нение, нг/мл	Отн. ст. откл., %	С, нг/мл	Стан- дартное откло- нение, нг/мл	Отн. ст. откл., %	С, нг/мл	Стан- дартное откло- нение, нг/мл	Отн. ст. откл., %
Th	< 0,0006			29,82	0,12	0,4	0,93	0,02	2,5
U	< 0,0006			0,140	0,001	0,9	0,120	0,004	2,9

Таблица 2. Экстракция U и Th из ЛАБ (V_{ДАМДФК} : V_{ЛАБ} = 1 : 50)

 $6,15 \cdot 10^{-10}$ г/мл.

Извлечение урана из ЛАБ с помощью 0,1 моль/л раствора ДАМДФК меньше, чем для тория; поэтому после двух экстракций можно полагать, что концентрация U в ЛАБ не менее $C_{\rm U} = (0.140 + 1.120)/50 = 0.0052$ нг/мл = $5.2 \cdot 10^{-12}$ г/мл.

ОЧИСТКА СЦИНТИЛЛЯЦИОННЫХ ДОБАВОК ОТ КАЛИЯ МЕТОДОМ ВОДНОЙ ЭКСТРАКЦИИ

Было найдено [18, 20], что сцинтилляционные добавки (PPO, BPO, p-терфенил) содержат в своем составе большое количество калия (порядка 10^{-6} г/г, что в пересчете на ⁴⁰К составляет 10^{-10} г/г), что недопустимо для низкофоновых экспериментов. Для уменьшения концентрации калия в органических соединениях лучше всего подходит водная экстракция, так как практически все соединения калия хорошо растворяются в воде. Для этого твердые сцинтилляционные добавки должны быть растворены в подходящем органическом растворителе, а потом проведена процедура экстракции калия из их концентрированных растворов в деионизированную воду.

В нашей работе проверена эффективность экстракции калия из трех разных сцинтилляционных добавок: РРО, ВРО и р-терфенила, в качестве растворителя был выбран бензол, так как растворимость в нем используемых добавок лучше, чем в ЛАБ и псевдокумоле (хуже всего растворяется р-терфенил: 5 г/л при температуре 80 °C). Экстракция осуществлялась при использовании равных объемов водной и органической фаз. В случае РРО и ВРО проводились две последовательные экстракции. Проверялась эффективность экстракции как при ручном встряхивании в делительной воронке, так и при перемешивании в тефлоновых стаканах при скорости вращения пропеллерной мешалки 500 оборотов/мин. Оказалось, что эффективность экстракции при ручном встряхивании с использованием делительной воронки в 1,5 раза выше по сравнению с механическим перемешиванием. Анализ калия осуществлялся в водной фазе методом ICP OES на приборе ОПТИМА 7000 DV. Результаты анализа представлены в табл. 3.

Как видно из результатов, представленных в табл. 3, за две экстракции

Образец	Водная экстракция $(V_{opr}:V_{вод})$	Концентрация калия в водной фазе, мг/л	Масса калия, мкг	Концен- трация К в порошке, г/г
РРО 50 г в 100 мл	1-я экстракция (1 : 1)	$0,867 \pm 0,0055$	86,7	$2,0\cdot 10^{-6}$
бензола (встряхива-	2-я экстракция (1:1)	0.175 ± 0.0008	17.5	
ние в лелительной	1	, ,	$\sum 104.2$	
воронке)			<u> </u>	
РРО 50 г. в. 100 мл	1-9 экстракция (1 · 1)	0.547 ± 0.0382	54.7	$1.3 \cdot 10^{-6}$
бангола (параманни	2 а экстракция (1 : 1)	$0,347 \pm 0,0362$ 0,113 ± 0.0012	11.3	1,5 * 10
оензола (перемеши-	2-я экстракция (1:1)	$0,113 \pm 0,0012$	$\sum_{i=1}^{11,3}$	
вание в тефлоне)			<u> </u>	a a a a a
ВРО 25 г в 100 мл	1-я экстракция (1 : 1)	$0,558 \pm 0,0184$	55,8	$2,3 \cdot 10^{-6}$
горячего бензола,	2-я экстракция (1 : 1)	$0,017 \pm 0,0005$	1,7	
(перемешивание и			$\sum 56,8$	
нагрев)				
р-терфенил 5 г	1-я экстракция (1 : 1)	$0,\!237 \pm 0,\!0026$	23,7	$4,7 \cdot 10^{-6}$
в 100 мл горячего	_			
бензола (перемеши-				
вание)				
ЛАБ 500 мл +	1-я экстракция (5 : 1)	0.297 ± 0.0034	29.7	$2.6 \cdot 10^{-6}$
PPO $(C = 15 \text{ r/m}) +$	2-я экстракция (5 · 1)	0.106 ± 0.0012	10.6	2,0 10
POPOP $(C - 1.5 \text{ r/m})$	2 x okerpakting (0 : 1)	0,100 ± 0,0012	$\sum_{i=1}^{10,0} 3$	
(master-solution)			∠ 10,5	
(nuster-solution)				
(экстракция в тоо мл				
воды в делительной				
воронке)	1 (* 1)	0.074 + 0.0010		2.0.10-8
ЛАБ 500 мл	1-я экстракция (5 : 1)	$0,074 \pm 0,0012$	7,4	2,0 · 10 °
(m = 428 r)	2-я экстракция (5 : 1)	$0,013 \pm 0,0001$	1,3	
			$\sum 8,7$	
Деионизированная		$0,\!019\pm0,\!0004$		
вода в стекле Duran				
Деионизированная		$0,002 \pm 0,0001$		
вода в полипропи-				
лене				

Таблица 3. Очистка РРО, ВРО, р-терфенила от К с помощью водной экстракции

калий практически полностью переходит в водную фазу. Также можно производить очистку от калия концентрата ЛАБ с растворенными в нем сцинтилляционными добавками (master-solution). Содержание калия в самом ЛАБ на два порядка меньше, чем в РРО.

ОЧИСТКА СОЛЕЙ НЕОДИМА ДЛЯ СОЗДАНИЯ Nd-СОДЕРЖАЩИХ СЦИНТИЛЛЯТОРОВ

Nd-содержащие сцинтилляторы предназначены для регистрации двойного безнейтринного бета-распада на изотопе ¹⁵⁰Nd. Обогащенный по этому изотопу неодим вводится в сцинтиллятор в виде растворимых в органическом растворителе солей, которыми могут служить либо β -дикетонаты [21], либо карбоксилаты [12]. Последние легко синтезируются из водных растворов хлорида неодима по методике, разработанной для создания Gd-содержащих сцинтилляторов [22]. В этом случае исходные водные растворы хлорида неодима могут быть очищены от тория и урана с помощью экстракции с органическими растворами ТОРО [23].

В табл. 4 представлены результаты экстракции тория и урана из водных растворов хлорида неодима с концентрацией по неодиму C = 1 моль/л и pH = 2,25. Для исследования очистки использовался оксид неодима с чистотой 99,9 %.

Элемент	C до экстракции, г/ $r_{ m Nd}$	С после экстракции, г/г _{Nd}
Th	$1,4 \cdot 10^{-6}$	$2,6 \cdot 10^{-8}$
U	$2,0 \cdot 10^{-7}$	$< 9 \cdot 10^{-12}$

Из результатов, представленных в табл. 4, видно, что в случае с хлоридом неодима (с чистотой 99,9%) после экстракции с 0,1 моль/л раствором ТОРО в РС концентрация тория в неодиме уменьшается за одну экстракцию в 53,8 раз, а урана более чем в 20000 раз.

ЗАКЛЮЧЕНИЕ

Методом хромато-масс-спектрометрии было найдено, что ЛАБ российского производства является смесью 20 алкилбензолов, которые можно разбить на 4 группы с молярными массами 216 (12,5 %), 232 (29,3 %), 246 (31,5 %) и 260 (26,7 %). Методом UV/VIS-спектроскопии количественно определена примесь 9-метилантрацена с концентрацией 4,7 · 10⁻⁶ моль/л.

Длина ослабления света свежего ЛАБ, только что полученного с завода, составляет 14 м при 420 нм и 18 м при 430 нм.

При хроматографической очистке ЛАБ на колонке с Al_2O_3 (d: h = 1: 4) при соотношении объемов $V_{Al_2O_3}: V_{ЛАБ} = 1: 6$ длина ослабления света становится больше 20 м как при 430 нм, так и при 420 нм.

Очевидно, что примесями, влияющими на прозрачность ЛАБ, являются продукты окисления алкилбензолов, так как очищенный ЛАБ, оставленный на воздухе в маленьком объеме, через год показывает такую же длину ослабления света, как исходный неочищенный.

Сорбционная очистка на Al_2O_3 хорошо зарекомендовала себя не только для увеличения длины ослабления света ЛАБ, но и для удаления из него U и Th при соотношении объемов сорбента и ЛАБ не более 1:10.

Также было показано, что колонку с Al_2O_3 можно использовать для очистки сцинтиллятора в процессе работы, если в качестве сцинтилляционных добавок вводить в ЛАБ р-терфенил (1,5 г/л) и bis-MSB (30 мг/л). При этом удалось доказать, что примеси, влияющие на прозрачность, содержатся не только в ЛАБ, но и в сцинтилляционных добавках.

От ⁴⁰К сцинтилляционные добавки (РРО, ВРО, р-терфенил) могут быть очищены путем растворения их в подходящем органическом растворителе и последующей процедурой двойной водной экстракции.

Эффективность водной экстракции U и Th из ЛАБ можно увеличить, если в воду вводить сильный комплексон (диметиламинометилендифосфоновую кислоту) с концентрацией 0,1 моль/л.

Из водных растворов солей неодима уран и торий могут быть предварительно удалены путем экстракции с 0,1 моль/л раствором ТОРО в псевдокумоле.

Исследования эффективности очистки сцинтилляторов от радиоактивности до требуемого уровня в лабораторных условиях ограничены существующими методами анализа; для перехода на более низкий уровень требуется создание прототипов планируемых детекторов, аналогичных CTF Borexino [7, 20], очистку следует проводить в специально оборудованном чистом помещении, максимально исключающем поступление радиоактивных элементов из окружающей среды.

Работа выполнена при финансовой поддержке РНФ (грант № 16-12-10322).

СПИСОК ЛИТЕРАТУРЫ

 Alimonti et al. (Borexino Collab.). The Borexino Detector at the Laboratori Nazional del Gran Sasso // Nucl. Instr. Meth. A. 2009. V.600. P.568–593; DOI:10.1016/j.nima.2008.11.076.

- 2. *Borexino Collab.* Neutrinos from the Primary Proton–Proton Fusion Process in the Sun // Nature. 2014. V. 512. P. 383–386; DOI:10.1038/13702.
- Bellini G. et al. (Borexino Collab.). Precision Measurement of the ⁷Be Solar Neutrino Interaction Rate in Borexino // Phys. Rev. Lett. 2011. V. 107. P. 141302.
- Bellini G. et al. (Borexino Collab.). Final Results of Borexino Phase-I on Low-Energy Solar Neutrino Spectroscopy // Phys. Rev. D. 2014. V. 89. P. 112007.
- 5. *Benzinger J. et al.* A Scintillation Purification System for Borexino Solar Neutrino Detector // Nucl. Instr. Meth. A. 2008. V. 587. P. 277–291.
- Bensinger J. The Borexino Purification System // Intern. J. Mod. Phys. A. 2014. V. 29, No. 16. 1442002 (10 p).
- Back H. O., Balata M., de Bari A. et al. Study of Phenylxylylethane (PXE) as Scintillator for Low Energy Neutrino Experiment // Nucl. Instr. Meth. A. 2008. V. 585. P. 48–60.
- Djurcic Z. et al. (JUNO collab.). JUNO Conceptual Design Receipt. arXiv: 1508. 07166v2 [physics. Ins-det].
- Hu Wei, Fang Jian, Yu Boxiang, Zhang Xuan, Zhoi Li, Cai Xiao, Sun Lijun. The Efficiency Study of Different Purification Methods for Liquid Scintillator. arXiv: 1601.02780v1 [ph ysics.ins-det]. 2016.
- 10. Барабанов И.Р., Безруков Л.Б., Новикова Г.Я., Янович Е.А. Влияние состава Nd-содержащего сцинтиллятора на световыход // ПТЭ. 2017. № 4. С. 82–86.
- Барабанов И. Р. и др. Детектор большого объема в Баксанской нейтринной обсерватории ИЯИ РАН по изучению природных потоков нейтрино для целей геоастрофизики. Препринт ИЯИ РАН 1422/2016. М., 2016.
- Барабанов И. Р., Новикова Г. Я., Янович Е. А. Создание Nd-содержащего жидкого органического сцинтиллятора, очистка NdCl₃ и ЛАБ от Th, U. Препринт ИЯИ РАН 1427/2016. М., 2016.
- Безруков Л. Б., Бакулина Н. И., Иконников Н. С., Моргалюк В. П., Новикова Г. Я., Чепурнов А. С. Исследование прозрачности отечественного ЛАБ как растворителя для сцинтилляторов большого объема. Препринт ИЯИ РАН 1382/2014. М., 2014.
- 14. Барабанов И. Р., Безруков Л. Б., Данилов Н. А., Куцев С. В., Моргалюк В. П., Новикова Г. Я., Синев В. В., Янович Е. А. Физико-химическое исследование линейного алкилбензола как базового компонента для создания сцинтилляционных нейтринных детекторов // ЖПХ. 2011. Т. 84, вып. 3. С. 385–391.
- Новикова Г. Я., Редчин А. С. Исследование стабильности и окисляемости российского ЛАБ (линейного алкилбензола). Препринт ИЯИ РАН 1431/2017. М., 2017.
- 16. Воеводский А.В., Дадыкин В.Л., Ряжская О.Г. // ПТЭ. 1970. № 1. С. 85-87.
- Goldbruner T., Feilitzsch F. V., Hentig R. V., Jochum J. Neutron Activation Analysis of Detector Components for Solar Neutrino Experiment BOREXINO // J. Radioanal. Nucl. Chem. 1997. V. 216, No. 2. P. 293–297.

- Барабанов И. Р., Моргалюк В. П., Новикова Г. Я., Янович Е. А. Исследование эффективности методов очистки жидкого сцинтиллятора от U, Th, К // Радиохимия. 2016. Т. 58, № 6. С. 535–539 (Radiochemistry. 2016. V. 58, No. 6. Р. 625–630).
- Hu Wei, Fang Jian, Yu Boxiang, Zhang Xuan, Zhoi Li, Cai Xiao, Sun Lijun. The Efficiency Study of Different Purification Methods for Liquid Scintillator. arXiv: 1601.02780v1 [physics.ins-det]. 2016.
- Benziger J. B., Johnson M., Calaprice F. P., Chen M., Darnton N., Loeser R., Vogelaar R. B. A Scintillator Purification System for a Large Scale Neutrino Experiment // Nucl. Instr. Meth. A. 1998. V. 417. P. 278–296.
- Nigro R. L., Toro R. G., Fragala M. E., Rossi P., Dapporto P., Malandrino G. Neodium β-Diketonate Glyme Complexes: Synthesis and Characterization of Volatile Precursors for MOCVD Applications // Inorganica Chimica Acta. 2009. V. 362. P. 4623–4629.
- Новикова Г. Я., Бакулина Н. И., Вологжанина А. В., Локшин Б. В., Моргалюк В. П. Комплексы гадолиния на основе 3,5,5-триметилгексаноата Gd(III) для создания стабильных Gd-содержащих жидких органических сцинтилляторов // ЖНХ. 2016. Т. 61, № 2. С. 270–276.
- 23. Данилов Н.А., Крылов Ю.С., Жилов В.И., Цивадзе А.Ю., Сальникова Е.В., Барабанов И.Р., Безруков Л.Б., Новикова Г.Я., Янович Е.А., Cattadori C., Nisi S., Vacri M. Di., Ianni A. О возможности глубокой очистки неодима от следов тория и урана жидкостной экстракцией // Радиохимия. 2011. Т.53, № 3. С.229–236.