НЕЛЕПТОННЫЕ РАСПАДЫ ДВАЖДЫ ОЧАРОВАННЫХ БАРИОНОВ

М. А. Иванов^{1,*}, *Ю. Г. Кернер*², *В. Е. Любовицкий*^{3,4,5,6}

1 Объединенный институт ядерных исследований, Дубна

² Майнцский университет им. И. Гутенберга, Майнц, Германия

³ Тюбингенский университет, Тюбинген, Германия

⁴ Технический университет им. Федерико Санта-Мария, Вальпараисо, Чили

⁵ Томский государственный университет, Томск, Россия

⁶ Томский политехнический университет, Томск, Россия

Вычислены вклады от диаграмм с внутренним обменом W-бозоном, появляющиеся в двухчастичных нелептонных распадах дважды очарованных барионов Ξ_{cc}^{++} и Ω_{cc}^{+} . Данные вклады появляются наряду со вкладами от древесных диаграмм и, вообще говоря, не являются подавленными. Вычисления соответствующих трехпетлевых кварковых диаграмм выполнены в рамках ковариантной модели кварков. Проведено сравнение вкладов от древесных диаграмм со вкладами от диаграмм с внутренним W-обменом.

The W-exchange contributions to the nonleptonic two-body decays of the doubly charmed baryons Ξ_{cc}^{++} and Ω_{cc}^{+} are calculated. These contributions appear in addition to the factorizable tree graph contributions and are not suppressed in general. The calculations of the relevant three-loop diagrams are done in the framework of the covariant confined quark model. The comparison of such contributions with those from the tree graphs is performed.

PACS: 14.20.Lg; 13.30.-a

введение

В 1964 г. Гелл-Манн предложил теорию кварков [1] — фундаментальных частиц, из которых состоит обычная материя. Это было сделано на основе успеха восьмеричного пути классификации адронов. Кварки позволяли естественным образом объяснить данную классификацию, при этом все

^{*}E-mail: ivanovm@theor.jinr.ru

существующие в то время адроны состояли из комбинации трех кварков (антикварков), названных up, down u strange. В то же самое время Цвейг независимо от Гелла-Манна пришел к тому же самому заключению [2,3], анализируя подавленные сильные распады ϕ -мезона. Он назвал фундаментальные составляющие «aces», что в переводе означает карточные тузы.

Возможное существование четвертого кварка также обсуждалось рядом авторов в том же 1964 г., например в работе Бьёркена и Глэшоу [4]. Однако не было каких-то экспериментальных указаний на его существование. Ситуация кардинально изменилась после работы Глэшоу–Илиопулоса–Майяни [5], в которой был предложен механизм, названный по именам авторов ГИМ, который запрещал существование слабых нейтральных токов с изменением аромата на уровне древесных диаграмм. Основную роль в этом механизме играл четвертый, очарованный, кварк. Вскоре была открыта первая частица — J/ψ -мезон, состоящая из очарованных кварка и антикварка.

Массы барионов с одним очарованным кварком были предсказаны в модели с одноглюонным обменом [6,7]. Обстоятельный обзор по физике тяжелых барионов, их спектроскопии, полулептонным и нелептонным распадам можно найти в работе [8]. В табл. 1 и 2 показаны принятые названия очарованных барионов, их квантовые числа и кварковое содержание. Значения масс с погрешностями взяты из данных Particle Data Group [9], а без погрешностей — из теоретической работы [8].

Низший мультиплет очарованных барионов со спином 1/2 может распадаться только за счет слабых взаимодействий. Поэтому изучение нелептонных распадов таких очарованных барионов очень важно для феноменологии взаимодействия частиц. К настоящему времени уже имеются достаточно точные данные измерений бренчингов двухчастичных распадов очарованных барио-

Барион	Кварковый состав	SU(3)	(I, I_3)	Масса, МэВ
Λ_c^+	c[ud]	3^*	(0, 0)	$2286{,}46\pm 0{,}14$
Ξ_c^+	c[us]	3^*	(1/2, 1/2)	$2467,\!93\pm 0,\!18$
Ξ_c^0	c[ds]	3^*	(1/2, -1/2)	$2470, 91 \pm 0, 25$
Σ_c^{++}	cuu	6	(1, 1)	$2453,\!97 \pm 0,\!14$
Σ_c^+	$c\{ud\}$	6	(1, 0)	$2452,9\pm0,4$
Σ_c^0	cdd	6	(1, -1)	$2453,\!75\pm0,\!14$
$\Xi_c^{\prime +}$	$c\{us\}$	6	(1/2, 1/2)	$2578{,}4\pm0{,}5$
$\Xi_{c}^{\prime 0}$	$c\{ds\}$	6	(1/2, -1/2)	$2579,2\pm0,5$
Ω_c^0	css	6	(0, 0)	$2695,2\pm1,7$
Ξ_{cc}^{++}	ucc	3	(1/2, 1/2)	$3621,2\pm0,7$
Ξ_{cc}^+	dcc	3	(1/2, -1/2)	3610
Ω_{cc}^+	scc	3	(0, 0)	3710

Таблица 1. Очарованные барионы со спином $1/2^+$. Обозначения [a, b] и $\{a, b\}$ для антисимметричных и симметричных флэйворных индексов

Барион	Кварковый состав	SU(3)	(I, I_3)	Масса, МэВ
Σ_c^{*++}	cuu	6	(1, 1)	$2518,41 \pm 0,20$
Σ_c^{*+}	cud	6	(1, 0)	$2517{,}5\pm2{,}3$
$\Sigma_c^{* 0}$	cdd	6	(1, -1)	$2518{,}48\pm0{,}20$
Ξ_c^{*+}	cus	6	(1/2, 1/2)	$2645{,}57\pm0{,}26$
${\Xi_{c}^{*}}^{0}$	cds	6	(1/2, -1/2)	$2646{,}38\pm0{,}21$
Ω_c^{*0}	css	6	(0, 0)	$2765,9\pm2,0$
Ξ_{cc}^{*++}	ucc	3	(1/2, 1/2)	3680
Ξ_{cc}^{*+}	dcc	3	(1/2, -1/2)	3680
Ω_{cc}^{*+}	scc	3	(0, 0)	3760
Ω_{ccc}^{*++}	ccc	1	(0, 0)	4730

Таблица 2. Очарованные барионы со спином $3/2^+$

нов $\Lambda_c^+ \to p\phi, \Lambda \pi^+, \Sigma^+ \pi^0$ [10] и $\Xi_c^+ \to p \bar{K}^* (892)^0$ [11,12]. Начиная с 2005 г., когда коллаборация SELEX сообщила об открытии бариона с двумя очарованными кварками Ξ_{cc}^+ , имеющего спин 1/2 и массу (3518 ± 3) МэВ [13], открылась новая эра в изучении дважды очарованных барионов. Хотя позднее другие коллаборации (BABAR, Belle, LHCb [9]) не обнаружили данного состояния в области значений масс ~ 3500 МэВ, недавно коллаборация LHCb сообщила об открытии дважды очарованного бариона Ξ_{cc}^{++} [14–16] в спектре масс конечных частиц ($\Lambda_c^+ K^- \pi^+ \pi^+$). Извлеченным значением массы было $(3621,40 \pm 0.72 \pm 0.27 \pm 0.14)$ МэВ, что на ~ 100 МэВ больше массы Ξ_{cc}^+ -бариона, полученной коллаборацией SELEX. С одной стороны, это означает, что то, что данные два состояния могут быть изоспиновыми партнерами, маловероятно. С другой стороны, измеренное коллаборацией LHCb значение массы находится в согласии с теоретическими предсказаниями. В частности, центральное значение массы, измеренной LHCb, очень близко к значениям 3610 и 3620 МэВ, предсказанным в работах [8, 17] в модели с одноглюонным обменом [7] и в релятивистской кварк-дикварковой потенциальной модели [18] соответственно. В других моделях также получены похожие результаты, например ~ 3600 МэВ [19] и $M_{\Xi_{cc}} = (3627 \pm 12)$ МэВ [20].

Таким образом, последние данные LHCb стимулировали значительную активность при теоретическом изучении нелептонных распадов дважды очарованных барионов (недавний обзор см. в работе [21]).

1. НЕЛЕПТОННЫЕ ДВУХЧАСТИЧНЫЕ СЛАБЫЕ РАСПАДЫ БАРИОНОВ: ОБЩИЙ ПОДХОД

Основные состояния барионов с квантовыми числами $J^P = 1/2^+$ могут распадаться только за счет слабых взаимодействий через обмен виртуальным

Рис. 1. Кварковые диаграммы с пятью различными топологиями

W-бозоном между двумя кварками. Двухчастичные распады барионов имеют пять различных кварковых топологий, показанных на рис. 1.

Описание слабых взаимодействий кварков при энергиях, значительно меньших масс W-бозона, в данном случае при энергиях масштаба масс очарованных кварков, происходит в рамках эффективной низкоэнергетической теории слабых взамодействий. Ее основой являются операторное разложение Вильсона, построение эффективных гамильтонианов и последующая «сшивка» полной теории и построенной эффективной теории. Вкратце проиллюстрируем, как работает данный подход. Рассмотрим амплитуду перехода $cs \rightarrow u\bar{d}$, идущую на древесном уровне за счет обмена W-бозоном:

$$A = -\frac{g_2^2}{8} V_{cs}^* V_{ud} \left(\bar{s} O^{\mu} c \right) \left[\frac{-g_{\mu\nu}}{M_W^2 - k^2} \right] \left(\bar{u} O^{\nu} d \right) = = -\frac{g_2^2}{8 M_W^2} V_{cs}^* V_{ud} \left(\bar{s} O^{\mu} c \right) \left(\bar{u} O_{\mu} d \right) + \mathcal{O} \left(\frac{k^2}{M_W^2} \right),$$
(1)

где $O^{\mu} = \gamma^{\mu}(1-\gamma_5)$ — матрица слабых взаимодействий с левой киральностью; V_{cs} и V_{ud} — матричные элементы матрицы Кабиббо–Кобаяши–Маскавы и g_2 — константа калибровочной группы. Поскольку переданный импульс в данной реакции мал по сравнению с массой W-бозона, т. е. $|k| \ll M_W$, то можно разложить по параметру $\mathcal{O}(k^2/M_W^2)$. Тогда отметим, что лидирующий член в данном разложении может быть получен из эффективного

Рис. 2. Древесные и однопетлевые диаграммы в полной и эффективной теории

гамильтониана

$$\mathcal{H}_{\text{eff}}^{\text{tree}} = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \, (\bar{s}_a O^\mu c_a) (\bar{u}_b O_\mu d_b), \qquad \frac{G_F}{\sqrt{2}} = \frac{g_2^2}{8 \, M_W^2}. \tag{2}$$

Далее можно учесть однопетлевые КХД-поправки как в полной теории, так и в эффективной теории с гамильтонианом. Соответствующие диаграммы показаны на рис. 2.

С учетом КХД-поправок эффективный гамильтониан принимает вид

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \left[C_1(\mu) Q_1 + C_2(\mu) Q_2 \right],$$

$$Q_1 \equiv (\bar{s}_a O^\mu c_b) (\bar{u}_b O_\mu d_a), \quad Q_2 \equiv (\bar{s}_a O^\mu c_a) (\bar{u}_b O_\mu d_b),$$
(3)

где коэффициенты Вильсона $C_i(\mu)$ определяются в результате сшивки полной и эффективной теорий. В первом порядке по КХД-константе α_S имеем

$$C_1 = -3\frac{\alpha_S}{4\pi} \ln \frac{M_W^2}{\mu^2}, \qquad C_2 = 1 + \frac{\alpha_S}{4\pi} \ln \frac{M_W^2}{\mu^2}.$$
 (4)

Ясно, что данное разложение будет надежным, если масштаб будет порядка массы W-бозона, т.е. $\mu \approx M_W$. В этом случае константа α_S будет мала

благодаря асимптотической свободе и величина логарифма будет также мала. Далее используется метод ренормгруппы, чтобы получить значения коэффициентов Вильсона в масштабе массы очарованного кварка. Последним шагом в построении эффективной теории является вычисление адронных матричных элементов $\langle Q(\mu) \rangle$ с использованием непертурбативных методов.

2. МАТРИЧНЫЕ ЭЛЕМЕНТЫ В КОВАРИАНТНОЙ МОДЕЛИ КВАРКОВ

Ковариантная модель кварков базируется на феноменологическом, нелокальном, релятивистском лагранжиане, описывающем связь данного адронного поля с соответствующим ему интерполирующим кварковым током:

$$\begin{split} \mathcal{L}_{\text{int}} &= g_H H(x) J_H(x), \\ J_M(x) &= \int dx_1 \int dx_2 F_M(x; x_1, x_2) \cdot \bar{q}_{f_1}^a(x_1) \Gamma_M q_{f_2}^a(x_2) \text{ (мезон)}, \\ J_B(x) &= \int dx_1 \int dx_2 \int dx_3 F_B(x; x_1, x_2, x_3) \times \\ &\times \Gamma_1 q_{f_1}^{a_1}(x_1) \left[\varepsilon^{a_1 a_2 a_3} q_{f_2}^{T a_2}(x_2) C \Gamma_2 q_{f_3}^{a_3}(x_3) \right] \text{ (барион)}, \\ J_T(x) &= \int dx_1 \cdots \int dx_4 F_T(x; x_1, \dots, x_4) \left[\varepsilon^{a_1 a_2 c} q_{f_1}^{T a_1}(x_1) C \Gamma_1 q_{f_2}^{a_2}(x_2) \right] \times \\ &\times \left[\varepsilon^{a_3 a_4 c} \bar{q}_{f_3}^{T a_3}(x_3) \Gamma_2 C \bar{q}_{f_4}^{a_4}(x_4) \right] \text{ (тетракварк)}. \end{split}$$

Вершинную функцию $F_H(x; x_1, ..., x_n)$ выбираем в форме, удовлетворяющей трансляционной инвариантности:

$$F_H(x+a;x_1+a,\ldots,x_n+a) = F_H(x,x_1,\ldots,x_n), \quad \forall a.$$

Простейший выбор есть

$$F_H(x, x_1, \dots, x_n) = \delta^{(4)} \left(x - \sum_{i=1}^n w_i x_i \right) \Phi_H \left(\sum_{i < j} (x_i - x_j)^2 \right), \tag{6}$$

где $w_i = m_i / \sum_i m_i$.

Кварковые пропагаторы выбираются в виде обычного дираковского пропагатора для фермионного поля:

$$S_q(x_1 - x_2) = \int \frac{d^4k}{(2\pi)^4 i} \frac{e^{-ik(x_1 - x_2)}}{m_q - k}.$$
(7)

Барион	J^P	Кварковый ток	Масса, МэВ
Ξ_{cc}^{++}	$1/2^{+}$	$arepsilon_{abc} \gamma^{\mu} \gamma_5 u^a (c^b C \gamma_{\mu} c^c)$	3620, 6
Ω_{cc}^+	$1/2^{+}$	$arepsilon_{abc} \gamma^{\mu} \gamma_5 s^a (c^b C \gamma_{\mu} c^c)$	3710,0
$\Xi_c^{\prime +}$	$1/2^{+}$	$\varepsilon_{abc} \gamma^{\mu} \gamma_5 c^a (u^b C \gamma_{\mu} s^c)$	2577,4
Ξ_c^+	$1/2^{+}$	$arepsilon_{abc} c^a (u^b C \gamma_5 s^c)$	2467,9

Таблица 3. Интерполирующие кварковые токи

Невылетание кварков, или кварковый конфайнмент, обеспечивается за счет обрезания по параметру, являющемуся аналогом собственного времени. Более детально данная процедура описана в работах [22, 23].

Мы будем рассматривать распады, принадлежащие одному и тому же топологическому классу:

$$\begin{split} \Xi_{cc}^{++} &\to \Xi_c^+ \left(\Xi_c^{\prime+} \right) + \pi^+ (\rho^+) \qquad \text{(топологии T-Ia и W-IIb),} \\ \Omega_{cc}^+ &\to \Xi_c^+ \left(\Xi_c^{\prime+} \right) + \bar{K}^0 (K^{*\,0}) \qquad \text{(топологии T-Ib и W-IIb).} \end{split}$$
(8)

Соответствующие квантовые числа и интерполирующие кварковые токи показаны в табл. 3.

Соответствующие диаграммы изображены на рис. 3.

Вклады от диаграмм с внутренним обменом *W*-бозоном можно разделить на два класса:

1) распады $\Xi_c^{\prime+}$ -бариона, содержащего симметричный дикварк $\{us\} = \varepsilon_{abc} (u^b C \gamma_\mu s^c);$

2) распады Ξ_c^+ -бариона, содержащего антисимметричный дикварк $[us] = \varepsilon_{abc} (u^b C \gamma_5 s^c).$

Вклады первого класса сильно подавлены благодаря теореме Кёрнер-Пати-Ву (КРW) [24,25], которая гласит, что свертка антисимметричного токтокового оператора с симметричной конфигурацией дикварка в конечном состоянии равна нулю в пределе точной SU(3)-симметрии.

Древесные диаграммы Диаграмма с обменом *W*-бозоном

Рис. 3. Диаграммы с топологиями T-Ia, T-Ib и W-IIb

Матричные элементы нелептонных распадов $B_1 \to B_2 + M$ записываются в виде

$$\langle B_2 M | \mathcal{H}_{\text{eff}} | B_1 \rangle = \frac{G_F}{\sqrt{2}} V_{cs} V_{ud}^{\dagger} \bar{u}(p_2) \times (12 C_T M_T + 12 (C_1 - C_2) M_W) u(p_1), \quad (9)$$

где комбинации коэффициентов Вильсона C_T имеют вид

$$C_T = \begin{cases} C_T = +(C_2 + \xi C_1) & ($$
заряженный мезон), $C_T = -(C_1 + \xi C_2) & ($ нейтральный мезон).

Фактор $\xi = 1/N_c$ полагается равным нулю в численных расчетах.

Вклады от древесных диаграмм факторизуются известным образом:

$$M_{T} = M_{T}^{(1)} M_{T}^{(2)},$$

$$M_{T}^{(1)} = N_{c} g_{M} \int \frac{d^{4}k}{(2\pi)^{4}i} \widetilde{\Phi}_{M}(-k^{2}) \times \\ \times \operatorname{tr} \left[O_{L}S_{d}(k - w_{d}q) \Gamma_{M}S_{s(u)}(k + w_{s(u)}q) \right], \qquad (10)$$

$$M_{T}^{(2)} = g_{B_{1}}g_{B_{2}} \int \frac{d^{4}k_{1}}{(2\pi)^{4}i} \int \frac{d^{4}k_{2}}{(2\pi)^{4}i} \widetilde{\Phi}_{B_{1}}(-\Omega_{1}^{2}) \widetilde{\Phi}_{B_{2}}(-\Omega_{2}^{2}) \times \\ \times \Gamma_{1}S_{c}(k_{2}) \gamma^{\mu}S_{c}(k_{1} - p_{1}) O_{R}S_{u(s)}(k_{1} - p_{2}) \widetilde{\Gamma}_{2}S_{s(u)}(k_{1} - k_{2}) \gamma_{\mu}\gamma_{5}.$$

Матричный элемент $M_T^{(1)}$ описывает лептонный распад мезона, но с противоположным направлением четырехимпульса:

$$M_T^{(1)} = \begin{cases} -f_P q & (псевдоскалярный мезон), \\ +f_V m_V \epsilon_V & (векторный мезон). \end{cases}$$

Матричный элемент $M_T^{(2)}$ описывает слабый переход начального бариона в конечный. Вклад от диаграммы с внутренним обменом W-бозоном имеет более сложный нефакторизованный вид:

Здесь $\Gamma_1 \otimes \widetilde{\Gamma}_2 = I \otimes \gamma_5$ для $B_2 = \Xi_c^+$ и $-\gamma_\nu \gamma_5 \otimes \gamma^\nu$ для $B_2 = \Xi_c^{\prime+}$. Чтобы проверить теорему KPW в случае распада с барионом $B_2 = \Xi_c^{\prime+}$ в конечном состоянии, используем тождество

$$\operatorname{tr}\left[S_{u}(k_{3})\gamma_{\nu}S_{s}(k_{3}-k_{1}+p_{2})\right] = -\operatorname{tr}\left[S_{s}(-k_{3}+k_{1}-p_{2})\gamma_{\nu}S_{u}(-k_{3})\right].$$
 (11)

Затем делаем сдвиг $k_3 \rightarrow -k_3 + k_1 - p_2$, в результате которого приходим к тому же самому выражению, но с противоположным знаком и перестановкой местами кварков $u \leftrightarrow s$. Если $m_u = m_s$, то $M_W \equiv 0$, что и доказывает теорему KPW.

3. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Амплитуды двухчастичных распадов барионов записываются следующим образом:

$$\langle B_2 P | \mathcal{H}_{\text{eff}} | B_1 \rangle = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \, \bar{u}(p_2) (A + \gamma_5 B) u(p_1), \langle B_2 V | \mathcal{H}_{\text{eff}} | B_1 \rangle = \frac{G_F}{\sqrt{2}} V_{cs}^* V_{ud} \, \bar{u}(p_2) \times \times \epsilon_{V\delta}^* \left(\gamma^{\delta} V_{\gamma} + p_1^{\delta} V_p + \gamma_5 \gamma^{\delta} V_{5\gamma} + \gamma_5 p_1^{\delta} V_{5p} \right) \, u(p_1).$$

$$(12)$$

Удобно ввести спиральные амплитуды, связанные с формфакторами линейным образом:

$$H_{\frac{1}{2}t}^{V} = \sqrt{Q_{+}} A, \qquad H_{\frac{1}{2}t}^{A} = \sqrt{Q_{-}} B,$$

$$H_{\frac{1}{2}0}^{V} = +\sqrt{Q_{-}/q^{2}} \left(m_{+} V_{\gamma} + \frac{1}{2} Q_{+} V_{p} \right), \qquad H_{\frac{1}{2}1}^{V} = -\sqrt{2Q_{-}} V_{\gamma}, \quad (13)$$

$$H_{\frac{1}{2}0}^{A} = +\sqrt{Q_{+}/q^{2}} \left(m_{-} V_{5\gamma} + \frac{1}{2} Q_{-} V_{5p} \right), \qquad H_{\frac{1}{2}1}^{A} = -\sqrt{2Q_{+}} V_{5\gamma}.$$

Здесь $m_{\pm} = m_1 \pm m_2$, $Q_{\pm} = m_{\pm}^2 - q^2$ и $|\mathbf{p}_2| = \lambda^{1/2} (m_1^2, m_2^2, q^2)/(2m_1)$. Нетрудно проверить, что выполняются следующие соотношения: $H^V_{-\lambda_2, -\lambda_M} = +H^V_{\lambda_2, \lambda_M}$ и $H^A_{-\lambda_2, -\lambda_M} = -H^A_{\lambda_2, \lambda_M}$. Тогда выражение для двухчастичной ширины распада в терминах спиральных амплитуд выглядит достаточно просто:

$$\Gamma(B_{1} \to B_{2} + P(V)) = \frac{G_{F}^{2}}{32\pi} |V_{cs}^{*}V_{ud}|^{2} \frac{|\mathbf{p}_{2}|}{m_{1}^{2}} \mathcal{H}_{P(V)},$$

$$\mathcal{H}_{P} = \left|H_{\frac{1}{2}t}\right|^{2} + \left|H_{-\frac{1}{2}t}\right|^{2},$$

$$\mathcal{H}_{V} = \left|H_{\frac{1}{2}0}\right|^{2} + \left|H_{-\frac{1}{2}0}\right|^{2} + \left|H_{\frac{1}{2}1}\right|^{2} + \left|H_{-\frac{1}{2}-1}\right|^{2},$$
(14)

где $H = H^V - H^A$. Все параметры модели были зафиксированы в наших предыдущих работах, посвященных изучению различных аспектов адронной физики. В рассматриваемых распадах дважды очарованных барионов появляется новый параметр Λ_{cc} , связанный с размером данного бариона. Ввиду отсутствия экспериментальных данных мы не можем его зафиксировать. Поэтому в качестве первого приближения выбираем его равным параметру, характеризующему размер бариона с одним очарованным кварком, т. е. $\Lambda_{cc} = \Lambda_c = 0,8675$ ГэВ. Численное значение было определено из анализа соответствующих распадов (см. [26]).

Численные результаты для спиральных амплитуд и ширин распадов приведены в табл. 4–7. Кроме результатов для ширин из данных таблиц можно извлечь информацию о параметрах спиновой поляризации. Например, для распада $\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+$ можно определить параметр асимметрии: $\alpha = -2H_{1/20}^V H_{1/20}^A (|H_{1/20}^V|^2 + |H_{1/20}^A|^2) = -0.57$. Для сравнения в работе [27] величина данного параметра была предсказана в области $\alpha = [-0.86, -1.00]$ в зависимости от параметров подхода. Отметим, что вклад от диаграмм с внутренним обменом W-бозоном в работе [27] идет только в *p*-волну, т.е. пропорционален $H_{1/20}^A$, из-за нерелятивистского характера подхода. Это кардинально отличается от наших результатов, полученных на основе релятивистского подхода, в котором для данного процесса доминирует *s*-волна, т.е. вклад пропорционален $H_{1/20}^V/H_{1/20}^A = 3.3$.

Наши результаты подчеркивают важность КРW-теоремы для нелептонных распадов, имеющих в конечном состоянии барион Ξ'^+ с симметричным $\{su\}$ -дикварком. Из табл. 4–7 видно, что соответствующие вклады от диа-

Спираль- ность	Т	W	Сумма					
$H^V_{\frac{1}{2}t}$	0,20	-0,01	$0,\!19$					
$H^A_{\frac{1}{2}t}$	0,25	-0,01	0,24					
$ \Gamma(\Omega_{cc}^+ \to \Xi_c^{\prime +} + \bar{K}^0) = 0.15 \cdot 10^{-13} Γ$ эВ								
$H^V_{\frac{1}{2}0}$	-0,25	$0,04 \cdot 10^{-1}$	-0,25					
$H^{A}_{\frac{1}{2}0}$	-0,50	0,01	-0,49					
$H^{V}_{\frac{1}{2}1}$	$0,\!27$	-0,01	0,26					
$H^{\overline{A}}_{\frac{1}{2}1}$	0,56	$0,04 \cdot 10^{-2}$	0,56					
$\Gamma(\Omega_{cc}^+ \to \Xi_c^{\prime +} + \bar{K}^{* 0}) = 0.74 \cdot 10^{-13}$ ГэВ								

$\mu u 0 \Lambda u u u 4. M_{cc} \rightarrow \Xi_c^+ + \Lambda^+ (\Lambda^+)$	Таблица	4. Ω_{cc}^+	аблица	$\rightarrow \Xi_c^{\prime +} +$	\bar{K}^0	(\bar{K}^{*0}))
---	---------	--------------------	--------	----------------------------------	-------------	------------------	---

Таблица 5. $\Omega_{cc}^+ \to \Xi_c^+ + \bar{K}^0(\bar{K}^{*\,0})$

Спираль- ность	T	W	Сумма					
$H^V_{\frac{1}{2}t}$	-0,35	1,06	0,71					
$H^A_{\frac{1}{2}t}$	-0,10	0,31	0,21					
$\Gamma(\Omega_{cc}^+ \to \Xi_c^+ + \bar{K}^0) = 0.95 \cdot 10^{-13}$ ГэВ								
$H^{V}_{\frac{1}{2}0}$	0,50	-0,69	-0,19					
$H^A_{\frac{1}{2}0}$	0,18	-0,45	-0,27					
$H^{V}_{\frac{1}{2}1}$	-0,11	-0,24	-0,35					
$H^A_{\frac{1}{2}1}$	-0,18	0,66	0,48					
$\Gamma(\Omega_{cc}^+ \to \Xi_c^+ + \bar{K}^{*0}) = 0,62 \cdot 10^{-13}$ ГэВ								

Спираль- ность	Т	W	Сумма	Спираль- ность	Т	W	Сумма
$H^V_{\frac{1}{2}t}$	-0,38	-0,01	-0,39	$H^V_{\frac{1}{2}t}$	-0,70	0,99	0,29
$H^A_{rac{1}{2}t}$	-0,55	-0,02	-0,57	$H^A_{\frac{1}{2}t}$	-0,21	0,30	0,09
$\Gamma(\Xi_{cc}^{++} \rightarrow$	$\Xi_{c}^{\prime +} +$	$(\pi^+) = 0.82$	$\cdot 10^{-13}$ ГэВ	$\Gamma(\Xi_{cc}^{++} \rightarrow$	$\Xi_c^+ + $	$(\pi^{+}) =$	$0,18 \cdot 10^{-13}$ ГэВ
$H^V_{\frac{1}{2}0}$	0,60	$0,04 \cdot 10^{-1}$	0,61	$H^V_{\frac{1}{2}0}$	$1,\!17$	-0,70	0,47
$H^{A}_{\frac{1}{2}0}$	$1,\!20$	0,01	1,21	$H^{A}_{\frac{1}{2}0}$	$0,\!45$	-0,44	0,003
$H^{V}_{\frac{1}{2}1}$	-0,49	-0,01	-0,50	$H^V_{\frac{1}{2}1}$	-0,20	-0,23	-0,43
$H^{\overline{A}}_{\frac{1}{2}1}$	-1,27	$0,01 \cdot 10^{-1}$	-1,27	$H^{A}_{\frac{1}{2}1}$	-0,41	$0,\!62$	0,21
$\Gamma(\Xi_{cc}^{++}-$	$ ightarrow \Xi_c^{\prime +} +$	$(-\rho^+) = 4,27$	$\cdot 10^{-13}$ ГэВ	$\Gamma(\Xi_{cc}^{++} -$	$\rightarrow \Xi_c^+ + $	$(\rho^{+}) = 0$	$0,63 \cdot 10^{-13}$ ГэВ

Таблица 6. $\Xi_{cc}^{++} \to \Xi_{c}^{\prime\,+} + \pi^+(\rho^+)$

Таблица 7.
$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} + \pi^{+}(\rho^{+})$$

грамм с внутренним обменом W-бозоном существенно подавлены по сравнению с древесными, хотя и являются ненулевыми за счет эффектов нарушения SU(3)-симметрии. Имеется несколько различных подходов к описанию нелептонных распадов дважды очарованных барионов (см. [27–32]). В нашей недавней работе [33] был сделан подробный анализ и проведено сравнение полученных результатов. На данном этапе можно констатировать, что имеется значительный разброс в значениях для ширин распадов. Основной причиной, на наш взгляд, является отсутствие надежной схемы для вычисления вкладов от диаграмм с внутренним W-обменом. Обычно либо ограничиваются древесными диаграммами, либо используют так называемую полюсную модель для учета W-вкладов, которая имеет весьма значительное количество свободных параметров. В нашем подходе как древесные, так и W-диаграммы описываются с единой точки зрения на основе квантовой теории поля с уже фиксированными параметрами.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gell-Mann M.* A Schematic Model of Baryons and Mesons // Phys. Lett. 1964. V.8. P.214–215.
- Zweig G. An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Version 1. Preprint CERN-TH-401. 1964. 26 p.
- 3. Zweig G. An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Version 2. Preprint CERN-TH-412. 1964. 68 p.

- Bjorken J. D., Glashow S. L. Elementary Particles and SU(4) // Phys. Lett. 1964. V. 11. P. 255–257.
- Glashow S. L., Iliopoulos J., Maiani L. Weak Interactions with Lepton–Hadron Symmetry // Phys. Rev. D. 1970. V. 2. P. 1285–1292.
- De Rujula A., Georgi H., Glashow S. L. Hadron Masses in a Gauge Theory // Phys. Rev. D. 1975. V. 12. P. 147–162.
- De Rujula A., Georgi H., Glashow S. L. Vector Model of the Weak Interactions // Ibid. P. 3589–3605.
- Korner J. G., Kramer M., Pirjol D. Heavy Baryons // Prog. Part. Nucl. Phys. 1994. V. 33. P. 787–868.
- 9. Tanabashi M. et al. Review of Particle Physics // Phys. Rev. D. 2018. V. 98. P. 030001.
- 10. Ablikim M. et al. (BESIII Collab.). Measurements of Absolute Hadronic Branching Fractions of Λ_c^+ Baryon // Phys. Rev. Lett. 2016. V. 116. P. 052001.
- 11. Li Y. B. et al. (Belle Collab.). First Measurements of Absolute Branching Fractions of the Ξ_c^0 Baryon at Belle // Phys. Rev. Lett. 2019. V. 122. P. 082001.
- 12. Li Y. B. et al. (Belle Collab.). First Measurements of Absolute Branching Fractions of the Ξ_c^+ Baryon at Belle. arXiv:1904.12093 [hep-ex].
- 13. Ocherashvili A. et al. (SELEX Collab.). Confirmation of the Double Charm Baryon $\Xi_{cc}^+(3520)$ via Its Decay to pD^+K^- // Phys. Lett. B. 2005. V. 628. P. 18.
- 14. *Aaij R. et al. (LHCb Collab.).* Observation of the Doubly Charmed Baryon Ξ_{cc}^{++} // Phys. Rev. Lett. 2017. V. 119. P. 112001.
- Aaij R. et al. (LHCb Collab.). Measurement of the Lifetime of the Doubly Charmed Baryon \(\mathbb{\extsf{z}}_{c^+}^{c+}\) // Phys. Rev. Lett. 2018. V. 121. P. 052002.
- 16. *Aaij R. et al. (LHCb Collab.).* First Observation of the Doubly Charmed Baryon Decay $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ // Ibid. P. 162002.
- Körner J. G., Krämer M. Exclusive Nonleptonic Charm Baryon Decays // Z. Phys. C. 1992. V. 55. P. 659.
- Ebert D., Faustov R. N., Galkin V. O., Martynenko A. P. Mass Spectra of Doubly Heavy Baryons in the Relativistic Quark Model // Phys. Rev. D. 2002. V. 66. P. 014008.
- Fleck S., Richard J. M. Baryons with Double Charm // Prog. Theor. Phys. 1989. V. 82. P. 760.
- Karliner M., Rosner J. L. Baryons with Two Heavy Quarks: Masses, Production, Decays, and Detection // Phys. Rev. D. 2014. V. 90. P. 094007.
- Gutsche T., Ivanov M.A., Körner J. G., Lyubovitskij V. E. Novel Ideas in Nonleptonic Decays of Double Heavy Baryons // Particles. 2019. V. 2. P. 339–356.
- Branz T., Faessler A., Gutsche T., Ivanov M.A., Körner J.G., Lyubovitskij V.E. Relativistic Constituent Quark Model with Infrared Confinement // Phys. Rev. D. 2010. V.81. P.034010.
- Gutsche T., Ivanov M.A., Körner J. G., Lyubovitskij V. E., Santorelli P. Light Baryons and Their Electromagnetic Interactions in the Covariant Constituent Quark Model // Phys. Rev. D. 2012. V. 86. P. 074013.
- 24. Körner J. G. Octet Behaviour of Single-Particle Matrix Elements $\langle B'|H(W)|B\rangle$ and $\langle M'|H(W)|M\rangle$ Using a Weak Current–Current Quark Hamiltonian // Nucl. Phys. B. 1971. V. 25. P. 282.
- Pati J. C., Woo C. H. Delta I = 1/2 Rule with Fermion Quarks // Phys. Rev. D. 1971. V. 3. P. 2920.

- Gutsche T., Ivanov M.A., Körner J. G., Lyubovitskij V. E., Santorelli P. Semileptonic Decays Λ⁺_c → Λℓ⁺ν_ℓ (ℓ = e, μ) // Phys. Rev. D. 2016. V.93. P. 034008.
- Sharma N., Dhir R. Estimates of W-Exchange Contributions to Ξ_{cc} Decays // Phys. Rev. D. 2017. V. 96. P. 113006.
- Dhir R., Sharma N. Weak Decays of Doubly Heavy Charm Ω⁺_{cc} Baryon // Eur. Phys. J. C. 2018. V. 78. P. 743.
- 29. Jiang L. J., He B., Li R. H. Weak Decays of Doubly Heavy Baryons: $\mathcal{B}_{cc} \rightarrow \mathcal{B}_c V \parallel$ Ibid. P. 961.
- 30. Wang W., Yu F. S., Zhao Z. X. Weak Decays of Doubly Heavy Baryons: The $1/2 \rightarrow 1/2$ Case // Eur. Phys. J. C. 2017. V. 77. P. 781.
- Yu F. S., Jiang H. Y., Li R. H., Lü C. D., Wang W., Zhao Z. X. Discovery Potentials of Doubly Charmed Baryons // Chin. Phys. C. 2018. V.42. P.051001.
- Kiselev V. V., Likhoded A. K. Baryons with Two Heavy Quarks // Phys. Usp. 2002.
 V. 45. P. 455 (Usp. Fiz. Nauk. 2002. V. 172. P. 497).
- Gutsche T., Ivanov M.A., Körner J.G., Lyubovitskij V.E., Tyulemissov Zh. Ab initio Three-Loop Calculation of the W-Exchange Contribution to Nonleptonic Decays of Double Charm Baryons // Phys. Rev. D. 2019. V. 99. P. 056013.