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We review the superembedding approach to M-branes and Dp-branes in its form based on the
universal (D- and p-independent) superembedding equation, and its recent application in searching for
supersymmetric and Lorentz covariant description of multiple Dp-brane systems. In particular, we
present the structure of the multiple DO-brane equation as follows from our superembedding description
and show that it describes the dielectric effect first noticed by Emparan and then by Myers. We also
discuss briefly the relation with the boundary fermion approach by Howe, Lindstrom and Wulff.

PACS: 11.25.-w; 11.25.Uv; 11.25.Yb

1. INTRODUCTION

Supersymmetric extended objects, super-p-branes [1-9], play a very important role in
String/M-theory [10, 11] and its ADS/CFT applications [12, 13]. The ground states
of D-dimensional super-p-branes (superstring for p = 1, supermembrane for p = 2) can be
identified with the supersymmetric solutions of the corresponding supergravity theories [14].
The most interesting are the solutions of the maximal D = 11 supergravity and type II
D = 10 supergravities appearing as low-energy limit of type II superstring theories. The p-
brane dynamics can be described by supersymmetric actions [1,2,4,6-9] or in the framework
of superembedding approach [3,5,15-19].

In this contribution we give a review of superembedding approach to super-p-branes [3,
5,15-21]1 in D = 10 and D = 11 superspaces and its recent application in search for the
supersymmetric and Lorentz covariant (diffeomorphism invariant) description of the multiple
brane systems [22]. In the part devoted to superembedding description of a single brane our
emphasis will be on the superembedding description of Dirichlet super-p-branes (Dp-branes)
(in contrast with the already existing review [19]). We begin by this case and then turn to
the superembedding description of M2- and M5-brane.

The part devoted to multiple branes contains the results on multiple DO-brane system,
which is to say multiple D-particles, which were briefly reported in [22]. We argue that to
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describe the multiple Dp-brane system, it is natural to try to put an additional SU(N) gauge
superform on the worldvolume of a single Dp-brane and impose a suitable set of superspace
constraints on their (super)field strength two-form. If consistent, such a system provides, at
least, an approximation of nearly coincident Dp-brane with the very low energy of the relative
motion, but with the nonlinear («complete») Dirac—Born-Infeld description of the dynamics
of the center of mass and of the U(1) gauge field related to it. We show that such a consistent
description, going beyond U(N) Super-Yang-Mills (or Matrix model) approximation, does
exist at least for the case of multiple DO-brane system [22]. We discuss the structure of the
multiple DO-brane equation which follows from the superembedding approach and show that
it possesses the dielectric effect first noticed by Emparan [23] and then by Myers [24].

Discussing the meaning of our results, we describe possible deformation of our basic
equations and the relation with the boundary fermion approach by Howe, Lindstrom and
Wulff [25,26]. This latter approach does provide supersymmetric and covariant description
of Dirichlet branes, but on the «classical» (or «minus one quantization») level in the sense that
to arrive at the description of multiple brane system in terms of the variables corresponding to
the standard single Dp-brane action [4,6,7] (usually considered as a classical or quasiclassical
action) one has to perform a quantization of the boundary fermion sector.

1.1. D-Branes and Multiple D-Brane Systems. The first appearance of D-branes (Dirichlet
p-branes) is dated by the late 1980s, when they were found as surfaces where the fundamental
string can end [27-30]. Although in the first quantized string model they appeared as flat
hyperplanes, it was clear that these surfaces must be dynamical in string theory. Indeed, as far
as the open string theory contains closed string sector and this contains gravity in its quantum
state spectrum, nondynamical surfaces cannot exist in string theory as the space-time itself is
dynamical in it.

However, the special importance of D-branes for String/M-theory [10, 11] was widely
appreciated in the middle 1990s, after it was discovered [31] that Dp-branes carry Ramond-
Ramond (RR) charges, i.e., that they interact with the antisymmetric tensor gauge fields Cp1,
Cp—1, ... with respect to which the fundamental strings are neutral. In particular, this makes
clear that Dp-branes are described by supersymmetric p-brane solutions of extended N = 2
(type II) D = 10 supergravity, which had been found for any even/odd value of p in type
ITA/IIB case and included a nonvanishing solution for Cj,;1 RR gauge field equations.

It was quickly appreciated that the low-energy dynamics of multiple Dp-brane system is
described by the maximal supersymmetric d = p + 1 gauge theory with the gauge group
U(N) in the case of N D-branes [32]. The investigation of this limit was already quite
productive [33]. In particular, it allowed one to formulate the conjecture of M(atrix) theory
which states that the Matrix model [34], which can be considered as a theory of multiple
DO-brane system, could provide a nonperturbative description of the M-theory.

The nonlinear supersymmetric action for a single Dp-brane was constructed in [35] for
p = 2 and in [4,6,7] for general pl. It contains the nonlinear Dirac—Born—Infeld (DBI)
term [32,35,37] and the Wess—Zumino (WZ) term describing the coupling to RR gauge fields

IThe D-brane actions of [35] and [4,6,7] are complete up to terms containing the derivative of gauge field
strength; in other words, they include nonlinear effects but contain contributions of lowest order in the derivatives
of the field strength of the worldvolume gauge field only. Higher derivative corrections to these DBI+WZ actions
are expected [36].
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Cp+1, Cp—1, ... [38]. Notice that this explains why, e.g., the odd p Dp-branes cannot exist

in type IIA case, where the supergravity multiplet contains only odd form gauge potential,

Capy1, Which can be coupled to even p super-p-branes (with odd dimension d = p + 1 of

the worldvolume W7+') through [ 41 (where hat implies pull-back of the differential
Wp+1

form to WP*1 see Subsecs. 1.3 and 2.1 for the notation).

Even before the actions for generic Dp-branes were constructed in [4,6,7], the supersym-
metric equations of motion were derived in [3] by developing superembedding approach [15]
for the case of Dp-branes. Notice that the same story happened to MS5-brane: its equa-
tions of motion had been derived in [5] before the covariant and supersymmetric action was
constructed in [8] and, independently, in [9].

As far as the nonlinear action for multiple D-brane systems is concerned, it was expected
that this should be described by some non-Abelian generalization of the DBI plus WZ action.
Tseytlin proposed using the symmetric trace prescription to construct the non-Abelian DBI
action for the case of purely bosonic space-time filling D-brane [37,39].

Although the search for a supersymmetric generalization of such a non-Abelian DBI action
has not been successful, in 1999 Myers used it as a starting point and, applying a chain of
dualities, derived the so-called «dielectric brane action» [24] which is widely accepted for
the description of multiple D-brane system. This action, however, does not possess neither
supersymmetry nor Lorentz symmetry. In spite of a number of attempts, its Lorentz covariant
and/or supersymmetric generalizations are not known in general, although some progress
was reached for the cases of low dimensions D, low-dimensional and low-co-dimensional
branes [40,41].

In [25,26] a very interesting Lorentz covariant and supersymmetric description
of D-branes is given in the framework of boundary fermion approach. It implies the ex-
tension of space-time/superspace by new fermionic coordinates of the type introduced in [43]
as fields leaving at the end point of the open string. Upon quantization the boundary fermions
of [43] are replaced by Dirac matrices and reproduce the Chan—Paton factors in the open string
amplitudes. In the approach of [25,26] one also has to quantize the boundary fermion sector
to arrive at the description of multiple Dp-brane system similar to the standard description of
single Dp-brane in [3,4,6,7]. In this sense, the approach of [25,26] can be called minus one
quantization of Dp-brane. We will comment more on this approach in the concluding section
of our review.

As far as the superembedding approach showed its efficiency in derivation of Dp-brane
and M5-brane equations, it looks natural to apply it in the search for equations of motion for
the multiple Dp-brane system. In this review we describe the results which this procedure
gives for the simplest case of multiple DO-brane system [22] !.

I'Notice that the boundary fermion approach [25,26] also uses a kind of superembedding formalism, but with
embedding of a superspace with boundary fermion directions into space-time [25] or into the standard superspace [26].
Thus, for a sufficiently large N the number of fermionic directions of the worldvolume superspace exceeds 32,
which is the fermionic dimension of the target type II superspace R (10116+16) 1p this respect, the boundary fermion
approach is similar to the superfield description of the NSR (Nevieu—Schwarz—Ramond) or spinning string, where the
worldsheet superspace with two fermionic directions is embedded into space-time (zero fermionic directions). In this
review we are dealing with the standard superembedding approach, in which the worldvolume superspace has twice
less fermionic directions than the target superspace (16 versus 32 for 10-dimensional D-branes and 11-dimensional
M-branes)
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1.2. Contents. This review is organized as follows. After establishing our basic notation
(Subsecs. 1.3 and 2.1), we begin (in Sec. 2) by describing the basic equations of the super-
embedding approach including the superembedding equation which essentially determines the
dynamics of M-branes and D-branes (for a sufficiently large co-dimension D — p > 4).

In Sec. 3 we give a very brief review of superembedding approach to single Dp-branes
for arbitrary p, with particular emphasis on DO-brane case. In Sec. 4 we describe more
complicated cases of M2- and M5-brane where the construction of superembedding approach
inevitably involves introduction of spinor moving frame variables (spinor harmonics) in ad-
dition to the moving frame variables. In Sec. 5 we first argue in favor of the idea to search
for the description of multiple Dp-brane systems by trying to define a possible nonlinear
generalization of the non-Abelian SYM multiplet by some set of constraints on the Dp-brane
worldvolume superspace WP +1116) the embedding of which in the type II target superspace
»(10132) i5 determined by the superembedding equation.

Then, turning to the case of multiple DO-brane, we propose the d = 1 N = 16 SYM
constraints which express its field strength in terms of nanoplet of su(N) valued superfields
X? obeying a superembedding-like equation DX’ = (6% W),,. The leading component of this
superfield, appearing in the expression for the dimension 1 (spinor—spinor) field strength of
the SU(N) gauge (super)fields, Go3 = Jéﬁxi, describes the relative motion of N DO0-brane
constituents of the system. We show that our constraints lead to interacting supersymmetric
equations of motion, which, in the case of flat target superspace, can also be obtained by
dimensional reduction of a non-Abelian D = 10 Super-Yang-Mills (SYM) theory to d = 1
(the system which was used to define the Matrix model).

However, the superembedding approach is also able to produce multiple DO-brane equa-
tions in an arbitrary type IIA superspace supergravity background (and, to our best knowledge,
it is not clear how to reproduce these equations just by SYM dimensional reduction). We
analyze the general algebraic structure of the bosonic equations of motion for the multiple DO-
brane in general type IIA supergravity background, which follow from our superembedding
approach, and show that these describe the Emparan—Myers «dielectric brane» effect [23,24]
of polarization of multiple Dp-brane system by external higher form fluxes, i.e., show the
coupling of multiple DO-brane system to the higher form gauge fields, which do not interact
with a single D0O-brane.

We conclude by discussion on our results, on possible generalizations of our approach
and its relation with the boundary fermion approach by Howe, Lindstrém and Wulff [25,26],
and also on interesting directions for future study.

1.3. Basic Notations. Target Superspaces of D-Branes and M-Branes. We denote the local
coordinates of D = 11 and type Il D = 10 superspace by

ZM — (z+,0%), a=1,...,32, p=0,1,....(D—-1) (D=10,11)  (1.1)
and supervielbein form by

a=1,...,32,

a=0,1,....,(D—1) (D=10,11). (1.2)

EA .= dazMEyA(Z) = (B, £2), {

We find it convenient, following [42], to use different symbols for the D-component bosonic
and for the 32-component fermionic supervielbein forms: E¢ := dZM E,%(Z) and £% :=
dZME\ 2 (Z), respectively.
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The supervielbein (1.2) describes supergravity when it obeys the set of superspace con-
straints [44—47] the most essential of which are collected in the expression for the bosonic
torsion two-form

T := DE* = —if NT%E, ENTE := E* AT E0. (1.3)

Here and below we write explicitly the exterior product symbol A'. 1In the 11D case

I‘iﬁ = (I'C)ap = I‘%g, where T¢ = (I'%),2 is the 11D Dirac matrix and C is 11D

charge conjugation matrix, which are imaginary in our mostly minus notation

na—b:diag (—|—7—7...,—). (1.4)

For D = 10 type II cases it is convenient to split the fermionic supervielbein in
two 16-component Majorana—Weyl spinor one-forms

co _ (B2, E2%)  for type IIA, (1.5)
| (E°Y, E*2)  for type 1IB, '

In this notation the main supergravity constraints (1.3) read

TS := DE% = —i(E' A o%E* + E?* AG2E?) for type IIA, (1.6)
T%:= DE% = —i(E' N o%E' + E? A¢%E?) for type 1IB, (1.7)

where 0% := J%B = O'%O( and 0, := ~g5 = ~ga are D = 10 Pauli matrices which obey
0252 + ob6e = 22t = diag (+,—,...,—), Taa(30ys) =0, 696‘(65&75) =0. (1.8

2. SUPEREMBEDDING EQUATION AS A BASIS
OF SUPEREMBEDDING APPROACH TO D-BRANES AND M-BRANES

Following the so-called STV approach to superparticles and superstrings [48,49]2, the
superembedding approach [3,5, 15,16, 19-21] describes the dynamics of super-p-brane in
terms of embedding of a worldvolume superspace into the target superspace.

IThe exterior product of a g-form 4 and a p-form €, has the property Qg A Qp = (=1)P9Q, A Qq if at
least one of two differential forms is bosonic; when both are fermionic, an additional (—1) multiplier appears in
the r.h.s. The exterior derivative acts on the products of the forms «from the right»: d(Q2q A Qp) = Qg A dQp +
(=1)PdQq A Qp. In particular, T2 := DE2 = dZM A DEy2(Z), so that Eq. (1.3) implies Dy En2(Z) —
(=)@ eN) DN Ep®(Z) = +2i(—1)* @D £y TeE N, where e(M) is the Grassmann parity of ZM, ¢(a) = 0,
€(a) =1.

28TV abbreviates the family names of Dmitri Sorokin, Vladimir Tkach and Dmitri Volkov, the authors of [48].
This approach to description of Brink—Schwarz superparticles and Green—Schwarz superstring was also called
«twistor-like». See [19] for the review and more references and [50,51] for related studies of the connection
between Brink—Schwarz and spinning superparticles aimed to relate spinning (NSR) string and Green—-Schwarz
superstring already at the classical level. This line was further continued in [52].
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2.1. Worldvolume Superspaces W (**+116) The target superspaces of Dp-branes
(M-branes) were described in Subsec. 1.3. Their worldvolume superspaces WW®+116) have
d = p+ 1 bosonic and 16 fermionic dimensions. We denote the local coordinates of
W (p+1[16) by

M=(Emn%, m=0,1,...,p, a=1,...,16. .1)

The embedding of W®+116) into the D = 10 type II (D = 11) target superspace »(10116+16)
(2(11132)y can be described in terms of coordinate functions Z2(¢) = (2™(¢), 0%(¢)),

W (pF1116) o 7 (D[32) . M _ ZM(C) = (22(¢), Q(C))’ (2.2)

D=10,11,m=0,1,...,(D-1),a=1,...,32.

2.2. The Superembedding Equation. A particular beauty of the superembedding approach
consists in that, for all known superbranes, the embedding of the worldvolume superspace into
the target superspace is characterized by a universal equation which is called the superembed-
ding equation. This geometrical equation (the name «geometrodynamic equation» was used
in [49]) restricts the coordinate functions ZM(C ) and, in some cases, completely determines
the dynamics of superbrane.

To write the most general form of this superembedding equation let us denote the super-
vielbein of W (P+1116) py

et = dcMep () = (e%eY), a=0,1,....p, a=1,...,16, (2.3)

and write the general decomposition of the pull-back of the supervielbein EA(Z) of target
superspace, Eq. (1.2), to W»T116) RA .— RA(7) on this basis,

EA = BA(Z) = dZMEyA(Z) = P EX + e* B, A, (2.4)

Notice that the coincidence of the notation «, 8 for the 10D Majorana—Weyl spinor indices
of the chiral supervielbein forms of the target type II superspace (E'2? in (1.5)) and for
the indices enumerating the fermionic supervielbein of the worldvolume superspace is not
occasional and is acceptable because, among the D = 10 objects, we will discuss D-branes
but not fundamental strings (F1-branes). We will comment on this more in the next section.
In Sec. 4 devoted to M-brane we change the notation and substitute a multiindex aq for « in
Egs. (2.3), (2.4).

The superembedding equation states that the bosonic supervielbein form has zero projec-
tion on the worldvolume fermionic supervielbein form. This is to say, it reads

B, =V ZMEyY(Z) =0|, Va:=eMOom, M=(mn%). (2.5)

It can be also presented in an equivalent form of
E' = E%,' =0, (2.6)

where u,; = u,(¢) are (D — p — 1) space-like, mutually orthogonal and normalized D-vector
superfields, o N
uru® = —§%. 2.7
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Equation (2.6) means that u,’ are orthogonal to the worldvolume superspace. We can
complete their set till a complete moving frame by adding d = (p + 1) mutually orthogonal
and normalized D-vector superfields ug = ug(C), which are tangential to the worldvolume

superspace,

a, ai a, a a avb:Oalv"'7p7
ugu® =0, ugnlug:n b {a b o1 D-1) (2.8)

Their contraction with the pull-back E< of the target superspace bosonic supervielbein E%
provides us with a set of d = (p + 1) linearly independent nonvanishing one-forms, which
can be used as bosonic supervielbein of the worldvolume superspace,

B = Ebuf = e (2.9)

This e® refers to as (super)vielbein form induced by the (super)embedding. Considered
together, Egs. (2.6) and (2.9) imply

B2 = ety (2.10)
This is one more equivalent form of the superembedding equation. Indeed, Egs. (2.9) and (2.6)
can be obtained contracting (2.10) with u,® and u,’, respectively. On the other hand,
decomposing (2.10) on the worldvolume supervielbein, one arrives at the original form (2.5)
of the superembedding equation. As a by-product on this way one derives the expression
for the moving frame vectors u;%(¢) in terms of the (linear combination of the) bosonic
derivatives of the coordinate functions,

up® = EAbg = DbZM(C)EMQ (Z(C)) 21D

To obtain the consequences of the superembedding equation one can study its integrability
(self-consistency) conditions

0=DE" = T%)" + ¢® AulDu,’ = —i€ AT%uy’ + € A ulDuy’. (2.12)

To this end, one has to define the SO(1, D—1) and SO(D —p—1) connection, Q¢ = — Q< =
d¢M Q5% and QY = —QJF¢ = d¢M QY entering the SO(1, D —1) x SO(1,p) x SO(D —p—1)
covariant derivatives

Dugb = dugb + ngqu + uQCch and Dugi = dugi + wfuéi + ungji (2.13)

acting on the moving frame superfields and superforms in (2.12).

2.3. Moving Frame and Induced Connection on W (?*+1116)_ Notice that the orthogonality
and normalization conditions for the moving frame vectors u,° and u,’ imply that the D x D
matrix U composed of their components, which we call moving frame matrix, is pseudo-
orthogonal (UnU T = 1), i.e., Lorentz group valued

vY = (u; u;) € SO(1,D —1). (2.14)

These moving frame vectors (also called Lorentz harmonics, see [53] as well as [15,19,20]
and refs. therein) can be used to construct the SO(1,p) and SO(9 — p) connections on the
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worldvolume superspace. In the case of flat target superspace, these would be given by the
corresponding Cartan forms udul and u%dul. In the case of curved target superspace,
one has to use the pull-back of the spin connection to make the definition SO(1,9) covariant.
It is convenient to write the definition of the connections implicitly, using the SO(1,D —
1) x SO(1,p) x SO(D — p — 1) covariant derivatives action on the moving frame vector,
Eqgs. (2.13),

Dup® = up' Q% Dup’ = up Q. (2.15)

SO(1,9)
SO(1,p) ® SO(8 — p)

covariant Cartan form and obeys the generalized Peterson—Codazzi equations

Both equations in (2.15) involve the one-form Q. This generalizes the

DOQ¥ = Rai, R .— (uRu)‘” = Iﬁi”—bugug, (2.16)

where R< is the pull-back of the curvature of the corresponding type II target superspace. The
curvatures of the induced SO(1,p) and SO(9 —p) connections, r®® = —rb® and GY¥ = —G’*,
are defined, as usually, by Ricci identities, e.g., DDup® =: Rgguga — up’ry®, DDuy' =:
Ryu.’ + up/ G, Using (2.15) and (2.16), one finds the following generalizations of the
Gauss and Ricci equations (see [15]):

r® = (uRu)™ + Q% A QY GY = (uRu)ij — Q) AQY. 2.17)

Now we can further specify the integrability condition (2.18) for the superembedding
equation (2.6): ‘ _ _
0=DE' = —i& NT2E wy' + ey A QY. (2.18)

Decomposing Q%" on the worldvolume supervielbein, Q¥ = e*Q,% + e’Q,%, we see
that (2.18) involves only antisymmetric part O, b]i of the bosonic coefficient, while its sym-
metric part,

Q(ab)i = Kabi = _D(aEb)£ ugi, (219)

remains free at this stage. The last equality in (2.19) is derived using Eq. (2.11). K,3' can be
recognized as the (superfield generalization of the) second fundamental form of the worldvol-
ume superspace considered as a surface in the target superspace. Then, the generalized Cartan
form (one-form) gives a superform generalization of the second fundamental form K ;%"
To move further we have to impose one more conventional constraint to determine the
fermionic supervielbein form of the worldvolume superspace e¢®. This latter, although ex-
cluded from the decomposition of the pull-back of the bosonic supervielbein by the super-
embedding equation (2.5), does enter the decomposition of the fermionic supervielbein
£x = eﬁVgﬁ + e™pg, which is involved in the self-consistency condition (2.12) and also
in the expression for the torsion two-form of the induced geometry of the worldvolume
superspace,
De® = —i& NTEEw". (2.20)

IThis is O-form, but has a natural bosonic one-form representation as e®K,*. The term «second fundamental
form» does not refer to differential forms, usually associated with antisymmetric tensors; it is from the language of
the classical surface theory where the term «first fundamental form» refers to the metric. See refs. in [15].
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The fermionic supervielbein form e® of the worldvolume superspace W (P+1116) can also
be induced by superembedding. At this stage, when studying the case of M-branes and
fundamental string, one has to introduce one more notion: the spinor moving frame variables
or spinorial Lorentz harmonics [15] (used before in studying superparticles [54,55] and
twistor-like spinor moving frame action for superstrings and super-p-branes [56]). These
objects, which are used to relate the worldvolume superspace fermionic supervielbein with
the pull-back of its target superspace counterpart, e = EQVQO‘, will be discussed in Sec. 4
devoted to the superembedding approach to M-branes. a

Surprisingly, the case of Dp-brane happens to be simpler in the sense that one can escape
the necessity to introduce the notion of spinor moving frame, at least at this stage. This is
why we begin a more concrete part of our review of the superembedding approach from the
case of D-branes.

3. SUPEREMBEDDING APPROACH TO Dp-BRANES

The superembedding approach to Dp-branes was used to describe their dynamics in [3],
where the superembedding equation was shown to produce their equations of motion some
months before the generic nonlinear DBI+WZ action was found in [4,6,7] I It was further
studied in [16], where, in particular, the explicit form of the Dp-brane fermionic equations
was derived for the first time (for the particular case of D4-brane these might be extracted
from the M5-brane fermionic equations which were presented before in [5]). See [17,18,20]
and references in [21,57] for further development.

As already noticed, the basic equation of the superembedding approach to Dp-brane is the
superembedding equation (2.5) equivalent to (2.6). All the formulae of Sec. 2 are valid for
this case, so that we will continue specifying the fermionic supervielbein forms of the Dp-
brane worldvolume superspace and using it to extract the consequences of the superembedding
equation.

3.1. Fermionic Supervielbein Induced by Superembedding and the First Consequence
of the Superembedding Equation. When describing Dp-branes, it is convenient to identify e®
with the pull-back to W (P+1116) of say, the first of two target space fermionic supervielbein
forms

e® = E°L, (3.1

Then, the general decomposition of the second fermionic supervielbein form reads

Eg = ePhga + €%Xaa for TIA case, (3.2)
E°% = ePhg® + e\ for IIB case. '
To resume,
E2 = (e, €’ hga + €Xaa) for TIA case, (3.3)
2 = (e°, ePhs® 4 ex,®) for IIB case. (3.4)

!For the particular case of D2-brane the action had been found earlier in [35] by applying the d = 3 scalar-vector
duality to the M2-brane action [1].
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Now we are ready to find the first nontrivial consequence of the superembedding equation.
Looking at the self-consistency conditions (2.18) for superembedding equation (2.6), we notice
that the second term does not contribute to the lowest dimensional (dim 2, i.e., & e? A e*)
component of this differential form equation. Thus, substituting (3.3) or (3.4) into Eq. (2.18)
we find

hehTuy' = —obuy’ for type TIA, (3.5)
hohTuy = —obuy’ for type IIB. (3.6)
We can continue by studying the higher dimensional components of Eq. (2.18) and also of
the (conventional) equations for the fermionic supervielbein (3.2). On this way one finds,
in particular, that the field strength F,; of the worldvolume gauge field is related to the
spin-tensor h in the decomposition (3.2). However, it is technically much simpler, using the
knowledge on the very existence of the worldvolume gauge field, to introduce its superform
counterpart on the worldvolume superspace, to restrict it by a suitable set of constraints and
study their self-consistency conditions.
3.2. Constraints for the Worldvolume Gauge Field. The constraints for the worldvolume
gauge (super)field strength of the Dp-brane can be written as

.1
Fy:=dA— By, = 5e” A e Foyp, (3.7)

where B, is the pull-back to the worldvolume superspace W (P+1116) of the type IIB NS-NS
superform potential Bo. The field strength of this is restricted by the constraints which can
be collected in the following differential form expressions:

H3:=dBy = —iE* A (E' NoyE' — E* A5, E*)+

1
+ g B N E2 N B9 Hy, e, for type 1A, (3.8)

H3:=dBy = —iE% A (E' Ao, E' — B> Ao, E?)+
+ éE% AN E% N ES He c,c, for type IIB. (3.9)
The lowest dimensional of the nontrivial components of the Bianchi identity
dFy = —H; (3.10)
is oc €7 A e? A e?, this is to say of dim 2. It implies

thhTuQ“ = UéuQckC“ for IIB,

b . —1cb
hethTup® = oluy k. for IIA Ka”i= (4 Flacln = F) ' .11

Notice that this equation relates the spin-tensor h, appearing in the decomposition of the pull-
back of the fermionic supervielbein form (3.2), and the bosonic gauge field strength tensor



Superembedding Approach to Dp-Branes, M-Branes 269

superfield F,;, = —Fjp,. One can easily check that the matrix k, constructed from Fy; as
in (3.11), is SO(1,p) group valued, i.e., it obeys knk™ =n [18,57],

k=m+F)(n—F)"'eSO(,9). (3.12)

Further study shows that the system of superembedding equation plus the worldvolume
gauge field constraints (3.7) always contains the dynamical equations among their conse-
quences (and for p < 5 Dp-branes [17] the superembedding equation along suffices for this
purposes). However, the details of derivation are p-dependent. As an example, below we
will give some details for the case of DO-brane which will be then used in Sec. 5. But before
let us discuss a toy example: D(—1)-brane or D-instanton. What can one obtain from the
superembedding approach in this case?

3.3. A Toy Example: D-Instanton (D(—1)-Brane). For instanton the dimension of the
bosonic body of the worldvolume superspace is zero, d = p+1 = 0, so that this superspace is
purely fermionic W (1'6) It co-tangent superspace basis contains the fermionic supervielbein
e“ only, all the space-time directions are orthogonal to the worldvolume superspace, so that
the moving frame matrix is not needed. Hence, the superembedding equation for D-instanton
reads

Eb =0. (3.13)

The fermionic supervielbein of the worldvolume superspace e can be identified with the pull-
back E! of E°!, and the general decomposition of the pull-back £°2 of E°2 reads E*2 =
ePhz®. The self-consistency conditions for the superembedding equation imply vanishing of
the pull-back of the target space bosonic torsion, 0 = 7% = DE. = —je® AeP (0%+ho2hT) 5.
This results in equation

hoh? = —o2, (3.14)

which does not have solution in the case of real h. However, there is an imaginary solution,
haﬁ _ Z'(gaﬂ_ (3.15)

It implies that Fo2 — jpol and, hence, as far as
Bl = _jFo? = ¢ Bl 4 E°? =0, (3.16)

that both tangent superspace and worldvolume superspace fermionic supervielbeins are com-
plex. This is in agreement with the well-known fact that D-instanton implies Wick rotation,
i.e., exists only in the Euclidean version of the type IIB theory, where the real 16-component
Weyl spinor is inevitably complex (versus the existence of real Majorana—Weyl spinor in the
case of Lorentz 1 + 9 signature).

This seems to be the only result one can get from superembedding description
of D-instanton. It is not surprising as far as D-instanton has no dynamics: it is frozen
to a point of Euclidean space-time (which is expressed by the statement that it is (—1)-brane).

3.4. DO-Brane in Superembedding Approach. In the case of DO-brane, this is to say
D-particle, there are nine space-like directions orthogonal to the worldline, and the tangent
to the worldline gives time-like directions, so that the corresponding set of moving frame
vectors (ud, ul) obeys

wdu?® =1, e =0. ulu¥ = —§Y, (3.17)

a
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The worldvolume superspace W (') has only one bosonic direction e® +— ¢, and the
superembedding equation (2.10) (equivalent to (2.5)) reads

B2 = elug. (3.18)
The expression (3.1) for the pull-backs of the fermionic supervielbein form simplifies to

Eol = ¢, (3.19)
E.? = ePhga + exa. (3.20)

It is convenient to write the self-consistency conditions (3.5) for the superembedding equa-
tion (3.18) in the form of
he'ht = —o°, (3.21)

using the simplified notation

0'26 = U§5UQO, afw = O’iBUQi. (3.22)

These are suggestive as far as the matrices (3.22) and '626 = 6%5%0, Gl = 6%51@ do
possess the algebraic properties of D = 10 Pauli matrices. However, one should keep in
mind that they are not constant matrices but rather obey

0 _ i oy i _ 0 i
DUM*UMQa DUM*UMQ’ (3.23)

where ()7 is the generalized Cartan form defined in (2.15). In this notation the general solution
of Eq. (3.21) reads
hap = Tagp- (3.24)

This is the place to comment on the worldvolume gauge field constraints for the DO-brane
case (worldline gauge field). For p = 0 the r.h.s. of Eq. (3.7) clearly vanishes, so that the
constraints read

Fy:=dA—By,=0 (3.25)

and the Bianchi identities (3.10) simplify to Hs = 0. Their only nontrivial consequence reads
he’n" = 0. (3.26)

Equation (3.26) is satisfied identically by the general solution (3.24) of Eq. (3.21). This
shows that the gauge field constraints in the case of DO-brane are dependent, which is in
agreement with the known statement that the superembedding equation alone is sufficient to
describe dynamics in this case. On the other hand, to arrive at the equations of motion in a
simpler way, it is convenient to impose the gauge field constraints (3.25) on the field strength
of the worldvolume gauge field. Indeed, it is evident without any calculation that the general
solution of Eqgs. (3.21) and (3.26) is given by (3.24).

Another consequence of the self-consistency conditions for the superembedding equa-
tion (3.18) is that the generalized Cartan form €’ in (3.23) is expressed by

Q' =" K — 2ie’ (6% x)5 (3.27)
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in terms of fermionic superfield x, = EOQQ and bosonic superfield
K':=—uDoEy, Ef:=VoZMEy%(2). (3.28)

This latter is the superfield generalization of the mean curvatures of the particle worldline in
target space. The generalized Cartan form (3.27) gives the superform generalization of this
mean curvature for the case of DO-brane in type IIA superspace. It contains K* as a dim 1
and the fermionic x, = EOQQ superfield as a dim 1/2 component; in this sense, Y, is the
superpartner of K. The bosonic and fermionic equations, which can be now obtained from
the self-consistency condition for the fermionic equation (3.20), are formulated in terms of
these superfields.
In flat target superspace the equations of motion imply vanishing of both y, and K°,
Xa:=E2=0 K':=—-u.DE2=0. (3.29)

In general type IIA supergravity background the fermionic equations of motion acquire
the r.h.s.

Xo = E,2 = A, (3.30)

defined by

Ag = (A — Ay0¥)q, (3.31)

where f\la and Agﬁ are the pull-backs of the Grassmann derivatives of the dilaton superfield,
and

i o i

Aal = _(Dalq)); A2 = 5

. (DS @) (3.32)

are the pull-backs of the Grassmann derivatives of the dilaton superfield. The origin of the
r.h.s. in Eq. (3.30) is nonvanishing fermionic torsion of the target type IIA superspace [47]

To' = —2iE*' N EP'Agy +iE 0 NE' 55 Ap1+ o B,

(3.33)
T2 = —2iE? NESA] +iE6, N E? 0% NS+ o EL.

The bosonic equation for DO-brane in general supergravity background reads

i i [ha 1 ~ i 704 i A
K' = —uy Dok = 726 Ptap — Dalg) + §(AQUO Ay) =

= ®RY 4 DD + O (fermi®), (3.34)
where
tap = (T(ﬂﬂ% + 00,15 ah — Tara 085 — 00, T3 951025) ut?. (3.35)

To arrive at the second line of Eq. (3.34), written explicitly up to the fermionic contributions,
one has to use the explicit form of the dim 1 target space torsion spin-tensors, entering (3.35),
and of the derivatives of fermionic superfield D, A which can be found in Appendix B.
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4. M-BRANES IN THE SUPEREMBEDDING APPROACH

The basic superembedding equation describing the dynamics of M2- and M5-branes has
the same form as (2.5), or equivalent to (2.6). However, in these cases the fermionic
supervielbein £2 is in the minimal 32-component D = 11 Majorana spinor representation, so
that the trick we used in the case of Dp-branes does not work and the relation between o
and the worldvolume superspace fermionic supervielbein form e®? is now more complicated.

Notice that, when studying 11D M-branes (and also fundamental strings in D = 10),
it is convenient to denote the fermionic supervielbein of the worldvolume superspace
W @+1132) by eaq,

a=1,...,sp,

e of Secs. 2,3 and 5 —— e“? of this sec. with sp 1= dim (?gin(l,p)), 4.1)
qgq=1,...,—,
Sp

i.e., to split the 16-valued (multi)index of this fermionic one-form on the Spin (1, p) index
a (o = 1,2 for M2- and o = 1,2,3,4 for M5-brane) and the Spin (D — p — 1) index ¢
(g=1,...,8 for M2- and ¢ = 1,...,4 for M5-brane).

The fermionic supervielbein e”? induced by superembedding can be defined in terms of
the pull-back E2 of the D = 11 targets superspace fermionic supervielbein ££ with the use
of 16 x 32 matrix vgﬁp of rank 16,

PP = 29, PP, (4.2)

The simplest choice of v,”P to be a 32 x 16 block of unity matrix clearly breaks SO(1,10)
Lorentz symmetry (at least down to SO(1,9), in which case we arrive at equation equivalent
to (3.1)). To preserve the 11D Lorentz symmetry we have to assume that v,”? is a 32 x 16
matrix superfield. It is convenient to consider it as a 32 x 16 block of a Spin (1, 10) group
valued 32 x 32 matrix superfield

(g) aq - avﬂ: 1a27
Ve — ( , ) € Spin (1, 10), 43
8 g VBad pin ( ) {q =1,...,8 for M2-brane, 3
=1,2,3,4
V@:(vaq,u Q)esm 1,10), of=1234, 4.4
8 B Ba pin ( ) q=1,2,3,4 for M5-brane. @4

These spinor moving frame superfields (also called spinor Lorentz harmonics [54-56]) describe
the spinor representation of the same SO(1,10) Lorentz rotation, the vector representation
of which is described by the moving frame variables (2.14) and, hence, carry the same local
degrees of freedom as the moving frame vectors '.

The Spin group, the double covering of the Lorentz group SO, is defined by the conditions
of the preservation of the gamma matrices. Hence, the above-mentioned relation between

I These moving frame vectors can be identified with derivatives of the coordinate functions (see Eq. (2.11)), so
that one can either state that they are auxiliary fields which do not bring new dynamical degrees of freedom, or,
equivalently, say that they carry some «momentum» part of degrees of freedom; in other words, they are counterparts
of momentum variable p in the first-order formulation of the particle mechanics S = f dt pg — f dr e(p2 — m2) /2.
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vector and spinor moving frame variables (vector and spinor Lorentz harmonics) of Egs. (2.14)
and (4.3) (or (4.4)) is given by

VIaVT = [y,
T _ 1brr (a b
Vr@yT =1 Ug(a) = {VFiVT _ Tty 4.5)
or, equivalently, by
VITey = TOU e = M — Tu'e. (4.6)

In the dimensions where the charge conjugation matrix C' exists, including the cases of D = 11
we are interested in here (but not in D = 10 A/ = 1 and type IIB cases), the condition of its
conservation should be also listed among the defining relations of the spinorial moving frame
variables,

vevt =c, vicT'v=ct 4.7)

These relations imply that the inverse spinor moving frame matrix V =1,
V_l(f)f V(Q)B = (waqﬁ,waﬁ) for M2-brane, (4.8)
V7w = Vie)? = (vag?,v5?) for M5-brane, (4.9)

obeying
: By P §%.5-P) for M2-
yLy® 50 _ { g (585 305 o M (4.10)

diag (6,°6,7,6%36,) for M5-brane

can be explicitly constructed from the original harmonic matrix (4.3) or (4.4), V~! =
CVTC~!. In the case of M2- and M5-branes the components of the inverse matrices (4.8)
and (4.9) are defined by

Vo™ = Ca—‘seagvéﬁq, g‘g C%9¢ aﬁv55~ for M2-brane, (4.11)
Vag® = Z’C@quvgﬁ, vt = zC“‘qupvép for M5-brane, (4.12)

where C29 and Cyp are the D =11 =1+10 and d = 5 = 54 0 charge conjugation matrices;
see Appendix A for more details on our notation. Notice that we found it more convenient to
introduce i = v/—1 in the definition of the inverse moving frame matrix components (4.3) for
the case of M2-brane, while in the case of M5-brane we introduced it in the relation between
the components of the inverse and the original moving frame matrices (4.12). The latter choice
looks more natural, while the former is explained by that in the case of p = 2 there exists the
SL(2,R) = Spin (1, 2) invariant antisymmetric tensor ¢*# = io? and its inverse €,5 = —io?,
which can be used to rise and to lower the SL(2,R) (SO(1,2) spinorial) indices; then, the
use of notation similar to the one accepted for M5-brane case might produce a confusion.

When the charge conjugation matrix does not exist (like in the D = 10 A/ = 1 case in-
volving the Majorana—Weyl spinor representation), the inverse spinor moving frame variables
are defined just by the constraint V'V = I (Eq. (4.10)), i.e., its dependence on the original
harmonics remains implicit.

As the spinor moving frame variables (spinor harmonics) (4.3) (or (4.4)) carry the same
local degrees of freedom as the vector harmonics (moving frame variables) (2.14), their
derivatives are expressed through the same generalized Cartan forms (2.15). To find this one
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just notice that the Lorentz group SO(1, D — 1) and its doubly covered Spin (1, D — 1) are
locally isomorphic. Then, isomorphic is the co-tangent and tangent space to these groups,
spin(1,D — 1) = so(1,D — 1). In the case of SO(1,D — 1), the latter has the natural
basis described by the generalized Cartan forms Q@®) = 4 (@) DEye®) where D* is the
Lorentz covariant derivative constructed with the use of target superspace spin connection,
DLug) = dug) + wggug). The isomorphism of spin (1, D — 1) and so(1, D — 1) algebras is
described by the following universal (D-independent) relation between the generalized Cartan
forms of Spin (1, D — 1) and of SO(1,D — 1):

1 b — U 1 U)'\& b =
‘7 DL‘/' — Q(ﬁ)(_” (a)(b) = ( D )(a)(_)| (g)(b)
Qolr,, QUTY — QYT T, (4.13)

where DXV = dV — (1/4)wl V.
In superembedding approach it is convenient to consider the spinor moving frame variables
Spin(1,D — 1)
Spin (1,p) ® Spin (D —p — 1)
Spin (1, p)®@Spin (D—p—1) gauge symmetry of the embedding of the worldvolume superspace
as an identification relation. In practical terms this implies that it is convenient to rewrite
Eq. (4.13) in terms of Spin (1, D — 1) ® Spin (1, p) ® Spin (D — p — 1)-covariant derivative D:

as homogeneous coordinates of the coset , using the natural

DV :=dV — iwa—br@v - ivrabmb - ivriﬂ' Q9 = —%Q‘“’vrari. (4.14)

To specify further the above equations, one needs to use explicitly an SO(1, p) x SO(D —
p — 1) invariant representation for the I'-matrices

@ — (re, 1), (4.15)

so that the further details are p-dependent and will be discussed in the case-by-case manner.
The representation convenient for the study of M2- and MS5-branes and useful relations for
corresponding spinor moving frame variables can be found in Appendix A.

To conclude the general description of the spinor moving frame variables, let us notice
that their use is also inevitable when constructing superembedding approach to fundamental
string [15] (see [58] for recent review and elaboration of a specific case of type IIB superstring
in AdS5 ® S° background).

4.1. Superembedding Description of M2-Brane (Also Known as D = 11 Supermem-
brane). In this section we will show how the dynamical M2-brane equations follow from the
superembedding equation (2.6) (equivalent to (2.5)) [15],

E' = E%," = 0. (4.16)

We have tried to make this section «closed», so that it can be read independently; this explains
some repetitions of the statement of the previous sections.

The geometry of the worldvolume superspace is induced by superembedding. This implies,
in particular, that its bosonic supervielbein form and SO(1,2)® SO(8) connection are defined
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by (2.9) and (2.15). The fermionic supervielbein of the M2-brane worldvolume superspace
WGI6) can be identified with, say, Eg‘ = Eﬁvéqa. Then,

E((; = éﬁvgqa = e, Eﬁq = éﬁvgﬁq =ehqq g + ebxbﬁq. 4.17)

With such conventional constraints, the lowest dimensional (dim 0) spin-tensorial component
of the integrability condition for superembedding equation, Eq. (2.18), reads 7 ;hgpaq +
Yighagsq = 0. The solution of this equation is trivial, hagq® = 0, so that Eqs. (4.17)
simplify to [15,59]

Ef =™, Egq =" pq: (4.18)

Using Eqgs. (4.18), the tangent superspace torsion constraints (1.3), the conventional constraints
resumed in the first equation of (2.15) and the superembedding equation (4.16), one finds that
the bosonic torsion of the worldvolume superspace reads

De® = 2ie“? N\ eﬁq'ygﬁ —ie® A eCxprxe. (4.19)

Now, the dim 1/2 o e’ A ¢*? component of Eq. (2.18) expresses the spinorial component
of Cartan form Q% ng} = 2i'yépxgp; the dim 1 o e’ A e¢ component implies U b]i =0,
which means that the pure bosonic component of Q% is symmetric, .’ = Qan)’ =
u@Dpyue’ = —Dupy® uc' and coincides with the (superfield generalization of the) sec-
ond fundamental form of the worldvolume superspace considered as a surface in the target
superspace, Eq. (2.19).

To resume, the dim 1/2 and 1 components of the integrability conditions (2.18) for the
superembedding equation (4.16) give us the expression for the generalized Cartan form Q%
in terms of the second fundamental form K, of Eq. (2.19), and in terms of the fermionic
superfield xp3” = B vag” = Dy ZM E3%(Z)v44”, which, in this sense, is a superpartner of
the second fundamental form,

Q% = 2Tyl x ap + K™, Koy’ i= —D(aEypu,, (4.20)
Xoi” = By vag” = Dy ZM Ey*(Z) vag”. |

Now we turn to the self-consistency conditions for the second equation in (4.18). It reads

1 ; ; .
0=D(Eaj — " Xvag) = Ta ag — ieﬁp A Q" Yo apVpg + iePP A e”p'ygvxbaq-—f—
+ie” A e“Xp7Y XeXapq — €” A Dxppg,  (4.21)
where we have used the expression for the bosonic torsion of the worldvolume super-
space (4.19), as well as the expression for the derivative of the spinorial harmonic,

1 . )
Dgoq = =50 VPV Vaas) (4.22)

which appears as of the rectangular blocks of Eq. (4.14).
Taking into account expression (4.20) for Q%, one finds that the lowest dimensional
o e’ A e’ component of Eq. (4.21) reads —i'y;,q’y;/p'ygﬁxaw = Yy g Vpp Yoy XaBpt
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2i0pp Xaag = 0. The only consequence of this equation is that YaasX5; — YaarXF; = 0,
which is an equivalent form of the fermionic equations

;ya(yﬁxaﬁq, (lOéﬁE _Uaﬂq =0. (423)
Then, the dim 1 o< €® A e#P component of Eq. (4.21) is 0 = DgpXbag + vgpﬁfgglvl agUp® +
(1/2)7472 3K ap". Contracting this equation with 527, one finds

Vi Ka"05" = =20, Tna® V5 07" W™ — 2D gp(7"Xag)”- (4.24)
The last term vanishes due to the fermionic equation of motion (4.23), so that
Py[i)(j}(aaiéﬁ’Y = _2vﬁp Toza(S Vs aquba’yubf (4.25)

The bosonic equations of motion are obtained by contracting this equation with 1/ 167;‘)4(%5 .
It reads
ai . afr b, i 1 a i xbBa [ B
K" = =D'E,> up" = Vs pY s agUb™Taa® (4.26)
The fact that other irreducible parts of the r.h.s. of Eq. (4.25) vanish, i.e., that
V8p2 T e V5 gV up® o 'y;qég”’, might contain a nontrivial information on the geometry
of the D = 11 superspace supergravity background. One can check that this is satisfied
identically for
1
T l = ——
pa 144

(erngwax + 8Fg¢16203rw) ﬁla (4.27)

which follows from the standard superspace constraints of D = 11 supergravity [44,45] by
studying the Bianchi identities. Using (4.27), one can obtain the more specific form of the
(superfield) bosonic equations of the M2-brane: Eq. (4.26) is equivalent to

A
Ko = 2 Flapes™, (4.28)

where 4 . 4
anbc = M(Z)u@ubgucgudi. (429)

To make a contact with standard formulation of the supermembrane [1], let us notice that,
on the bosonic worldvolume, 1gnor1ng fermions, and writing equatlons in terms of the induced
metric (gmn = €m“€an = Em®E,,), one finds that D*E,L = D,,(1/]glg""E,L), where D,,
is the SO(1,9) covariant derivative on the worldvolume. Hence, Eq. (4.28) coincides in this
case with the standard supermembrane equation

~ 1 ~ ~ ~
m(V/]glg""ERb) = —gnb—“ Fupeac®™,  Fy ave := Fapea B2 EEE 2 (4.30)

contracted with the orthogonal harmonics u,* (K, := —D“Eaﬁugi = Dy (/] g| g E, Byuyh).
The projection of the supermembrane equation onto the vector harmonics u;®, tangential to
the worldvolume, DaEaQqu = ..., can be shown to be satisfied identically. This is the
Noether identity reflecting the reparametrization invariance of the supermembrane (action and
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of the) equations of motion. Thus, Eq. (4.28) is equivalent to the standard supermembrane
equation, Eq. (4.30) modulo fermionic contributions.

Coming back, let us stress that Eq. (4.24) gives us the interrelation between the fermionic
and the bosonic equations, Eqgs. (4.23) and (4.26), of supermembrane in general D = 11
superfield supergravity background. It shows that the bosonic equation of motion of the
M2-brane can be obtained as a second component in the decomposition of the superfield
generalization of the fermionic equation of motion on the Grassmann coordinate.

4.2. M5-Brane in Superembedding Approach. The dynamics of M5-brane is also fixed
by the superembedding equation (2.5) [5] equivalent to (2.6),

E' = F%, =0. (4.31)

The bosonic supervielbein of the worldvolume superspace is defined by (2.9) and the worldvol-
ume superspace SO(1,5) and SO(5) connections — by (2.15). The fermionic supervielbein
of the M2-brane worldvolume superspace WW(®I19) can be identified with, say, 9 := £y,
Then, N

B9 = EByg0t = 29, (4.32)
Bl =E%a% = ¢"hap + €"xp 57, (4.33)

To be more precise, the general decomposition of the second projection of the pull-back of the
target superspace fermionic supervielbein £< reads é%}gg‘? = €Phy, 57 +ePxp 37, However,
as the further study shows anyway that hqp 3¢ = hagdp?, we have allowed ourselves to make
a shortcut substituting this expression in Eq. (4.33) from the very beginning.

Equations (4.32) and (4.33) can be collected in

EX = PV, 2 (h) + e xapP vy, Vip2(h) := vy + hg v, 2. (4.34)

For the discussion below it is useful to notice that the «deformed harmonics» V3,%(h) :=
vgp*+hgyvp 7 obeys (see Appendix A, Subsec. A2 for our notation I'-matrices representation
and ~y-matrices properties)

ua@ubQVgpﬁ(h)Fab 5V[3pé(h) = Zi('yabh)[ag]qu. (4.35)

The lowest dimensional (o< e®? A €°P) component of the integrability conditions for the
superembedding equation, Eq. (2.18), results in hog = hgo. As in d = 6 the basis of
symmetric spin tensor matrix is provided by yg%c (notice that 55 = —v55 = (1/ 2)€a 6770

and 7(93%) = 2 see [66] and Appendix A, Subsec. A2 for more detail), so that
1

hap = ghabwgl;f. (4.36)
As far as 'yg%c is anti-self-dual, ,yg%c = —(1/3!)eabedef . fas. the antisymmetric tensor Aqpc
in (4.36) is self-dual,
1
habe = 3y €avedeh™®! (4.37)

An important property of the symmetric spin-tensor hg is (cf. (3.11))

hA%h = APk, ky® = —2hpegh©l. (4.38)
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One easily obtains this taking into account that, as a consequence of the self-duality (4.37), the
contraction of hgp. With ’ygbﬁc = +(1/3!)eabcdef’ydef @B vanishes. Then, h7%h = h®°(Yy.h)
from which one easily arrives at (4.38).

The appearance of a third-rank antisymmetric self-dual tensor reflects the fact that the
linearized spectrum of the MS5-brane includes the chiral two-form potential [67], i.e., the
two-form 6d gauge field with the self-dual three-form field strength. Beyond the linear
approximation, one finds that the gauge field strength tensor obeys a nonlinear generalization
of the self-duality condition [5,8,9].

The dim 3/2 and dim 2 components of the integrability condition Eq. (2.18) determine the
generalized Cartan form to be

Qai _ 2eaq,yépxaap 4 ebKabi, (439)

where K% = K is the second fundamental form defined as in Eq. (2.19) and 7/, =
—ip = (1/2)€qprs¥'™ = —(5"9)* are the SO(5) Klebsh-Gordan coefficients (see Appen-
dix A, Subsec. A2 for their properties).

The bosonic torsion of the worldvolume geometry induced by superembedding reads

De® = —ie® N ePPCoprl 3my® + 2i€” A e®1C o, (W X0 ) o + 1€ N YA YL Cyp, (4.40)

where [5,60]
Ma’ = 0a" + ko = 04,° — 2haeah??. (4.41)

Generically, this matrix is invertible (and not k of (4.38); cf. Eq. (3.11) in the case of
Dp-branes).

Now we could pass to studying the self-consistency condition for the fermionic one-form
equation (4.33),

0= D(qu - eaqhaﬁ - ebXbﬂq) = Agvgﬁq - %eap A Qai'yaaﬁ('yic)pq_
— e N\ Dhog — e’ A Dxp3? — De*Thapg — Debxbgq, (4.42)

and obtain all the dynamical equations from this. In the second equality of (4.42) we have
used the second of the following two spinorial counterparts of Egs. (2.15),

Dug™ = 200?30 (1'C)y,  Duga® = — 500050 (110)1,  (443)

while the first one has to be used in calculation of fermionic torsion. Clearly, neither this nor
Eq. (4.42) as a whole looks simple in general type II supergravity background.

However, the study may be simplified essentially if we use the presence of the above-
mentioned two-form gauge field on the M5 worldvolume, generalize it to the superform b
on the worldvolume superspace, impose the constraints on its generalized field strength and
study the corresponding Bianchi identities. This is the counterpart of imposing the gauge field
constraints on the worldvolume superspace of Dp-branes which we discussed in Sec. 3.

The constraints on the three-form field strength [5] can be written in the form

A 1
Hs :=dby — C3 = gec A e’ A e Hape, (4.44)



Superembedding Approach to Dp-Branes, M-Branes 279

where Cs is the pull-back to W(I16) of the three-form gauge potential of the superspace 11D
supergravity, the field strength of which obeys the constraints

1 1
Fy=dCs = 1EQAEQAEARL,JEJFEEdA...AEQFM. (4.45)

The Bianchi identities
dHs = —F4 (4.46)

result in the relation between the tensor field strength H,;. and self-dual tensor hgp. of
Egs. (4.36), (4.37) [5,60]

0 Hs = P = saneier i (4.47)

as well as
DoagHave = —6iCop (B3 010) Hyeya, (4.48)
Do Hyea) = —3iCop(¥1a ¥ V) Heape + iuag~ g Fuea(2). (4.49)

Clearly, Eq. (4.47), in the derivation of which one uses identity (4.35), provides a nonlinear
generalization of the self-duality equation and, hence, implies dynamical equations of motion
for the two-form gauge field b,. (To convince that this is the case, it is sufficient to note that
the standard self-duality implies that the linearized two-form gauge field equations of motion
in d = 6 are satisfied.)

The above relatively simple derivation of the nonlinear self-duality equation (4.47) gives
one more example of the usefulness of introducing the worldvolume superspace gauge po-
tentials and studying the corresponding Bianchi identities for their constrained field strengths.
The details on derivation of the dynamical equations for the M5-brane coordinate functions
from the superembedding description can be found in the original articles [5,60,61] and in
the review [19]. The proof of their equivalence to the equations of motion derived from the
worldvolume action [8,9] is the subject of [60,61].

5. MULTIPLE D0-BRANE EQUATIONS
FROM SUPEREMBEDDING APPROACH

It is the usual expectation that the action for a system of N Dp-branes will essentially be
a nonlinear generalization of the U(N) SYM action. In particular, the (purely bosonic and
not Lorentz invariant) Myers action [24] is of this type. Then, the equations of motion which
should follow from a hypothetical supersymmetric and Lorentz covariant generalization (or
modification) of this action are expected to contain the SU(N) SYM equations (U(N) =
SU(N) x U(1)), while the center-of-mass motion is expected to be described by a usual type
of coordinate functions Z2(¢) and by related equations for the U/ (1) gauge fields (presumably
coupled to the SU(N) equations). Notice that the center-of-mass equations of motion (and
equations for U(1) gauge fields which are expected to be involved in the center-of-mass
supermultiplet) are expected to be quite close to the equations for a single Dp-brane, but with
the single brane tension (mass) 7" replaced by NT. In this section we review, following [22],
the application of the superembedding approach in search for such supersymmetric equations.
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5.1. Non-Abelian A = 16, d = 1 SYM Constraints on D0-Brane. In [22] the worldvol-
ume superspace of multiple DO-brane system was assumed to obey the same superembedding
equation (2.6) as in the case of single D-brane.

To motivate this, let us notice that the superembedding equation is pure geometrical.
It states, in its form of (2.5), that the pull-back of the target space bosonic vielbein to
the worldvolume superspace W(I16) does not have projections on the fermionic vielbein of
WQI6) - Hence, it is natural to assume that the center-of-mass motion of the system of
multiple DO-brane will also obey the superembedding equations.

Of course this is not a proof. But the universality of the superembedding equation,
which is valid for all extended objects studied till now in their maximal worldvolume su-
perspace formulations, and the difficulties one arrives at in any attempt to modify to try
to impose it, following [22], at least as an approximation (see concluding Sec. 6 for more
discussion on this).

As far as the superembedding equation puts the p < 6 Dp-brane models on the mass shell,
our superembedding approach to p < 6 NDp-brane model predicts that the center-of-mass
motion will be described by the motion of single brane with tension N7T'. Then, in the light
of the above-stated, and taking in mind that a good low-energy approximation to mutiple
Dp-brane is given by maximally supersymmetric d = p + 1 U(N) SYM action, the only
possibility to describe the multiple DO-brane system in the framework of superembedding
approach seems to consider a non-Abelian SU(N) gauge field supermultiplet on the DO-brane
worldvolume superspace wle), (See [21] for more discussion on a similar issue in the
context of searching for hypothetical Q7-branes [68].)

This can be defined by an su(n) valued non-Abelian gauge potential one-form A =
eV Ay + e A,, with the field strength

1
Go=dA—ANA= §eaAe5Gaﬁ+e0AeﬁG50, (5.1)
which obeys the Bianchi identities
DGy =dGy —Go ANA+ANG2=0. (5.2)

As in the Abelian case discussed in Sec. 3, to get a nontrivial consequences for the structure
of the field strengths G5, Ggo form Bianchi identities, one has to impose constraints. A
natural possibility is

Gap = io),zX", (5.3)

with some su(N) valued SO(9) vector superfield X*. (See Subsec. 5.5 for discussion on
possible modification of this constraint). The Bianchi identities (5.2) are satisfied if X’ obeys

D, X' = 4i(6°6%),° V4 (5.4)

and Goo = iV, + (i/2)(0%A), X It is natural to call (5.4) superembedding-like equation
as it gives a matrix SU(N) gauge invariant generalization of the gauge fixed form of the
linearized superembedding equation (2.5) (this reads D, X* = x (695 (02% — ©1)),, see [3]).

5.2. Multiple D0-Brane Equations of Motion from d = 1 N/ = 16 SYM Constraints. Flat
Target Superspace. Let us, for simplicity, consider the case of flat target type IIA superspace,
in which, on the mass shell of DO-brane, ¢ = 0, so that 02 3 and O'é 5 are covariant constants,
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Dagﬁ =0= Daflﬁ. In this case, the integrability conditions (D(BDQ)Xi =...) for Eq. (5.4)

result in ) )
, , 0id i <
D,Vg = _QUZYBDO}Q + 1_6002 [X*, X7] (5.5)

and the integrability conditions for Eq. (5.5) result in 1d Dirac equation of the form '
1 , ,
Do¥s + 1[(00@)5,3@] =0. (5.6)

Applying the Grassmann covariant derivative D, to the fermionic equation (5.6), one derives,
after some algebra, the following set of equations:

. 1 . . . ) .
Dy DX — 3_2[[X’,XJ],XJ] + %{\Ifa, s}eief =0, (5.7)
[DoX?!, X — 4i{ W, Ug} 59 = 0. (5.8)

Equation (5.7) is a candidate bosonic equation of motion of multiple DO-brane system. Equa-
tion (5.8) has the meaning of Gauss low which appears in gauge theories as an equation of
motion for the time component of gauge potential (which usually plays the role of Lagrange
multiplier).

5.3. Relation to D = 10 SYM and M(atrix) Model. The appearance of the counterpart
of Gauss low (5.8), characteristic of gauge theory, is not occasional. The point is that our
equations appear to be the D = 10 SYM equations dimensionally reduced to d = 1. The
reason is that our constraints (5.3) for d = 1, N' = 16 SYM multiplet can be obtained as a
result of dimensional reduction of D = 10 supersymmetric gauge theory. Indeed, the standard
D =10 SYM constraints imply vanishing of spinor—spinor component of the field strength,

Fopg = QD(QAQ) + {AQ,AQ} — 21'0%5&& =0. (5.9

Assuming independence of fields on the nine-spacial coordinate, one finds that spacial com-

ponents A; of the ten-dimensional field strength are covariant and can be treated as scalar
fields

A; =X/2. (5.10)
Then, the minimal covariant field strength for d = 1 SYM can be defined as Gop =

2D Agy + {Aq, Ag} — QiJ%BAQ and, due to the original D = 10 SYM constraints (5.18),
this is equal to i0'X?, as in Eq. (5.3),

Gap = 2D(aAg) + {Aa, Ap} — 2ioozAg = ic ;X" (5.11)

The above observation is important, in particular, because it indicates the relation with
Matrix model [34]. Indeed, this is described by the Lagrangian obtained by dimensional
reduction of the D = 10 SYM down to d = 1 [34]. Actually, the d = 1 dimensional
reduction of the U(N) D = 10 SYM was the first model used to describe DO-brane dynamics

'An important check on consistency is that the irreducible o Oa,...ay part of this integrability conditions is

satisfied identically; its oc o® part gives (5.6), while oc o part gives (5.6) times o0%.
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in [33] even before the nonlinear DBI+WZ action for super-Dp-branes was constructed in [4,
6,7]. Our superembedding approach description [22] differs from the above-mentioned U (N)
SYM approximation by that it uses the SU(N) SYM to describe the relative motion of the
constituent branes, while the U(1) gauge field entering the multiplet describing the motion
of the center of mass obeys the nonlinear Born—Infeld type equations; also the coordinate
function describing the embedding of worldline superspace into the target superspace obeys
the nonlinear equations. Even if such a manifestly supersymmetric and Lorentz covariant
description appeared to be only approximate, this would be a wider applicable approximation
the use of which might be productive.

In the light of identification (5.10) it becomes clear that the superembedding-like equation

for the SU(N)-valued superfield X* (5.4) comes from the consequence F,, = 2i(0,¥), (with

U defined by U =: 590) of the constraints (5.18) and thus provides the general solution of
the Bianchi identity

Iogy = D(aGﬁ'y) + ﬁ(aﬁéGv)g + 41'0?&66:7)0 =0 (5.12)

in the presence of these constraints.

To resume, for the multiple DO-brane system in flat target type IIA superspace the world-
line superspace W(16) is flat and our superembedding approach results in equations which
are equivalent to the ones obtained as a result of dimensional reduction of D = 10 SYM.
However, it can also be used to describe the multiple DO-brane system in curved supergravity
background, where the way through 10D SYM dimensional reduction is obscure.

5.4. Multiple D0O-Branes in Curved Type IIA Background. Polarization by External
Fluxes. In the case of worldvolume superspace of DO-brane moving in curved target type
ITA superspace, the calculations become more complex due to the presence of bosonic and
fermionic background superfields. For instance, instead of (5.5), one finds

1 1 N j A € A €
Dolp = —50ys + Eggg (X1, XI] + A1 U519 0 + (A200) U520 05 (5.13)

with spin-tensors Elygf‘sag possessing the properties 0“—%“21,255&5 x 0@65 and DWELQE‘;QQ

o A. We will not need an explicit form of these (we leave this and other details for future
publication) as our main interest here will be in the algebraic structure of the bosonic equations
of motion (see Appendix C for the structure of fermionic equations). Up to the fermionic
bilinears proportional to the fermionic background fields these bosonic equations read

. 1 . . . ) .
l)()l)()ng - 3—2[[X1,X3],X7] + %{\Iloz; \116}6-10(5 =

L 1 . ) A ~ ~ ~
= DOXJ FJ* + 1—6[X],Xk]G3k’z + O(ALQ . \I/) + O(ALQ . ALQ). (514)

The SO(9) tensor coefficients F7+* and G’* in the r.h.s. of (5.14) are expressed in terms of
the NS—-NS and RR fluxes by

R = QOEO\(I’(S” + P RY + g HOV (5.15)
ij’,i _ po(si[j.D/k]\(I) + qlgi[ij]O +p2ﬁijk —+ q3ROijk, (516)
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Here ¢o,1,2,3 and po,1,2 are constant coefficients characterizing couplings to dilaton as well
as to electric and magnetic fields strength of the one-form, two-form and three-form gauge
fields; the RR field strength is defined by Rg, 49 = dCo,41 — Co,—1 A Hs and the three-form
field strength of the NS-NS two-form gauge field is simply H3 = dBs.

Notice that the center-of-mass motion is factored out and is described by the single
DO-brane equations (3.34),

K':=DyDoX' +...=e* R + Di® + O (fermi®), (5.17)

where X? := ZM E% (Z)u,' = X%u4'+. .. Comparing Eq. (5.17) with Eq. (5.14) we see that
the multiple DO-branes, as described by this equation, acquire interaction with higher form
«electric» and «magnetic» fields H%9 := Hypo(Z)u@ubivg, H* = Hupo(Z)uubiugk,
RY9* .= Rypea(Z)u®ubiuud®. As one DO-brane does not interact with these backgrounds,
one may say that the multiple DO-brane system is «polarized» by the external fluxes such that
the interaction with higher brane gauge fields is induced, much in the same way as neutral
dielectric is polarized and, due to this polarization, interacts with electric field. This is the
famous «dielectric brane» effect first observed by Emparan [23] and then by Myers in his
purely bosonic nonlinear action [24].

5.5. Possible Deformation of the Constraints and Superembedding Equations. The
relation of our description of multiple DO-brane system with the dimensional reduction of
SU(N) SYM model suggests a possible existence of modifications of our d = 1 N = 16
SYM constraints (5.3). What one can certainly state is that such a modification exists for the
case of multiple DO-brane system in flat target superspace.

Indeed, according to [62,63] the most general deformation of the D = 10 SYM constraints
by contributions of the fields of SYM supermultiplet at the order (a’)? reads !

Fop = B(0%W)q (021) sF s, (5.18)

where (3 is a constant proportional to the second power of the Regge slop parameter, 3 « ()2,
and U is the basic superfield strength of the D = 10 SYM multiplet. This appeared in the
equation F,, = 2i(0,V¥),, which follows from the standard SYM constraints F,5 = 0. Of
course, when the dim 1 constraint becomes (5.18), the dim 3/2 equation also gets modified
by oc 3 contributions, Foq = 2i(0,¥)s + O(6).

The dimensional reduction of the deformed SYM theory characterized by the constraints
(5.18) implies the following constraints for the minimal field strength of the dimensional

reduced d = 1 theory:

Gap = i0,5X" — B (4 (c” W) 5 DoX' + g(am\lf)a(aoi\y)g[xi,xj], (5.19)
U =00, (5.20)

This can be used now as a constraint for d = 1, N' = 16 SYM model leaving on the
worldline of a DO-brane moving in flat targets superspace (as such a superspace is flat). This,
in its turn, implies the following modification of the superembedding-like equation (which

IThe author thanks Linus Wulff for useful discussions on the SYM deformations.
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can be obtained by dimensional reduction of the consequence Fo, = 2i(0,¥)q + O(F) of the
modified constraint (5.18)):

Do X' = 4i(0"" W), + 3iB6"°7 D,

<x115(0—01\1/)7)D0X" + i(amqf)ﬁ(aofxp)v)[xi, Xj]) . (5.21)

Even leaving aside the question of whether a counterpart of such a modification can
be found for the case of DO-brane worldvolume moving in an arbitrary curved type IIA
supergravity background, one sees that these constraints are too complex. It is very hard to
deal with them, at least without the use of a computer programme (see [64] for an efficient
use of computer programmes in superfield calculations).

Then, even if our formulation of superembedding approach to multiple D-brane system
based on superembedding and superembedding-like equation as well as on the constraints (5.3)
is approximate, it promises to be an efficient approximation to study such systems. Follow-
ing [22], we have proved that such an approach exists and is consistent in the case of multiple
D-particle (DO-brane) system. An important problem is to understand whether it can be
extended to type IIB multiple D-strings (D1-branes), D-membrane (D2-brane) and higher
Dp-brane systems.

6. CONCLUSION AND DISCUSSIONS

In this contribution we review superembedding approach to D-branes and M-branes [3,5,
15] as well as its recent application [22] to searching for the covariant and supersymmetric
equation for multiple D-brane systems.

We begin by general review of the superembedding approach to Dp-brane, which hap-
pens to be simpler because, at least on the level of details of the present contribution, it
does not require introducing the spinor moving frame variables (see [57] where one can see
the stage on which the introduction of these variables is hardly possible without breaking
the Lorentz invariance). Then, we review superembedding approach to M2- and M5-branes,
where the spinor moving frame variables do play essential role. In our review of superem-
bedding description of D- and M-branes we put an emphasis first on the universality of the
superembedding equation which, for the most interesting cases of M2-, M5- and Dp-branes
with p < 6, specifies completely not only the worldvolume superspace geometry but also the
dynamics of the brane. We also stressed the usefulness of introducing the worldvolume super-
space gauge forms corresponding to the worldvolume gauge fields and studying the Bianchi
identities for their constrained field strength. This is inevitable for Dp-branes with p > 5,
but also very convenient for the branes the dynamics of which is completely specified by the
superembedding equation. The superfield description of the worldvolume gauge fields for a
single D-brane (and chiral two-form gauge field of M5-brane) suggests trying to describe a
multiple Dp-brane system by putting an additional non-Abelian SU(N) gauge supermultiplet,
described by a set of worldvolume superspace constraints, on the worldvolume superspace of
a single Dp-brane.

In Sec. 5 we, following [22], apply superembedding approach to search for the multiple
DO-brane equations on this line. We show that for the case of arbitrary (on-shell) type II
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supergravity background the dynamical equations obtained from the superembedding approach
describe the coupling of multiple DO-branes to the higher NS-NS and RR fluxes (H%7, H¥
and R"7*). Thus, our equations of motion show the «polarization» of multiple DO-brane
system which generates charges characteristic for higher D-brane. This is the content of
the so-called «dielectric brane effect» [23,24] characteristic for the (purely bosonic) Myers
action [24]. Further study of these equations and of possible restrictions which they might
put on the pull-back of background fluxes to the worldline is an interesting problem for future
study.

In the case of flat tangent superspace, when the background fluxes vanish, the d = 1N =
16 worldvolume superspace of DO-brane is flat and the dynamical equations for the relative
motion of DO-brane «constituents», which follows from the superembedding approach, are
those of the D = 10SU(N) SYM dimensionally reduced down to d = 1. They, thus,
essentially coincide with what had been used for the very low energy description of multiple
DO-brane system [33] and with the Matrix model [34].

The purely bosonic limit of our equations is clearly simpler than the equations following
from the Myers action [24]. It is tempting to propose that these simpler but covariant and
manifestly supersymmetric equations, together with the single DO-brane equation describing
the center-of-mass motion, actually give the «complete» description of the multiple DO-brane
system [22]. Furthermore, as we have already stressed, these give the completely super-
symmetric and Lorentz invariant description of the «dielectric brane effect». The advantage
of this description is that it is supersymmetric and also Lorentz invariant, while the Myers
proposal [24] does possess neither of these symmetries expected for a system of multiple
Dp-branes !.

However, the existence of the deformation of our equations for the case of multiple DO
in flat target type IIB superspace, which follows from the existence of the deformation of
the 10D SYM equations in flat D = 10N = 1 superspace, suggests allowing the possible
existence of deformation of our equations. However, one sees that the deformed multiple DO
equations in flat target type IIB superspace, the explicit form of which is presently available,
are very complicated and their use looks inefficient (at least without the using of computer
programmes).

Then, even if approximate, our superembedding description based on superembedding
and superembedding-like equation plus simplest gauge field constraints, might provide useful
approximation of nearly-coincident multiple branes, which goes beyond the U(N) SYM
description as far as the fields related to the center-of-mass motion are allowed to be strong.

As we have mentioned in the text, a very interesting boundary fermion approach to the
description of multiple Dp-branes was developed by Howe, Lindstrom and Wulff in [25,26].
Presently the top-line result of this approach is the supersymmetric action possessing the
kappa symmetry on the classical (or «minus one quantization») level, i.e., before quantizing
boundary fermions [26]. However, the parameter of this x symmetry depends on the boundary
fermions which implies, as noticed already in [26], that quantization of boundary fermions

ILet us recall that the Myers action was (and is) motivated by that it is derived from T-duality. The starting
point for the corresponding chain of duality transformations is the purely bosonic D = 10 non-Abelian Born-Infeld
action based on the symmetric trace prescription [37] for the ordering of the SYM field strength operators. Notice,
however, that supersymmetric generalization of this 10D symmetric trace BI action is not known.



286 Bandos I. A.

should result in an action possessing a non-Abelian x symmetry. The previous attempts to
construct the models with non-Abelian x symmetry gave negative results [65]. Actually, this
requirement of non-Abelian x symmetry comes from the fact that all the coordinate functions
in the approach of [25,26] depend on the boundary fermions so that, after quantization, all
the coordinate functions become matrices and, to remove the extra unwanted (p + 1) bosonic
and 16 fermionic components, one needs to have the reparametrization and x symmetry with
matrix parameters.

The problem with non-Abelian s symmetry appears at (a’)* order [65]. Probably, the
further development of the boundary fermion approach will help to resolve it. However, even
if it were confirmed that the non-Abelian x-symmetric DBI action is impossible to construct
using the natural multibrane degrees of freedom, this would not imply that the approach
of [26] is incorrect. It certainly provides a complete classical description of string theory
with D-branes (or, better, «pre-classical», see below). However, the consequent quantization
of such a model implies simultaneous quantization of both boundary fermions and coordinate
functions. This would result in an appearance of not only the Dp-brane worldvolume fields,
but also of the bulk supergravity fields and massive string state. A search for a Myers-
like non-Abelian DBI-like action in this perspective is reformulated as a search for a way
to quantize only the boundary fermions leaving the classical description of the branes by
coordinate functions untouched. Even if it happened that such a description is impossible
to realize in its complete form, this could not be treated as incorrectness of the boundary
fermion approach [26], which gives a complete description of string theory Dp-branes, but
on the «minus one quantized» level (considering the standard description of single Dp-brane
to be classical).

In our more traditional, but probably approximate, superembedding approach description
of multiple brane systems only the coordinate (super)fields corresponding to the center-of-mass
motion are transformed by the target space Lorentz group transformations and 32-component
target space supersymmetry. The relative motion of constituent branes is described by the
SU(N) SYM multiplet, involving in addition to d = (p 4+ 1) dimensional gauge potentials,
only (9 — p) su(NN)-valued matrix scalars X¢, the Grassmann derivative of which is expressed
through the 16 fermionic su(NV)-valued matrix spinors ¥,. The leading components of the
superfields X’ and W, correspond to a non-Abelian generalization of the static gauge coor-
dinate functions, so that neither non-Abelian reparametrization invariance nor non-Abelian x
symmetry is needed to reach the balance of degrees of freedom characteristic for a supersym-
metric theory.

To conclude, the existence of supersymmetric deformations of the SYM constraints in flat
target superspace suggests that our choice of basic equations, including the superembedding
equation and the constraints on the worldvolume SU(N) SYM field strength, might be not
unique also for the case of curved worldvolume superspace of a D-brane moving in a nontrivial
supergravity background. However, we hope that even in this case, an approximate description
given by our superembedding approach, corresponding to a low energy of relative motion
and of the non-Abelian gauge field corresponding to it, but unrestricted (in the framework of
DBI approximation) nonlinear description of the U(1) gauge fields and coordinate functions
corresponding to the center-of-mass motion, can be useful in future development of the
fields.

Such a description in the framework of superembedding approach has been shown to be
allowed for p = 0 case, i.e., for the multiple Dp-brane systems. An important problem is to
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check whether such a description is possible for higher branes. It is natural to begin with the
simplest cases of multiple type IIB D1- and type IIA D2-brane systems. If the answer for
the second case happens to be affirmative, one can also search for similar superembedding
description for the nearly coincident M2-branes which, if exists, should be related with the
Bagger-Lambert—Gustavsson [69] and Aharony—Bergman—Jafferis—Maldacena [70] models.
Acknowledgements. The author thanks Dmitri Sorokin, Ulf Lindstrom and Linus Wulff
for useful discussions at different stages of this work which was partially supported by the
research grants FIS2008-1980 from the Spanish MICINN and grants FIS2008-1980 and 38/50-
2008 from the Ukrainian National Academy of Sciences and the Russian Federation RFFI.

Appendix A
CONVENIENT REPRESENTATIONS FOR 11D DIRAC MATRICES

Al. SO(1,2) ® SO(8) Invariant Representation for D = 11 Dirac Matrices. In the
superembedding description for M2-brane we use the following SO(1,2) ® SO(8) invariant
representations for the eleven-dimensional gamma matrices and charge conjugation matrix:

M)l = (11, a=0,1,2, i=1,...,8

@By 0
r"),2 = (1% re,ri) = (ro,1',1?) = (% ®o )
(o= = ( )= ) 0 =750,
; 0 —i€qpl
iy B — 1 8\ _ ) aﬁﬁyqp
(T2 = (T,...,T%) = (_ieaﬁ% ) (A.1)
C = —CP2 = diag (i€*5yp, i€apdp) »

Cap = diag (—icadp, —ieP6p) .

Here 7%, and 'yéq- are the SO(1, 2) Dirac matrices and SO(8) Pauli matrices (Klebsh-Gordan
coefficients), respectively. Some of their useful properties are

Yap =~ €48 = Vo = Vélag), :y::ﬁ = ieav,yavﬁ — ,~y((la,3)’ Teyg =105, (A2)
,yab _ _i€abc,yc, 'Yggﬁ/gé _ 25((1755)6,
Fog = Vs ViVl + Vi = 209805, ALyl ARt =206, (A3)
o 1 .. . ) ) ) )
Yai Vop = 9apdin + Ve Vip = ValdViwp = SarOis = Va(a) Vol

Notice that both 11D and 3d Dirac matrices are imaginary in our mostly minus signature
conventions,
n = diag(+, —,...,—), 7" =diag(+,—,—). (A4)
Now we are ready to specify relations (4.5) and (4.6) for the spinor moving frame variables
adapted to the (super)embedding of the M2-brane worldvolume (superspace):
Sgp 5P u," = v 0P = —v* 1T, (A.5)
5@;,5’)/(104[371; = ’Uo(q'fg’l)g[) = —anrg’l)gp, (A.6)

g’y;pu; = —v“quvg,i = 0¥ vgp, (A7)
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and

I‘—ﬁ = vy (’Ya)aﬁvgq + Vaai(Va)apvss4; (A.8)
UTap = ~20(a)" gt g)ad- (A.9)
An equivalent form for the set of relations (A.10), (A.11) is

ugf‘bﬂu _ _vaqg:yaaﬁv 8q™ — aqg»ya vAae, (A.10)
uéif‘bgﬁ - 2vcvq(<¥\,yz Ver IB) (A.11)

Another useful equation is the following «unity decomposition»:
5% = (15" Wag™ + Vaag®*?). (A.12)

The difference of the contractions of the same rank 16 blocks, v5%Va,® — V3424, defines
the matrix

o eabC(Fu“ubuC)ag

o= . Eabc(v(yqo{'yabcaﬁvﬁql_‘_ ang’}/g%cvﬁql)cﬂ —

3!
= —i(18"Wag® — Vaagv®*?)  (A.13)

entering the x-symmetry projector of the standard formulation of M2-brane [1].
A2. SO(1,5) ® SO(5) Invariant Representation for D = 11 Dirac Matrices. In the

superembedding description of M5-brane we use the following SO(1,5) ® SO(5) invariant
representations for the eleven-dimensional gamma matrices and charge conjugation matrix:

T2 = (r*,T%, a=0,1,...,5, i=1,...,5,

0 —iv% ,6,P
ay B — Tapq
(F )_ (_’_i,?aaﬁ(sqp ) ’
iy B — (pt sy _ ((C)gP8" 0
2= (Th....I%) = ( 0 O (A.14)
0 —10%3CP
af . _ Ba B8
O = -0 = (_Z'(;aﬂcqp 0 ) ;

0 s fCw
¢ _(maﬁcqp 0 )

The SO(1,5) generalized Pauli matrices (SU*(4) Klebsh-Gordan coefficients) are antisym-

metric vg5 = V5, = 'y[“am, AoP = —FP = [am and possess the following properties:
- . - 1
(7(a7b))&5 = nab5a57 nab = dlag (+a Ty Ty Ty Ty _)a ’Y;XB = 560‘6’}/6,}%’757
723’736 = _45[04’Y5[3]6a 72[3'7(175 - _QEaﬁ'y&; ’yadeefaﬁ = Eabcdef(;aﬁ’ (A.15)
abe abe _ 1 abcdef sabcaf _ zabe(af) _ 1 abcdef aB

Y aB =7 (aB) = 3! VdefaBs Y =7 3! Ydef-
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*

They are pseudoreal in the sense that the conjugate matrices 'yzz = ('ygﬁ) are expressed

through %5 with the use of matrix B, [66] obeying BB* = —1,
(B'YG*BT) = Ba(iVZEBﬁ'B = 72[37
(B*Tﬁ/a*B*) = B*da:ya*dﬁBgﬁ — 7(014[37 (A16)
BoPB* 5% = ~45,°.

The properties of the SO(5) Klebsh—-Gordan coefficients (generalized Pauli matrices) and
of the charge conjugation matrix are

A A y 1 g ,
Yap = ~Vpg = —(F' )" = §€qprs'ylrs, i=1,...,5, q,p,r,s=1,...,4, (A.17)

(Y3 +175 = 20982 |, AF =T = 2

1

Cop = —Cpg = —(C¥?)* = ieqprscrsa CorC™P =447, (A.18)
CY'C=—y', Cy'C=-#,

Y T* = —401"6y)° = CpC™*, Yapis = —2¢qprs — CapCres. (A.19)

These properties can be deduced from the properties of SU(4) Klebsh—Gordan coefficients
'yjlz Al I=1,...,6,

~ * 1 ~Irs
’yép = _’yil{q = _(,)/qu) = _EPQTS’YI ’ I = ]-a . '76a p,q,7, S = ]-a e 747 (AZO)

2
R i L S M A P e (A21)
,y;p,?h“s = _45[117"517]3’ ’Y;p rYTI’S = —2€qprs; (A.22)
after identification v/, = (v}, Cyp), i = 1,...,5.

Relations (4.5) and (4.6) for the spinor moving frame variables adapted to the (su-
per)embedding of the M5-brane worldvolume superspace are given by

v“quvﬁp = ugb’ybaBC‘”’, VaglaVsp = ugb’ybagcqp, (A.23)
anfgvﬁp = _“gb%aﬁcqpv Uqargvpﬁ = _ugbﬁ/baﬁcqpa (A.24)
v IT05 = 10y %0%,  vaglav) = —itia'y pda”, (A.25)
and
b .
ug s = v;q('ya)agvéﬁpcqp - vgaqyg‘ﬁvﬁngqp, (A.26)
b _ .

uﬁf‘ég = QZU(g‘aq’yépU@)ap, (A.27)

as well as
ugfb—aﬁ = Vg 2Y* P, LCW® — vqag'ygﬁvgéC‘”’, (A.28)

uplel — 2y (@lyiary, oI8), (A.29)
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The «unity decomposition» reads simply as

6% = 15" ag™ + vgaIvg®, (A.30)
but the components of the inverse spinor moving frame matrix v,,% and vg™ are expressed
through vg*? and vg,? by (4.12).

The derivatives of spinor moving frame variables are expressed through the generalized
Cartan forms by

7 ) 5 ) 7 ) )
Dy, = EQMUQBPV(?“WC),,Q, Dvgg® = amwmgwc)q%gﬂ, (A31)
i ai ~ ) ao i aixo ) a
Dvyo? = _59 vgp'yaga('y ), Dy,** = —59 'yaﬁ('y C)gPvsp™. (A.32)
Appendix B

SOME DETAILS ON TYPE IIA SUPERGRAVITY SUPERSPACE
The type IIA superspace geometry was worked out in [47]. Here we present some

equations in our present notation.
Fermionic torsion of general type IIA supergravity superspaces reads

1
T = §EQ A BTy, + B4 N EET 3, — 2iE°Y N EP Agy +iE' 0% N E' 657 gy,

(B.1)
1
T = 5B AN BT, + BN E8T57, — 2B, A E3AS +iE%6, N E*02,AL,
where ’ ’
E7 = (B Es?), Api=3Dp®, Ay==D%0, (B.2)
and
1
Tt = —3 abe(0%9)7 = Ty, (B.3)
2 e(b ~bc e<I> ~bede
Tp1ay" = mR@(UQU_)ﬁv - mRbcde(UgU )yt
+ gAQO’@Al(O'QO'b*)ﬁ7 — mAQJ@Al(O’QO’b d )57, (B4)
B 41 e(b ~ _be\By e<I> ~ _bede\By
Ty = ggpftee(0a0™)™ + o Ricde (02 0™5) 7 +
3

1 - -
+ —AgU@Al(oQU@)B7 + AQUMAl(O'QUM)B’Y. (B.5)

8 16 - 4!
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The Riemann curvature two-form of the type IIA superspace is expressed through the
above dim 1 torsion components and through the dim 3/2 ones by the solution of the Bianchi
identities,

R2b .— g2k _ ac /\Wc — 92iE* A Eﬂla[QW(QTﬁ)IQ]'ﬂ + 2iE(2y A E?;&[M(O‘Tf)g]%—l-
+4iE° A E3 (a[ﬂmTfW + &[gwﬁTMmg) "
1 Ee A gl (%Tg[gmlgm] o — TP, [m) n
+ESNE? (ZZT [a]2 5 |b] S ZT[‘;—‘%C@) + %Ed A BSR4, (B.6)
The following equations are also useful:

Z’ ]- ]- aoc
Daihgr = 5 D1 Dpn® = a sDa® + 4 bcA1> 0%, (B.7)

N;IN

1

DAL - = %DgDQ@ = — 50" Da® + ( abe + AQUabCA2> Fabeos, (B.8)

3 (6¢R¢Lb + QZ'AQO'(LZ,Al) &Lbaﬁ+

DS Ay - = %Dgpalcp = (t— iAoh1)0." + 1

1 .
+ m < <I>.}zabcd + AQJabch ) gabed ﬁ _DalAg = _%Dang(I)' (B9)
Appendix C

STRUCTURE OF FERMIONIC EQUATIONS
FOR MULTIPLE D0-BRANE SYSTEM IN THE PRESENCE OF FLUXES

The fermionic equations of motion which follow from our superembedding description
of multiple DO-brane system in general type IIA supergravity background have the struc-

ture of [22]

1. . & A — . 1 ~nis o
g (DQ\I/ _ Z[Xz’ (0’01\1/)]) _ (e<I>ROz + D“I))(UO“I/) T 6_4H01300k0110.0k\1/_

1 1 1 X ) . .
— aa% (—geq’Rbca o (I’Rbcdeabc‘ie) o% U + DX (alaoz/\l + CLQOJ'AQ) +

1 . . A LA ~ N
+ 1—6[X1,X]] (bla”Al — bQO'OUAQ) + O(ALQ' ALQ . \I/) (Cl)

with some constants a; > and b o.
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