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DECAY OF A SCALAR σ MESON NEAR THE CRITICAL
END POINT IN THE PNJL MODEL
A. V. Friesen, Yu. L. Kalinovsky, V. D. Toneev

Joint Institute for Nuclear Research, Dubna

Properties of a scalar σ meson are investigated in the two-	avor NambuÄJona-Lasinio model with the
Polyakov loop (PNJL). Model analysis of the phase diagram of strong interacting matter is performed.
The temperature dependence of the σ → ππ decay width is studied at the zero chemical potential
and near the critical end point. The calculated strong coupling constant gσππ and the decay width are
compared with available experimental data and other model results. Nonthermal enhancement of the
total decay width is noted for the σ meson near the critical end point when the condition mσ � 2mπ

is broken.
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INTRODUCTION

The models of NambuÄJona-Lasinio type [1Ä4] have a long history and are used to
describe the dynamics and thermodynamics of light mesons. This type of models gives
a simple and practical example of the basic mechanism of spontaneous breaking of chiral
symmetry and key features of QCD at ˇnite temperature and chemical potential [5Ä9]. The
behavior of a QCD system is governed by the symmetry properties of the Lagrangian, namely,
the global SUL(Nf )× SUR(Nf ) symmetry which is spontaneously broken to SUV (Nf ) and
the exact SUc(Nc) local color symmetry. On the other hand, in a non-Abelian pure gauge
theory, the Polyakov loop serves as an order parameter of a transition from the low temperature
conˇned phase (ZNc symmetric) to the high temperature deconˇned phase characterized by the
spontaneously broken ZNc symmetry (PNJL model). In the PNJL model, quarks are coupled
simultaneously to the chiral condensate and to the Polyakov loop, and the model includes
the features of both the chiral and ZNc symmetry breaking. The model reproduces rather
successfully lattice data on QCD thermodynamics. The use of the PNJL model is therefore
reasonable for investigating the in-medium properties of mesons and their decays [10,11].

The aim of this work is the investigation of the meson properties and σ decay near the
critical end point (CEP). In this letter, we discuss the decay process σ → ππ at the ˇnite
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temperature T and chemical potential μ in the framework the NambuÄJona-Lasinio model
with the Polyakov loop that is believed to describe well the chiral properties and simulates a
deconˇnement transition. Our motivation here is to elaborate these features in a large region
of the temperature T and quark chemical potential μ, where a nonthermal enhancement of
pions due to the σ → ππ decay may take place.

1. THE MODEL AND THE PHASE DIAGRAM

We use the two-	avor PNJL model with the following Lagrangian [12Ä14]:

LPNJL = q̄ (iγμDμ − m̂0) q + G
[
(q̄q)2 + (q̄iγ5τ q)2

]
− U(Φ[A], Φ̄[A]; T ), (1)

where the covariant gauge derivative Dμ ≡ ∂μ − iAμ with Aμ = δμ
0 A0, A0 = −iA4 (the

Polyakov calibration). The strong coupling constant is absorbed in the deˇnition of Aμ. At
the zero temperature, the Polyakov-loop ˇeld Φ and the quark ˇeld are decoupled. Here, the
quark ˇeld q̄ = (ū, d̄), current masses m̂ = diag (mu, md), Pauli matrices τ = σ/2 act in the
two-color 	avor space and G is the coupling constant.

The gauge sector of the Lagrangian density (1) is described by an effective potential
U

(
Φ[A], Φ̄[A]; T

)
≡ U

(
Φ, Φ̄; T

)
U

(
Φ, Φ̄; T

)
T 4

= −b2 (T )
2

Φ̄Φ − b3

6
(
Φ3 + Φ̄3

)
+

b4

4
(
Φ̄Φ

)2
, (2)

where

b2 (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (3)

The parameter set is obtained by ˇtting the lattice results in the pure SU(3) gauge theory at
T0 = 0.27 GeV [13,14] and is given in Table 1.

Table 1. The parameter set of the effective potential U(Φ, Φ; T )

a0 a1 a2 a3 b3 b4

6.75 Ä1.95 2.625 Ä7.44 0.75 7.5

Before discussing the meson properties, one should indroduce the gap equation for con-
stituent quark mass. For describing the system properties at the ˇnite temperature and density,
the grand canonical potential in the Hartree approximation is considered [13,14]

Ω(Φ, Φ̄, m, T, μ) = U
(
Φ, Φ̄; T

)
+ Nf

(m − m0)2

4G
− 2NcNf

∫
Λ

d3p

(2π)3
Ep−

− 2NfT

∫
d3p

(2π)3
[
ln N+

Φ (Ep) + lnN−
Φ (Ep)

]
, (4)
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where Ep is the quark energy, Ep =
√

p2 + m2, E±
p = Ep ∓ μ, and

N+
Φ (Ep) =

[
1 + 3

(
Φ + Φ̄ e−βE+

p

)
e−βE+

p + e−3βE+
p

]−1

, (5)

N−
Φ (Ep) =

[
1 + 3

(
Φ̄ + Φ e−βE−

p

)
e−βE−

p + e−3βE−
p

]−1

. (6)

Integrals in Eq. (4) contain the three-momentum cutoff Λ.
From the grand canonical potential Ω, the equations of motion can be obtained

∂Ω
∂m

= 0,
∂Ω
∂Φ

= 0,
∂Ω
∂Φ̄

= 0, (7)

and the gap equation for the constituent quark mass can be written as follows:

m = m0 − NfG〈q̄q〉 = m0 + 8GNcNf

∫
Λ

d3p

(2π)3
m

Ep

[
1 − f+

Φ − f−
Φ

]
, (8)

where f+
Φ , f−

Φ are the modiˇed Fermi functions

f+
Φ =

((
Φ + 2Φ̄ e−βE+

)
e−βE+

+ e−3βE+
)

N+
Φ ,

(9)

f−
Φ =

((
Φ̄ + 2Φ e−βE−

)
e−βE−

+ e−3βE−
)

N−
Φ ,

with E± = E ∓ μ. The regularization parameter Λ, the quark current mass m0, the coupling
strength G and physics quantities to ˇx these parameters are presented in Table 2.

Table 2. The model parameters and quantities used for their tuning

m0, MeV Λ, GeV G, GeV−2 Fπ , GeV mπ , GeV

5.5 0.639 5.227 0.092 0.139

The σ- and π-meson masses are the solutions of the equation

1 − 2GΠps/s(k2) = 0, (10)

where k2 = m2
π and k2 = m2

σ in pseudoscalar and scalar sectors, and Πps/s are standard
mesonic correlation functions [7]

iΠπ(k2) =
∫

d4p

(2π)4
Tr

[
iγ5τ

aS(p + k)iγ5τ
bS(p)

]
, (11)

iΠσ(k2) =
∫

d4p

(2π)4
Tr [iS(p + k)iS(p)] . (12)

Both pion-quark gσππ(T, μ) and sigma-quark gσππ coupling strengths can be obtained
from Πps/s:

g−2
π/σ(T, μ) =

∂Ππ/σ(k2)
∂k2

∣∣∣∣k2=m2
π

k2=m2
σ

. (13)
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As is seen from the gap equation (8), the quark condensate 〈q̄q〉 deˇnes completely the
quark mass in a hot and dense matter. This correlation is clearly demonstrated in Fig. 1,
where the temperature dependence of the order parameters of the chiral condensate and the
Polyakov loop, as well as the sigma and pion masses are shown for μ = 0. The pion hardly
changes its mass and starts to become heavier only near Tc ∼ 200 MeV, while the sigma
mass mσ(T ) decreases as the chiral symmetry gets restored, and eventually mπ(T ) becomes
larger than double quark mass mq at the temperature TMott ∼ 190 MeV.

Fig. 1. The temperature dependence of the chiral condensate and Polyakov loop (left panel) and particle

masses (right panel) at μ = 0 within the PNJL model

Fig. 2. The phase diagram within the PNJL
model. The solid lines denote the ˇrst-order

transition boundary, the dotted line is the

second-order transition and the dashed line is
a crossover. The lines with the CEP and TCP

points are calculated for a ˇnite mass and in the
chiral limit mq = 0, respectively

Since it is still difˇcult to extract certain information from the lattice simulations with the
nonzero baryon density, we need QCD models for investigating the phase transitions at the
ˇnite baryon density. The calculated phase diagram of the physical states of matter within the
PNJL model is given in Fig. 2. As is seen, in the real world with nonzero pion mass we have
the ˇrst-order phase transition at a moderate temperature and a large baryon chemical potential
μB = 3μ that, with increasing T , terminates at the critical end point (TCEP, μCEP), where the
second-order phase transition occurs. At a higher temperature T > TCTP we have a smooth
crossover. In the chiral limit with massless pions there is a tricritical point that separates the
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second-order phase transition at high temperature T and the ˇrst-order transition at lower T
and high μ. For the model parameters chosen (see Table 2) we obtain TCEP � 0.095 GeV
and μCEP � 0.32 GeV (cf. with [15], where the critical temperature and chemical potential
are calculated with the same parameters).

2. THE σ → ππ DECAY

It is in order here to mention the signiˇcance of the scalar meson σ (a chiral partner of the
pion) in QCD. A model-independent consequence of dynamic breaking of chiral symmetry is
the existence of the pion and its chiral partner σ meson: The former is the phase 	uctuation

Fig. 3. The Feynman diagram

of the σ → ππ decay

of the order parameter q̄q while the latter is the amplitude
	uctuation of q̄q. During the expansion of the system, the
in-medium σ mass increases towards its vacuum value and
eventually exceeds the 2mπ threshold. As the σ → ππ cou-
pling is large, the decay proceeds rapidly. Since this process
occurs after freeze-out, the pions generated by it do not have a
chance to thermalize. Thus, one may expect that the resulting
pion spectrum should have a nonthermal enhancement at low
transverse momentum.

To the lowest order in a 1/Nc expansion, the diagram for
the process σ → ππ is shown in Fig. 3. The amplitude of the
triangle vertex σ → ππ can be obtained analytically as

Aσππ =
∫

d4q

(2π)4
Tr {S(q)ΓπS(q + P )ΓπS(q)}, (14)

where Γπ = iγ2τ is the pion vertex function and S(q) = q̂ + m/q̂2 − m2 is the quark
propagator, a trace is being taken over color, 	avor, and spinor indices. After tracing and
evaluation of the Matsubara sum one obtains [16,17]

Aσππ = 2mNcNf

∫
d3q

(2π)3
(1 − f+

Φ − f−
Φ )

2Eq
×

×
(q · p)2 − (2m2

σ + 4m2
π)(q · p) + m2

σ/2 − 2m2
σE2

q

(m2
σ − 4E2

q )((m2
π − 2(q · p))2 − m2

σE2
q )

, (15)

where f+
Φ , f−

Φ are the modiˇed Fermi functions (9). The coupling strength gσππ(T, μ) =
2gσg2

πAσππ(T, μ), where gσ and gπ are coupling constants deˇned from Eq. (13)
The decay width is deˇned by the cut of the Feynman diagram in Fig. 3 treating the sigma

meson as a quarkÄantiquark system

Γσ→ππ =
3
2

g2
σππ

16πmσ

√
1 − 4m2

π

m2
σ

. (16)

The scalar meson σ can decay either into two neutral or two charged pions. All these channels
are taken into account. The factor 3/2 in Eq. (16) takes into account the isospin conservation.
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For the existing decay σ → ππ the kinematic factor
√

1 − 4m2
π/m2

σ in (16) leads to the
constraint mσ � 2mπ which is T - and μ-dependent. One may expect that in the temperature
region where this condition is broken, the values gσππ and Γσ→ππ will drop to zero (Fig. 4).
In the case μ = 0 considered, the kinematic condition is broken at the σ → ππ dissociation
temperature T σ

d ≈ 210 MeV.

Fig. 4. The temperature dependence of the total

decay width Γσ→ππ and the coupling strength
gσππ at the zero chemical potential. The solid

and dash-dotted lines are the results for the decay
width (16) with and without the BoseÄEinstein

factor Fππ , respectively

The coupling constant gσππ is about 2.1 GeV (note the scaling factor 1/10 in Fig. 4)
in vacuum and stays almost constant up to T � 0.22 GeV (at μ = 0) and then it drops
to zero at mσ = 2mπ. The experimental value, extracted from the J/ψ decays, gσππ =
2.0+0.3

−0.9 GeV [18] is in reasonable agreement with our result. It is of interest to note that
the quarkÄmeson models predict gσππ = 1.8 GeV [19] and 1.8+0.5

−0.3 GeV [20], and the linear
sigma model gives gσππ = (2.54 ± 0.01) GeV [21].

The total σ-decay width was measured recently in two experiments [18, 20, 22]. The
Beijing Spectrometer (BES) Collaboration at the Beijing ElectronÄPositron Collider reported
evidence of the existence of the σ particle in J/ψ decays. In the π+π−-invariant mass
spectrum in the process of the J/ψ → σω → π+π−ω they found a low mass enhancement,
and the detailed analysis strongly favors O++ spin parity with a statistical signiˇcance for
the existence of the σ particle. The BES measured values of the σ mass and total width
are [18,20]

mσ = 390+60
−36 MeV, Γσ→ππ = 282+77

−50 MeV. (17)

The E791 Collaboration at Fermilab reported on evidence of a light and broad scalar resonance
in the nonleptonic cascade decays of heavy mesons [19]. It was found in the Fermilab
experiment that the σ meson is rather important in the D-meson decay D → 3π generated by
the intermediate σ-resonance channel

mσ =
(
478+24

−23 ± 17
)

MeV, Γσ→ππ =
(
324+40

−42 ± 21
)

MeV. (18)

These experimental values should be compared with Γσ→ππ � 190 MeV at T = μ = 0
(see Fig. 4). One can additionally take into account the BoseÄEinstein statistics of ˇnal pion
states by introducing the factor Fππ = (1 + fB(mσ/2))2 [17] into the total decay width (16),
where the boson distribution function fB(x) = (ex/T − 1)−1. In contrast to the kinematic
factor

√
1 − 4m2

π/m2
σ, this pion distribution function tends to increase the width. Near the

Mott temperature Γσ→ππ ≈ 250 MeV at μ = 0. In fact, the numerical calculation shows
that Γσππ(T ) decreases as T goes up, and eventually vanishes at a high temperature. The
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measured widths (17), (18) are somewhat higher than that in our model at T = 0. It is
noteworthy that the measured σ masses 390+60

−36 [18] and 478+24
−23 [22] are noticeably smaller

than in our model mσ ≈ 620 MeV (to be ˇxed by the model parameters) while the total decay
width depends strongly on mσ , see Eq. (16). The quarkÄmeson models give the decay width
that does not differ essentially from our estimate: Γσ→ππ = 173 [19] and 149.9 [23] MeV
though the used sigma meson mass is close to experimental ones, being mσ = 485.5 and
478 MeV, respectively.

The decay width was really not studied at the nonzero baryon density, in particular, in the
region near the critical end point. For the ˇnite μ the coupling strength and meson masses
behave in a nontrivial way. Both σ and π mesons suffer a jump in the region of the ˇrst-order
phase transition (see curve for μ+10 MeV in Fig. 5) which ends at the critical end point μCEP

and then they change continuously for μ < μCEP, where the crossover-type phase transition
occurs.

Fig. 5. Temperature dependence of σ- (left panel) and π- (right panel) meson masses near the critical

end point. Solid lines correspond to the chemical potential at the critical end point μCEP. Dash-dotted

and dashed lines are the PNJL results for μCEP + 10 and μCEP − 10 MeV, respectively. The dotted
lines correspond to the mixed phase

Fig. 6. Left panel: The temperature dependence of the coupling strength gσππ at three values of the

chemical potential μ = μCEP, μCEP − 10 MeV, and μCEP + 10 MeV. Right panel: The total decay
width Γσ→ππ at the same values of chemical potentials. The total decay width ΓσππFππ and the width

Γσππ, Eq. (16), are plotted by the solid and dashed lines, respectively, for the same three values of μ
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According to (16), this mass behavior deˇnes the total decay rate of a σ meson at
μ 
= 0, as shown in the right panel of Fig. 6. As can be seen, the T region of the
decay enhancement becomes narrower with increasing μ. The total widths Γσ→ππ and
Γσ→ππFππ tend to grow with temperature exhibiting a narrow maximum due to partic-
ularities of the g2

σππ term in (16). The inclusion of the Fππ factor enhances this max-
imum, but this effect becomes smaller when one moves by Δμ toward larger μ from
μCEP, because the pion mass increases above μCEP (see Fig. 5). If the chemical poten-
tial μ = μCEP (the temperature at which coupling strength gσππ or total decay width
Γσ→ππ drops down to zero) the temperature is just T = TCEP. If μ increases (de-
creases) with respect to μCEP by Δμ ∼ 10 MeV, the temperature decreases (increases),
respectively, by about 30 MeV from TCEP. Maximal values of Γσ→ππ near the critical
end point are larger than that for μ = 0 by a factor about 3. It means that a σ me-
son lives shorter in the dense baryon matter. The shape of gσππ(T ) is insensitive to μ
around μCEP. The full decay width Γσ→ππ exhibits some wide maximum near the tempera-
ture TCEP. This maximum is enhanced due to the Fππ factor and gets more pronounced for
smaller μ.

CONCLUDING REMARKS

The two-	avor PNJL model that reasonably describes quarkÄmeson thermodynamics at
ˇnite temperature and chemical potential is applied to calculate the σ → ππ decay in this
medium. The emphasis here is made on the behavior near the critical end point. At μ = 0 and
T → 0, the coupling constant gσππ = 2.1 GeV and the total σ-decay width Γσ→ππ ≈ 190 MeV
are in reasonable agreement with both the available experimental data and the quarkÄmeson
model estimates. At ˇnite quark chemical potential near the critical end point the Γσ→ππ

width shows a sharp maximum coming from a particular behavior of the coupling strength
gσππ. The sigma mesons live here a shorter time than in the baryonless matter. The rapid
decrease of Γσ→ππ at a high temperature is due to the phase space factor (see Eq. (16)). The
account for the BoseÄEinstein statistics in the ˇnal state pions (the factor Fππ) results in the
appearance of some nonthermal maximum of the decay width near T and μ at which the
kinematic condition mσ � 2mπ is broken. This width enhancement is about ∼ 20% at μCEP

and is negligible if one moves to μ = μCEP + Δμ.
The presented results are obtained in the ˇrst order in the 1/Nc expansion. In a

more realistic case the σ − ω and σ − A1 mixing can affect noticeably the considered
quantities, especially for the μ 
= 0 case [24]. However, it corresponds to higher orders
in 1/Nc.

The measurements of nonthermal enhancement of pions might be considered as a signature
of chiral phase transition. However, it is a difˇcult experimental problem since the σ life-
time is very short, and the pion contribution from the resonance decay should be separated
carefully. So a more elaborated analysis is needed.
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