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We study the transition form factors of pseudoscalar mesons by means of anomaly sum rule —
an exact relation which is a consequence of dispersive representation of axial anomaly. This sum rule
(derived for the octet channel) combined with the quark—hadron duality allows us to relate the transition
form factors of 1 and 1’ mesons. The notion of quark—hadron duality in connection with our approach
is discussed and comparison with recent experimental data is done.

H3ydensr nepexompusle opmep KTOPHI NICEBIOCK JISIPHBIX ME30OHOB C MOMOIIBI0 HOM JIBHOTO M BHIT
CYMM — TOYHOI'O COOTHOILEHMS, CIIEQYIOIIero U3 AUCIEPCUOHHOIO IPEeACT BJAEHUS KCH JIBHOH HOM -
mud. DTO Mp BWJIO CyMM (IOMydeHHOE Ul OKTETHOTO K H JI ) BMECTe C TMIOTe30H KB PK- APOHHOM
Jy JIBHOCTH MO3BOJIWJIO TIOJyYUTh CBA3b MEX/y MepeXomHbME (opMd KTOp MM 7)- U 1) -Me30HOB. O6CyX-
I eTcsl TIOHSATHE KB PK- JPOHHOH Iy JIBHOCTU B CBSI3H C NPEMTOKEHHBIM IMTOAXOAOM, T KX€ MPOBOAUTCS
Cp BHEHHE C HOBBIMU 3KCIIEPUMEHT JIbHBIMU I HHBIMU.

PACS: 11.55.Fv; 11.55.Hx; 13.60.Le; 14.40.-n

INTRODUCTION

One of the first manifestations of axial anomaly [1] in particle physics was discovered in
two-photon decays of pseudoscalar mesons. The dispersive approach to axial anomaly [2]
extended the applicability of axial anomaly to the case of virtual photons and allowed one
to derive the so-called anomaly sum rule (ASR) [3,4]. This exact sum rule proved to be a
useful tool for studying the processes of photon-meson transitions, e.g., yy* — 7% (n, 1) [5],
which attracted a lot of interest [6] due to recent experimental data on 7,7’ transition form
factors [7].

In this paper, we study the ASR in the octet channel, where the 1 and n’ mesons make
the main contributions and the mixing of them is significant.

1. ANOMALY SUM RULE AND QUARK-HADRON DUALITY

Let us briefly remind what is the anomaly sum rule derived for the octet channel of axial
current (for details, see [4,5]). The VVA triangle graph correlator

Ty (k, ) = / dhz d*y D) (0T { ]05(0).7, () ], (4)}]0) ()
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contains axial current JS? = 1/V6(@vav5u + dYaYsd — 25747y55) and two vector currents
Ju = (euﬂ'yuu—i—edcf'yud—i—eﬁ'yus); k, q are momenta of photons. This correlator can be written
as a tensor decomposition with the Lorentz invariant coefficients F; = F (k2,42 p*;m?),
p=k+gq,j=1,...,6.

We are interested in the case of one real and one virtual photon (Q? = —¢? > 0). Then,
for the invariant amplitude F5 — Fg the ASR can be obtained [4]:

o0
1
e 2 2 _
[ Atz mar = —— @
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where Az, = (1/2) Im (F3 — Fg).

The ASR (2) is an exact relation, i.e., the integral has neither perturbative [8] nor nonper-
turbative (as it is expected from ’t Hooft’s principle) corrections. Another important property
of this relation is that it holds for an arbitrary quark mass m and for any ¢2.

Saturating the Lh.s. of the three-point correlation function (1) with the resonances and
singling out their contributions to ASR (2), we get the sum of resonances with appropriate
quantum numbers:

1

e O

o0
fSF,, + fff/vF,,/V + («other resonances») = / Asa(t; ¢, m?) dt =
m2

4

Here the form factors Fi, of transitions vy* — M (M =7, n’) and the coupling (decay)
constants f§, are defined by the matrix elements:

/ d*z ™ (M (p)|T{J,u(2) 1, (0)}0) = €upok?a” Fars, (O1JSL (0)[ M (p)) = ipafiy.  (4)

oo

The terms denoted as «other resonances» can be replaced by the integral / Asa(t; ¢, m?) dt

S
(continuum contribution), where sq is the continuum threshold in the local i]uark—hadron du-
ality approach. Usually sy can be determined from the two-point QCD sum rules analysis,
but, in the case of the octet channel the value of sy is not well calculated. However, in our
approach sy can be treated as a free parameter and determined from the ASR itself in the
large Q? limit.
1
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Using the one-loop expression for continuum part of spectral function As, =
Q2

x ————— from ASR (2) we finally come to
s+ Q7 (2) we fnally

- 1 S0
271'\/6 Q2+ so’

Let us note, that in (3) we single out both 7 and " mesons, while the rest of contributions
are absorbed by the continuum. This is because the ' meson decays into two photons (since
continuum contribution vanishes at Q? = 0), while the higher contributions are suppressed due

T f Fony (Q%) + 7 f Fryy (Q7) )
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to conservation of the axial current in the chiral limit. Let us also stress that the relation (5)
is correct for all Q2 due to the absence of corrections to Az, [10] which allows one to utilize
the above expression for different Q2.

Relying on the prediction of QCD factorization [9] for the transition form factors at

2

large QQ°,
2

V6

we can express Sg in terms of decay constants ff;:

Q°Fi, = —=(fir +2V2f), (6)

so = 4w ((f3)2 + (F3)7 + 2V2Ufn fo + o o)) (M
Equation (5) with substituted sy from (7) relates the transition form factors F;, and decay

constants f§, for arbitrary Q. The decay constants can be related basing on particular
mixing scheme. Here, we restrict ourselves to the simplest one with one mixing angle 6:

fs = fgcos H,fs, = fgsin H,f,(]) = —fosinb, fg/ = focos@. For this scheme sg = 472 f2
does not depend on fo, while fg can be calculated from (5) in the limit Q2 = 0 (1, i’ decay
widths are used in this case). § = —16°. The plot of the octet combination of the transition

form factors (Lh.s. of Eq.(5) multiplied by Q?) compared with the experimental data [7] is
shown in the Figure.
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The ASR (5) for one-angle mixing scheme, 8 = —16°. Filled stripe denotes the uncertainties originated

from the experimental errors of meson decay widths and thus determination of fs. Inclined line
represents ASR at Q% =0

We see, that the available data are described well, though they manifest a slight tendency to
grow, resembling the isovector (7°) channel, but at larger Q2. This is a result of mixing in the
octet channel — the form factors themselves 622FM7 do not show such a kind of behaviour.
Theoretically, this growth corresponds to a possible correction to continuum contribution [5].
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