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THE COUPLING CONSTANTS gV σγ IN QCD SUM RULES

A. Kucukarslan 1, U.Ozdem 2

Physics Department, Canakkale Onsekiz Mart University, Canakkale, Turkey

We review and update previous calculations of the coupling constants gV σγ and also determine
new variables including the magnetic susceptibility of the quark condensate in QCD sum rules. Our
estimates are consistent with the values obtained in the literature.
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INTRODUCTION

Quantum Chromodynamics (QCD) is the true theory for the strong interactions. However,
little is known concerning the structure of a meson since QCD is nonperturbative at the
hadronic scale. The method of QCD sum rules including the nonperturbative QCD physics
has been established by Shifman, Vainstein and Zakharov [1]. This method is very successful
for calculation of various quantities in low-energy hadron physics. The electromagnetic
decay of vector mesons was treated in the vector meson dominance model [2] or in chiral
perturbation theory [3]. Here, we reported the application of QCD sum rules to the calculation
of the coupling constant of the transition V → σγ, gV σγ , where V denotes the ρ and ω meson.

The nature of the lightest scalar mesons has been controversial for long time. Whether they
are conventional qq states [4], multiquark states [5] or KK molecules [6] is a fundamental
question in particle physics. There are a number of theoretical and experimental analyses
on the σ pole position [7]. In the experimental side, there is a very clear signal for a light
σ meson from the J/ψ → σω → ππω decay channel in BES experiment [8] and from the
D → σπ → 3π decay studied by the E791 collaboration, it is clearly seen as the dominant
peak [9].
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FORMALISM

The transition V → σγ within QCDSR has been considered before [10Ä13]. Our aim in
this work is to re-analyze coupling constants gV σγ by taking into account the contribution of
the magnetic susceptibility. To analyze the coupling constants gV σγ , where V denotes the ρ
and ω meson in QCD sum rules, we consider the three-point correlation function as follows:

∏
αβ

(p, p′) =
∫

d4x d4y eipy e−ipx 〈0|T {Jγ
α(0)JV

β (x)Jσ(y)}|0〉, (1)

where Jγ
α is the electromagnetic current, and JV

β and Jσ are the interpolating currents for
vector meson and σ meson, respectively. The physical part of the sum rules can be determined
by considering a double dispersion relation for the vertex function

∏
αβ

. However, we neglect

possible subtraction terms since they will not make any contributions in the vector and scalar
channels, after Borel transformation. We can therefore obtain the physical part,

∏
αβ

(p, p′) =
〈0|JV

β |V (p)〉〈V (p)|Jα
γ |σ(p′)〉〈σ(p′)|Jσ|0〉

(p2 − m2
V )(p′2 − m2

σ)
+ . . . (2)

In this expression, the overlap amplitudes of the vector mesons, λV , and sigma meson, λσ ,
are deˇned as

〈0|JV
β |V (p)〉 = λV Uβ, 〈σ|Jσ

β |0〉 = λσ, (3)

where Uβ is the polarization vector of the vector meson. The gV σγ coupling constants are
deˇned through the matrix element of the electromagnetic current,

〈V (p)|Jγ
α|σ(p′)〉 = −i

e

MV
gV σγK(q2)(pqUα − Uqpα), (4)

where q = p − p′ is the photon momentum and K(q2) is the form factor with K(0) = 1.
The alternative parametrization for the V σγ vertex can be deˇned through the effective
Lagrangian [14]

LV σγ =
e

MV
gV σγ∂αV β(∂αAβ − ∂βAα)σ, (5)

which describes the coupling constants gV σγ . Using Eqs. (2)Ä(4), we get the phenomenological
part of the sum rules as

phen∏
αβ

= −i
e

MV
gV σγ

λσλV Uβ

(p2 − m2
V )(p′2 − m2

σ)
(pqUα − Uqpα). (6)

Our next step is the calculation of the theoretical part of the sum rules. For the interpolating
currents of ω and ρ vector mesons and σ scalar meson, we choose the following currents:

Jω
β = 1/2(uγβu + dγβd),

Jρ
β = 1/2(uγβu − dγβd), (7)

Jσ = 1/2(uu + dd),
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Fig. 1. The coupling constant gωσγ as a function of the Borel parameter: a) M2
2 for different values of

M2
1 ; b) M2 for different values of the threshold parameter s0 = 1.4, 1.6, 1.8 GeV2

respectively, and also, Jγ
α = (euuγαu + eddγαd) is the electromagnetic current with the

quark charges eu and ed. In order to obtain the theoretical part, we consider the perturbative
contribution and the power corrections from operators of different dimensions to the three-
point correlation function. To obtain the perturbative contribution, we consider the lowest
order bare loop as shown in Fig. 3, a. Besides, the power corrections from the operators
of different dimensions 〈qq〉, 〈qσGq〉 and 〈(qq)2〉 are considered. The gluon condensate
contribution proportional to 〈G2〉 is not considered because it is estimated to be negligible for
light quark system. In Fig. 3, we present the relevant Feynman diagrams for the calculations
of the coupling constants.

We study in the 	avor SU(2) sector with mu = md = mq and in the limit mq = 0. In
our calculations, the terms 〈qq〉, 〈qσGq〉 only make contributions, and we do not consider the
perturbative bare-loop diagram which does not make any contribution in the limit mq = 0.

In order to phase out the theoretical side, we take into account the contribution which is
derived from Fig. 3, d. This contribution has not been considered so far in similar calculations
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Fig. 2. The coupling constant gρσγ as a function of the Borel parameter: a) M2
2 for different values of

M2
1 ; b) M2 for different values of the threshold parameter s0 = 1.4, 1.6, 1.8 GeV2

of the coupling constant. Using the deˇnition of magnetic susceptibility,∫
d4z eiqz 〈0|T {Jμ

el(z)q(x)σαβq(0)}|0〉 = ieq〈qq〉(gμαqβ − gμβqα)χ + O(x), (8)

we obtain this contribution from Eq. (1) as follows:

∏
μα

= −iχNceq〈qq〉
1
p2

(pαqμ − gμαpq), (9)

where χ is the magnetic susceptibility of the quark condensate. When applying double Borel
transformations, we have

∏
μα

= 0. Hence, this contribution of the magnetic susceptibility

cannot be obtained in this way. To ˇnd the contribution shown in Fig. 3, d corresponds to
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Fig. 3. Feynman diagrams for the V σγ vertex

interaction of the external ˇeld; therefore, we can follow the references [15, 16]. To obtain
the contribution of the magnetic susceptibility, one can convert the expansion in Eq. (8) to an
expansion on the light cone as [15,16]

∫
d4z eiqz 〈0|T {Jμ

el(z)q(x)σαβq(0)}|0〉 =

= ieq〈qq〉
∫

du eiuqx{(gμαqβ − gβμqα)[χϕγ(u) + . . .}, (10)

where eq is the quark charge; the function ϕγ(u) is the leading twist-2 photon wave function.
Using this equation, we get the following expression:

Mχ = ieqχ〈qq〉ϕγ(u0)M2(1 − e−s0/M2
). (11)

Equating the theoretical and the phenomenological parts of the correlation function, we obtain
the expression of the coupling constant gV σγ in QCD sum rules. Performing the double
Borel transforms with respect to the variables Q2 = −p2 and Q′2 = −p′2 on both sides of
the correlation function, and by considering the gauge-invariant structure (pquα − uqpα), we
obtain the sum rules for the gV σγ coupling constants:

λσgV σγ exp
(
−m2

σ

M2
1

)
exp

(
−m2

V

M2
2

)
=

=
mV

λV
(eu ∓ ed)〈qq〉

[
−ϕγ(u0)χM2

(
1 − exp

(
− s0

M2

))
+

3
4

+
3
32

m2
0

M2
1

+
5
32

m2
0

M2
2

]
, (12)

where the term
(
1 − exp

(
− s0

M2

))
is the function used to subtract the continuum, s0 is the

continuum threshold, and

u0 =
M2

2

M2
1 + M2

2

, M2 =
M2

1 M2
2

M2
1 + M2

2

, (13)
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where M2
1 and M2

2 are the Borel parameters in the vector meson, ρ and ω, and σ channels,
respectively. Since the masses of the ρ, ω and σ are very close to each other, we will set
M2

1 = M2
2 = 2M2 and hence U0 = 1/2.

RESULTS

In order to obtain the coupling constants gV σγ in QCD sum rules, we work two models.
Model I includes the contributions coming from the Feynman diagrams which are shown in
Fig. 3, a−c. Model II is constructed by adding the contribution resulting from the Feynman
diagram in Fig. 3, d to model I. It follows from Eq. (10), we need to know the parameters
λV and λσ to determine the coupling constants. For the overlap amplitude of the vector
mesons, ω and ρ, we use the values λω = (0.16∓ 0.01) GeV2 and λρ = (0.17∓ 0.01) GeV2

that are determined by employing the QCD sum rules method [17]. The overlap amplitude
of sigma meson was also determined using the QCD sum rules method in [10, 11], which
predicts λσ = (0.12 ∓ 0.03) GeV2 and λσ = (0.2 ∓ 0.02) GeV2, respectively. Note that the
two predictions are in disagreement by almost a factor of two.

In numerical analysis of the sum rules, we use the various parameters as follow: m2
0 =

(0.8∓ 0.02) GeV2, 〈uu〉 = −(0.014∓ 0.002) GeV2 [18]. For the mass of the vector mesons
and the scalar meson, we use mω = 0.782 GeV, mρ = 0.770 GeV and mσ = 0.5−0.7 GeV,
respectively. Then considering independent variations of the continuum threshold s0 and
the Borel parameters M2

1 and M2
2 , we analyze the dependence of the sum rule for the

coupling constants gV σγ on these parameters. We study the independent variations of the
Borel parameters in Model I. The limits for M2

1 = 1.2 GeV2 and for 1.0 � M2
2 � 1.4 GeV2

determine allowed interval for the vector channel [19]. We observe from Fig. 1, a and Fig. 2, c
that the variation of the coupling constants gωσγ and gρσγ as a function of the Borel parameters
M2

1 for different values of M2
2 is quite stable. For the middle value M2

1 = 1 GeV2 of the
Borel parameter, we determine the coupling constants gV σγ depending on the value λσ as

gωσγλσ = (0.064 ∓ 0.01) GeV2,

gρσγλσ = (0.177 ∓ 0.03) GeV2,

where errors come from the values of the overlap amplitudes λω, λρ and the Borel parameter,
the values of the vacuum condensate. Note that due to discrepancies in the predicted values
for λσ , here we presented the product gV σγλσ . Model II includes the parameter called the
magnetic susceptibility of the quark condensate, χ, which is estimated in different frameworks.
Using the OPE (Operator Product Expansion) and pion dominance in the longitudinal part
of T-product of axial and two vector currents, the value of the parameter is obtained as
χ = −1/(335 MeV)2 [20]. Then, photon distribution amplitudes in QCD analysis predict
χ = (−3.15 ± 0.1) GeV−2 [21], which we use in the present work. Also, in [22] the author
calculated the value of the magnetic susceptibility as χ = 4.32 GeV−2 in the framework of
the instanton liquid model. In Fig. 1, b and Fig. 2, d we present the dependence of the coupling
constants gωσγ and gρσγ on the Borel parameter M2

1 = 1 GeV2 at the values of the continuum
threshold: s0 = 1.4, 1.6 and 1.8 GeV2. Then, we obtain the coupling constants gV σγ as

gωσγλσ = (0.219 ∓ 0.04) GeV2,

gρσγλσ = (0.60 ∓ 0.13) GeV2,
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where in addition to previous uncertainty, errors come from the variation of the continuum
threshold s0 and the magnetic susceptibility of the quark condensate. These values are
different from the previous values of the coupling constants, gωσγ and gρσγ . These differences
arise from the term including the parameter χ whose contribution is dominant in Model II.
It should also be noted that if we use the values of the input parameters given in [11, 12],
we get the values of the coupling constants as gωσγλσ = (0.17 ∓ 0.04) GeV2 and gρσγλσ =
(0.48 ∓ 0.14) GeV2 (moreover, gωσγ = 0.80 ∓ 0.02 and gρσγ = 2.70 ∓ 0.45 for the value
λσ = 0.12), respectively. Differences between the results come from the different sign in the
equation obtained for the coupling constants.

Comparison between different predictions and QCD sum rules

Ref. gωσγ Ref. gρσγ

[12] 0.78 ∓ 0.14 [10] 2.2 ∓ 0.4
[13] −0.72 ∓ 0.08 [11] 3.2 ∓ 0.6
[23] 1.58 and −1.73 [14] 2.71
[23] 0.13 and −0.27 [25] 8.45 ∓ 1.77
[24] 0.11 ∓ 0.01 [25] −6.96 ∓ 1.78
[24] −0.21 ∓ 0.02 [26] 3.0

Model I (0.064 ∓ 0.01)/λσ Model I (0.177 ∓ 0.03)/λσ

λσ = 0.12 0.540 ∓ 0.093 λσ = 0.12 1.482 ∓ 0.265
λσ = 0.2 0.324 ∓ 0.056 λσ = 0.2 0.889 ∓ 0.160

Model II (0.219 ∓ 0.04)/λσ Model II (0.60 ∓ 0.13)/λσ

λσ = 0.12 1.828 ∓ 0.382 λσ = 0.12 5.019 ∓ 1.086
λσ = 0.2 1.097 ∓ 0.229 λσ = 0.2 3.011 ∓ 0.752

Finally, we would like to present a comparison of our results for the coupling con-
stants gV σγ with the results of different studies in the literature. In table, we denote the
predictions from phenomenological approach [23Ä25], three-point QCD sum rules [11, 12],
light-cone QCD sum rules [10, 13], the effective Lagrangian approach [14], ρ-meson photo-
production [26] and what we have obtained in this work. For the coupling constant gωσγ the
results shown in table indicate that the QCD sum rules for Model II yield predictions which
are in better agreement with the values in [12, 23, 26]. However, the results in Model II of
the coupling constant gρσγ are in a very good agreement with the values in [10, 11, 14, 26].
Therefore, the term including magnetic susceptibility from Fig. 3, d should be considered in
the studies of these coupling constants.
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