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Based on lattice QCD-adjusted SU(2); nonlocal Polyakov—Nambu-Jona-Lasinio (PNJL) models,
we investigate how the location of the critical endpoint in the QCD phase diagram depends on the
strength of the vector meson coupling, as well as on the Polyakov-loop (PL) potential and the form
factors of the covariant model. The latter are constrained by lattice QCD data for the quark propagator.
The strength of the vector coupling is adjusted so as to reproduce the slope of the pseudocritical
temperature for the chiral phase transition at low chemical potential extracted recently from lattice QCD
simulations. Our study supports the existence of a critical endpoint in the QCD phase diagram albeit
the constraint for the vector coupling shifts its location to lower temperatures and higher baryochemical
potentials than in the case without it.

H ocHose HeToK JbHOM Momenmu H m6y—Hon -JI 3uHmo c metmeii ITonsakos , 06ycTOBIeHHOM 1 H-
HbiMu Suyp(2) KX H pelierke, Mbl U3y4WId, K K IIOJIOXEHHE KPUTHYECKON TOYKH () 30BOii U IP MMBI
KX]I 3 BHCHT OT KOHCT HTHI BEKTOPHOH CBA3M, T KXe oT moTeHuu i nertu [lomsskos u dopmd k-
TOPOB KOB PH HTHOIO B3 MMOjeiicTBUS Mojenu. Bce 310 omnpenensercs I HHbIMU, HOTYYEHHBIMHU UL
KB pKoBoOro mpom r Top B pemerognoit KXJI. KoHCT HT BeKTOPHOI CBA3H ONpeaenseTcs BOCIPOU3Be-
JIEHUEM [ HHBIX, TIOJIy4€HHBIX H pelleTKe JUld H KJIOH IICeBIOKPUTUYECKOH TeMIlep Typbl KUp JIBHOTO
¢ 30BoOro mepexox B 00N CTH HH3KHX XHMHYECKMX MOTEeHHH JIoB. H Ime MccrnenoB Hue MOATBEPXKI €T
CYLLECTBOB HUE KPUTHYECKOH TOUKU H ¢p 30BOM U I'P MMe, OOH KO B IIPUCYTCTBUU BEKTOPHOM CBA3U ee
MOJIOKEHHe oNpefesnsercsa npu Oosee HU3KOM TeMIep Type u 6ojee BBICOKOM XMMHYECKOM MOTEHIH Jie
6 pHOHHOIO 3 pAx , 4eM 6e3 Hee.
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INTRODUCTION

The QCD phase diagram has been focus of intense research in the last decades. The con-
jecture for the existence of a critical endpoint (CEP) of first-order phase transitions in the
QCD phase diagram is the basis for recent as well as future beam energy scan (BES) programs
in relativistic heavy-ion collision experiments at RHIC, SPS, NICA and FAIR which try to
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identify the parameters of its position (Tcgp, pcep). The theoretical situation is very unsat-
isfactory since the predictions for this position form merely a skymap in the 7'—p plane [1].
Quantitative calculations of the phase diagram based in QCD are extremely complicated in
the low energy regime due to its strong coupling. In this region nonperturbative methods are
powerful tools to describe the chiral and deconfinement transitions. Lattice QCD calculations
have the sign problem at finite chemical potential. Therefore, the effective models play a
crucial role to describe the phase diagram, especially at finite densities.

The now well-established results from lattice QCD at zero and small chemical potential p
predict coincident chiral and deconfinement crossover transitions at a pseudocritical tempera-
ture of 7.(0) = (154 +9) MeV for 2 + 1 flavors [2] and a value of T.(0) ~ 170 MeV for
two flavors [3].

A possible strategy for extending these benchmark results to the so far inaccessible regions
of the QCD phase diagram is to use effective theories for the low-energy sector of QCD, which
reproduce lattice results at vanishing and small p, and systematically extend the predictions
to high chemical potential without changing the model inputs fixed with lattice results for
the QCD vacuum. That leaves us with a variety of possibilities for the phase structure at
nonzero j, depending on the effective model.

Among them we want to mention the following ones:
no CEP at all [4], since the transition is crossover in the whole phase diagram;
no CEP, but a Lifshitz point [5];
one CEP, but with largely differing predictions of its position [1];
second CEP [6-9];
several CEPs [10,11];

e CEP and triple point, possibly coincident, due to another phase (i.e., color supercon-
ducting [12] or quarkyonic matter [13]) at low temperatures and high densities.

This spectrum of possibilities is rather broad in view of the upcoming experimental
programmes. It is crucial to analyze the predictions arising from effective models for their
compatibility with lattice results.

One of the effective models that accounts for dynamical breaking of chiral symmetry
and its restoration at finite 7" and p is the Nambu—Jona-Lasinio (NJL) model [14—17]. The
absence of confinement in this model is partially cured by coupling its chiral quark sector to
the Polyakov-loop variable and adjusting a suitable potential with a temperature dependence
that is adjusted to describe the pressure in accordance with lattice QCD simulations in the
pure gauge field system [18-20]. These PNJL models provide a straightforward approach
to the behavior of chiral and Polyakov-loop order parameters in the 7T'—p plane (the phase
diagram, see also [21,22]) and predict a position for the CEP.

It has been shown that the nonlocal version of the PNJL model reproduces hadron proper-
ties at zero density and temperature, and presents some advantages over the local model [23-
25]. As another feature, one can add to the model a vector repulsive interaction which
increases the stiffness of quark matter and is therefore indispensable to discuss, under the
observational constraint of 2 M, neutron stars [26,27], the possibility of quark matter phases
in their interiors [28-32]. Such astrophysical applications have recently also been considered
within the nonlocal PNJL model [33-36].

Our aim in the present paper is to make a systematic study of the location of the CEP based
on chiral quark models constrained from lattice results, including all interactions mentioned
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above. We tune the parameters of our model to reproduce lattice results at zero density and
then we extrapolate our predictions to regions of finite density or chemical potential.

This article is organized as follows. In Sec. 1 we present the description of the model and
the parametrizations we used. In Sec.2 we show our results for the different form factors and
parameters. Then, in Sec.3 we present our conclusions.

1. GENERAL FORMALISM

Let us start describing the general formalism of the model we used. In the present work
we considered a nonlocal SU(2) ¢ chiral model, including vector interactions as well as quark
couplings to the gauge color background fields.

1.1. Nonlocal Chiral Quark Model. The corresponding Lagrangian of the model used in
this work is given by

‘C:qup_m())q_"ﬁint +u(¢))7 (1)

where ¢ is the Ny = 2 fermion doublet ¢ = (u,d)”, and my is the current quark mass (we
consider isospin symmetry, that is mg = m, = mg). The covariant derivative is defined as
D, =0, —1A,, where A, are color gauge fields.

The nonlocal interaction channels are given by
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where the nonlocal currents are
Ja(z) = /d4z g(Z)fi(x - g) Taq (w - g) :
jela) = [tz £ (2 + 3) %q(x— 2):
i@ = [tz (a4 3) 0o 3), 3

with T'y, = (I's,I'p) = (1,iv57) for scalar and pseudoscalar currents, respectively, and
u(x’)?v(a:) = wu(z') Oyv(x) — Opru(a’)v(x). The functions g(z) and f(z) are nonlocal
covariant form factors. The scalar-isoscalar component of the j,(x) current is the responsible
for the momentum dependence of the quark mass in the quark propagator. Then, the current
jp(xz) will generate a momentum-dependent wave function renormalization (WFR) of this
propagator. The mass parameter r, controls the relative strength between both interaction
terms in (3). Finally, jy (x) represents the vector channel interaction current, whose coupling
constant Gy is usually taken as a free parameter. Moreover, we also have considered in
this vector interaction the same nonlocal covariant form factor g(z) used for the scalar and
pseudoscalar currents. Then it is not necessary to include new free parameter in this term.
After the Fourier transform into momentum space, we have performed a standard bosoniza-
tion of the theory introducing the bosonic fields o1 2(p) and w(p), and integrate out the quark
fields. Furthermore, as we work within the mean field approximation (MFA), we replace the
bosonic fields by their vacuum expectation values 012 and w, respectively, and the corre-
sponding fluctuations are neglected. The main motivation of the present work is to study the
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phase diagram of the strongly interacting quark matter. As we want to analyze the chiral
phase transition for different choices of the parameters of the model, we have to include the
dependence on the temperature 7" and quark chemical potential y in our effective action'. In
the present work this is carried out by using the Matsubara imaginary time formalism. As
mentioned above, the quarks are coupled to the gluons in (1) through the covariant derivative.

The coupling of fermions with the gluon fields is taken into account in (1) through the
covariant derivative. Considering the quarks in a color field background Ay = goGfAa/2,
where G, are the SU(3) color gauge fields. At mean field level the traced Polyakov loop

1 _
is given by ¢ = gTr exp (i8¢), with ¢ = iAp. Then, in the Polyakov gauge, the matrix

¢ is given by ¢ = ¢3A3 + ¢psAsg. Considering that the mean field expectation values of ®
must be real, we set ¢g = 0 [19,25]. The mean field traced Polyakov loop is then given
by ® = ®* = [1 + 2cos(¢3/T)]/3. Finally, the Lagrangian (1) also includes an effective
potential U that accounts for gauge field self-interactions and will be briefly described below.

Within this framework the mean field thermodynamical potential QMFA results
d3p (S 2)* + M?(p, )
QMFA _ _yp / ~In n,p n,p
Sy e
2,22 2
01 + K03 w
— ue, T 4
QGS ZGV + ( ? )) ( )
where M (p) and Z(p) are given by
M(p) = Z(p) [m + o1 9(p)], )
Z(p) =1 -0z f(p)] "
Finally, as in [37], we have considered
2 . .,
(Prp)” = [@n+ DT —ip+ ¢c]* + 52, (6)

where ¢, are given by the relation ¢ = diag (¢r, ¢4, ¢p). Namely, ¢, = c 3 withc=1,—-1,0
for r, g, b, respectively.

For finite values of the current quark mass, QMFA turns out to be divergent. The regular-
ization procedure used here considers [37,38]

MFA MFA free free
Qfregy = X7 — Q7+ Oy, Q)

where Qfree is obtained from (4) for o1 = 02 = 0, and Q?;ffg) is the regularized expression
for the thermodynamical potential of a free fermion gas,
) .

_\/ﬁ2+m2_ﬂ+i¢c
_\/ﬁ2+m2+ﬂ+i¢c
T

3 =
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+In <1 + exp
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IThe corresponding values for baryon chemical potential g can easily be obtained from the relation pp = 3.
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The next step is obtaining the mean field values of o1, 02, w and ® as a function of the
chemical potential and the temperature, by solving the following set of coupled equations:

MFA MFA MFA MFA
dQ(reg) _ dQ(rEg) — % =0 % =0 )
doy ’ dos ’ dw , de .

Then we can evaluate the Q?Eé?(ah 02,w,®, 11, T) and compute all the relevant thermo-

dynamic quantities needed in our calculation, like the chiral quark condensate

8QMFA 8QMFA
7oy Plreg) )

and the chiral susceptibility y which can be used to determine the characteristic of the chiral
phase transition

Yeh = — aQQl(VrISgA) - _ 8@@ (11)
ch om?2 om

To proceed, we still have to define some quantities like the form factors, the vector
interactions, the effective potential &/ and also the parameters of the model. Let us introduce
them gradually.

1.2. Form Factors and Wave Function Renormalization. Following [37,39], we have
considered two different types of functional dependency for the form factors g(gq) and f(q):

exponential forms

sera) { G 2GR, (12)
. 9(p) = exp (—p?/A3) ,
@m){ﬂmﬂmewé% )

and Lorentzians with WFR

1+a, amfm(p)_maZfZ(p)

500 9(p) 1 +104—: izz(p) Oy — M QL ’ (14)
f(p) = mfz(p);
where
fule) = 1+ 0/8)77] L L) = [+ (7/A3)] 7, 1)
and a,,, = 309 MeV, a, = —0.3. All the parameter sets are summarized in table.

Sets of parameters (see [39] for a detailed description)

Parameter | Set A Set B Set C

m, MeV 5.78 5.7 2.37
Ao, MeV | 7522 | 814.42 | 850.0
Gs A2 20.65 | 32.03 | 20.818
A1, MeV | 0.0 | 1034.5 | 1400.0
Kp, MeV 0.0 | 4180.0 | 6034.0
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In addition, we want to include in our analysis the results arising from a local PNJL
model, which allows us to compare them with the results obtained, for example, in [4]. For
that purpose, we started from the Lagrangian in [21] with two flavors instead of three and we
use the same model parameters as in [18, 19,40]:

m=>55MeV, G=10.1GeV 2 A =650.0MeV. (16)

The model inputs can be constrained with results from lattice QCD studies. In particular,
the above-described form factors of the nonlocal interaction have been chosen [39] so as to
reproduce the dynamical mass function M (p) and the WFR Z(p) of the quark propagator in
the vacuum [41]. In Fig.1 we show the shapes of normalized dynamical masses and WFR
for the models under discussion here, i.e., the nonlocal models with set A (rank-one), set B
and set C (rank-two) parametrizations as well as the local limit.

1 -—- Local NJL a
-- nIPNJL — Set A
— — nIPNJL — Set B

— nIPNJL — Set C
* Lattice (Parappilly et al.)
° Dynamical (Kamleh et al.)

0.5 T * Quenched (Kamleh et al.)

[M(p) — m]/[M(0) — m]

Z(p)

0 0.5 1 1.5 P, GeV 2
Fig. 1 (color online). Normalized dynamical masses (a) and wave function renormalization (b) for the
different nonlocal form factors under study from [37,39] fitted to lattice data from [41]. For comparison
the local model [40] and more recent lattice data from [42] are also included

This figure generalizes the corresponding Fig. 1 in [39], by including the local limit for
M (p) and showing the line Z(p) = 1 for both, set A and the local case. For comparison, a
more recent lattice data from [42] is also included. It is easy to recognize the better agreement
between the lattice results and the more complete model, namely, nonlocal PNJL with WFR,
in its two form factor parametrizations given by set B and set C.

1.3. The Vector Coupling. The vector coupling constant Gy is considered a free parameter
which in the mean field approximation (MFA) may be adjusted so as to reproduce the behavior
of the critical temperature, T.(x), which has recently been obtained by Taylor expansion
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technique in lattice QCD [43],

=) o)) an

with ¥ = 0.059(2)(4) being the curvature. Note that this result is not yet based on continuum
extrapolated lattice results, so that discretization errors have to be expected. However, we
are interested to present here a scheme for constraining effective QCD models. The quality
of predictions can subsequently be improved by using better lattice QCD data and constant
discretization schemes. In what follows, the vector coupling strength will be evaluated by
considering different ratios of 7y = Gy /Gg, and we use this parameter to tune our model to
obtain better agreement with lattice predictions.
We include the vector coupling as a shifting in the chemical potential according to

fr = —wg(p) Z(p)- (18)

Note that we include the WFR Z(p) in the shifted chemical potential in order to keep the
thermodynamical potential at mean field level. We found that the results are quite different
if the Z(p) had not been included in the shift. As an example of that, we show in Fig.2 the
phase diagram for set B with and without WFR in f, for a particular value of 7y (similar
results were obtained within set C) and a finite value of vector coupling constant.

T, MeV

180

160 RN N

140 F b

120

100}

80 Set B
- Ty = 208 MeV

60 -

ol — v =03 @ without Z(p))
[~y = 03 (@ with Z(p)

20}
i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A
0 50 100 150 200 250 300 350 400

u, MeV

Fig. 2 (color online). Comparative plot of phase diagram obtained with and without the inclusion
of Z(p) in the shifted chemical potential in Eq.(18). Dashed lines represent crossover transitions, the
symbols (dot or square) indicate the critical endpoints location, and solid lines are first-order phase
transitions

Finally, we have to include the shifting (18) in (6) defining a new pf, ..
In the case of the local model, we consider that the chemical potential is shifted by

iz p—w. (19)
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1.4. Polyakov-Loop Potential. In the present work we have chosen a u-dependent loga-
rithmic effective potential described in [44]

U, T, 1) = (aoT* + arp* + aoT?*p?)®? + a3Ty In (1 — 602 + 883 — 307), (20)

where
ao=—1.85, a1 =-144-10"%, ay=—0.08, a3 = —0.40.

The reason for our particular election is that we want to consider the influence of chemical
potential on the PL effective potential, and evaluate how this p-dependence can modify the
phase diagram, tuning the vector coupling. In Fig.3 we compare the phase diagrams we
obtained considering the p-dependent logarithmic effective potential and a non-u-dependent
effective potential described in [19]. The results for sets A and C have a similar qualitative
behavior. As expected, at 7' = 0 and g = 0 both potentials produce the same critical
temperatures, but there is a significant difference in the location of the CEPs. Nevertheless,
it is shown in the same figure that this difference turns out to be smaller when increasing the
vector coupling strength.

T, MeV
200
180 -
160 TEES
140 -
120
100 -
80 Set B
ok To=208 MeV
40 —°*— PLRRW
- —m— PL Dex-Sch
20
[ TR N R ST O N TN Y SO [N M A TN ) A
0 50 100 150 200 250 300 350 400

u, MeV

Fig. 3 (color online). Phase diagrams obtained with the u-dependent effective potential from [44] used
in this work in comparison with the logarithmic PL potential in [19]. Dashed lines represent crossover
transitions, the symbols (dots or squares) indicate the critical endpoints location, and solid lines are
first-order phase transitions

Another point we have to discuss here is the election of the critical temperature Tp for
deconfinement transition. In the present work we set T for deconfinement by using the value
corresponding to two flavors, i.e., Ty = 208 MeV, as has been suggested in [45] and used in
subsequent approaches, including the nonlocal PNJL [46], Polyakov loop—DSE models [47]
and entanglement PNJL (EPNJL) model [48,49]. This election produces lower 7T, values for
the chiral transition (see Fig.4 as an example), obtaining at zero chemical potential closer
values to the lattice QCD more accepted result [3] for the critical temperature 7.(0) =
170 MeV. It is remarkable that within the local model the obtained critical temperatures are
noticeably higher than in the case of nonlocal models, as is shown in Fig. 4.
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Fig. 4 (color online). Comparison of phase diagrams determined with two different values of the
deconfinement critical temperature Ty: the pure gauge value (7o = 270 MeV) and the two-flavor value
(To = 208 MeV). See [45-47] for details. Dashed lines represent crossover transitions, the symbols
(dots or squares) indicate the critical endpoints location, and solid lines are first-order phase transitions

In this context it is important to keep in mind the effect that the account for a hadronic
phase can have on the topology of the QCD phase diagram [50,51], as well as higher-order
quark interactions [52].

2. RESULTS

The first effect we want to study is how the vector interactions affect the transitions
and the location of the CEP. We built the corresponding phase diagrams for different
values of ny. In all the cases we observed a variation in the curvatures even at low
chemical potential. As expected, the influence of the vector coupling increases with the
chemical potential, then the position of the CEP and the values of u.(T' = 0) reflect no-
tably this influence. We want to remark that, for increasing 7y, the CEPs tend to be
located towards lower 7' and higher p. Similarly to what has been shown in [53], we
observe that for any of the nonlocal models under study, the CEPs (and the correspond-
ing first-order transitions) are still present for all the values of vector coupling constant
analyzed in this work. In Fig.5 it can be seen that effect for set B (qualitatively sim-
ilar behavior was observed for set A and set C). Nevertheless, for the local model, we
observe that by increasing 7y a crossover line without a CEP is obtained, as is shown
in Fig. 6.

Once we have the phase diagrams, the next step is to determine the curvatures. To do
so, we plotted the pseudocritical temperatures of the crossover transitions as a function of
(u/T)? for different 7y ratios. Then, the curvatures can be obtained from the slope of the
straight lines in the region of low (u/T') values. An example of this is shown in Fig.7 for
set C (the corresponding plots for the other sets are qualitatively very similar). The fit of
the lattice QCD results (17) is also shown. The grey zone corresponds to the error in the
coefficient x obtained in [43].
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Fig. 5 (color online). Influence of the strength
of the vector coupling (here nv = Gv/Gs) on
the phase diagram for set B. Dashed lines rep-
resent crossover transitions, the symbols indicate
the critical endpoints locations, and solid lines are

first-order phase transitions
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Fig. 6 (color online). Influence of the strength
of the vector coupling on the phase diagram for
the local model. Dashed lines represent crossover
transitions, the symbols (dot or square) indicate
the critical endpoints location, and solid lines are
first-order phase transitions. It can be seen that
CEPs tend to disappear for Gy > 0.1Gs, leaving

only a crossover phase transition

In Fig. 8 we compare the lattice result with the values for the coefficient x obtained within
the nonlocal PNJL models and the local one. There, the horizontal line corresponds to the
lattice QCD prediction of x = 0.059(2)(4) [43] and the grey zone represents its error. Note
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0 0.1 0.2 0.3 0.4 0.5 0.6
(u/T)?
Chiral crossover transi-
tions at low values of p/T for different values
of strengths of the vector coupling nv = Gy /Gs
for set C. The dashed line corresponds to the lat-
tice QCD prediction of x = 0.059(2)(4) [43]

Fig. 7 (color online).
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Fig. 8 (color online). Curvature x of the pseudo-
critical temperature 7. (x) of the chiral crossover
transition at low values of p/7T. The horizontal
line corresponds to the lattice QCD prediction of
%k = 0.059(2)(4) [43]. The grey zone represents
the corresponding error in the curvature determi-
nation
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that for the more complete model (set B and set C) the curvatures are closer to each other
than in the case of set A and local ones.

It is important to remark that while the analysis of « has been performed for Ny =2 +1
simulations, the chemical potential p concerns only the two light flavors. Therefore, our
extraction of x from the nonlocal PNJL models for the 2-flavor case may be in order.

In Fig. 9 the phase diagrams for the nonlocal models discussed in this work are compared,
considering the corresponding 7y values that best fit the lattice QCD prediction of Kk =
0.059(2)(4) from [43]. The grey zones correspond to the range of 7y values obtained by
considering the error in the lattice determination of x [43]. Similarly, the error bars in the
CEPs indicate the distances to the CEP positions for the corresponding 7y values that fit the
error limits.
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Fig. 9 (color online). Phase diagrams obtained with the nonlocal models with the parametrizations
set A (a), set B (b) and set C (c), for the values of 7y that best fit the lattice QCD prediction in [43].
The grey zones and the error bars of the CEP location represent the corresponding indetermination for
the curvature value

Note that by using the Polyakov loop potential (20) from [44], a crossover region and a
CEP can be obtained for set A, even for Ty = 208 MeV, contrarily to what has been reported
in [46,47], where the Polyakov loop potential from [19] has been used. '

The results summarized in Fig. 10 indicate that the absolute value of the critical temperature
T.(0) of nonlocal covariant PNJL models is rather insensitive to the choice of the form factors
parametrizing, the momentum dependence of dynamical (running) mass function and WFR
of the quark propagator as measured on the lattice at zero temperature [41], whereas the
position of the CEP and critical chemical potential at 7" = 0 strongly depends on it. On the
other hand, the value of 7,.(0) in the local model is significantly different (larger) than in the
nonlocal ones. In addition, note that in the local model to fit the lattice QCD value requires a
larger vector coupling, for which the corresponding phase diagram lacks of CEP and all the
chiral phase transition is a crossover. This is another remarkable difference with respect to
the phase diagram obtained with nonlocal models [4].

'Note that in the low-u region the differences in the chiral transition obtained with each effective potential are
mainly due to the definition of the corresponding logarithmic term in the Polyakov-loop potential.
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Fig. 10 (color online). Phase diagrams with (pseudo)critical temperatures 7% (u) and critical points for
nonlocal PNJL models (sets A—C) compared to the local one. Dashed (full) lines correspond to crossover
(first-order) transitions. The vector coupling strength 7y is chosen so that these models reproduce the
lattice QCD result k = 0.059(2)(4) [43] for the curvature at low p values. The corresponding values
for Te( = 0) (in MeV) are 169.9, 171.3, 173.2 and 200.9, for sets A, B, C and local, respectively.
The highlighted region denotes the CEP position favored by the present study

The nonlocal model for the set B and set C cases contains WFR and dynamical (running)
quark mass effects, and thus is closer to full QCD. Therefore, we suggest that statements
about the existence and location of the CEP within set A and the local model should be less
trustworthy than those of set B and set C. As a consequence, a possible region for the CEP
location suggested by our study would be between the results for set B and set C, i.e., around
(Torp, pcrp) = (129.8, 276.6 MeV) and (69.9, 319.1 MeV), respectively.

This suggests that the search for CEP signatures in the BES programs is justified and
should be continued. The energy range of the NICA and FAIR facilities shall be particularly
promising.

3. SUMMARY AND CONCLUSIONS

In this work, based on nonlocal PNJL models with and without WFR, we have stud-
ied the influence of vector coupling strength in the QCD phase diagram. As shown in
Fig.2, a remarkable difference is observed when the shift of the chemical potential includes
the WFR function, keeping the thermodynamical potential at mean field level. In a fur-
ther exploratory step, we showed the influence of considering different values for the T}
parameter in the effective potential on the phase diagrams (see Fig.4). As expected, a no-
ticeable decrease of the chiral transition critical temperatures is observed, but the smaller
the temperature, the smaller is this decrease, converging to almost the same value when the
critical temperature goes below 7' = 40 MeV. Also in Fig.4, one can see from a com-
parison between one of the nonlocal models (set B as an example) and the local one that
a remarkable difference of about 25 MeV along all the phase diagram lines for the same
value of Ty is obtained. But the main variation is in the location of the CEP, which in
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the case of the local model turns out to be at a lower 7' and higher p than in the nonlo-
cal case. Comparing Figs.5 and 6 for nonlocal and local models, respectively, it can be
observed that the influence of the increasing of the vector coupling strength is qualitatively
similar in both cases, i.e., moving the phase transitions towards higher p values and low-
ering the CEP location. Nevertheless, in the case of the local model the CEP turns out to
disappear for higher values of 7y, leaving only a crossover transition along all the phase
diagrams.

A second step in our work consisted in the determination of the curvatures in the low u
region as the slope of the straight lines obtained by plotting the pseudocritical temperatures
of the crossover transitions as a function of (1/7)2. In Fig. 7 are shown some examples of
the lines obtained with set C and several values of 7y, while in Fig. 8 it can be observed how
the curvatures vary with respect to the vector coupling strength for all the parametrizations
considered.

Once the values of 7y have been determined that best reproduce the lattice QCD result
k= 0.059(2)(4) [43] for the curvature at low u values, we have shown (Fig.9) the nonlocal
model phase diagrams for the obtained values of 7y .

Finally, considering the more elaborated models (nonlocal and with WFR, i.e., set B and
set C), and the corresponding values of 7y adjusted to lattice QCD results, we suggest in
Fig. 10 the most likely zone where, according to our study, the CEP would be located.

Note that in this exploratory study the lattice QCD data for the quark propagator and for
the curvature of the pseudocritical line are obtained with different lattice actions. A more
consistent study should be based on the same discretization of the action, provide a continuum
extrapolation and work with physical quark masses.

As a next step, it is necessary to investigate the robustness of the results of the non-
local PNJL models when modifying the choice of the Polyakov-loop potential taking into
account recent developments [54-56] and, in particular, when going beyond the mean field
approximation. A scheme for going beyond the mean field in nonlocal PNJL models by
including hadronic correlations (bound states and their dissociation in the continuum of
scattering states) has recently been developed [57] and shall be generalized for studies of
the chiral and deconfinement phase transition in the QCD phase diagram. A key quan-
tity for such studies will be the hadronic spectral function. First results using a generic
ansatz [58] for joining the hadron resonance gas and PNJL approaches are promising [59, 60]
and have recently been underpinned a microscopic justification by a treatment of pion dis-
sociation within the (local) PNJL model [61]. This approach has recently been generalized
by mimicking confining properties with an infrared momentum cutoff [62] in order to bind
higher lying mesonic states such as the sigma meson — a feature shared with the nonlo-
cal extensions of the (P)NJL model as, e.g., in [23,47,63,64], to be exploited further in
subsequent work.
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